Самодельный мини ветрогенератор. Сборка самодельного ветрогенератора: варианты конструкции от пользователей FORUMHOUSE
Ветряные электрогенераторы продолжают набирать свою популярность. Ими чаще всего интересуются люди, проживающие в сельской местности и имеющие возможность устанавливать на своих участках столь внушительные конструкции. Но, учитывая высокую стоимость данного оборудования, позволить себе его покупку может далеко не каждый. Давайте посмотрим, как сделать ветрогенератор своими руками и сэкономить деньги на создании собственного альтернативного источника электрической энергии.
Ветрогенератор – источник электроэнергии
Тарифы на коммунальные услуги поднимаются как минимум один раз в год. А если присмотреться, то в некоторые годы та же электроэнергия поднимается в цене два раза – цифры в платежных документах растут как грибы после дождя. Естественно, все это ударяет по карману потребителя, доходы которого не показывают столь устойчивого роста. А реальные доходы, как показывает статистика, показывают тенденцию к падению.
Еще совсем недавно бороться с ростом тарифов на электроэнергию можно было одним простым, но незаконным способом – с помощью неодимового магнита. Это изделие прикладывалось к корпусу расходомера, в результате чего тот останавливался. Но пользоваться данной методикой мы настоятельно не рекомендуем – это небезопасно, незаконно, а штраф при поимке будет таким, что мало не покажется.
Схема была просто великолепная, но впоследствии она перестала работать по следующим причинам:
Участившиеся контрольные обходы стали массово выявлять недобросовестных хозяев.
- Участились контрольные обходы – по домам ходят представители контролирующих органов;
- На счетчики стали наклеиваться специальные стикеры – под действием магнитного поля они темнеют, разоблачая нарушителя;
- Счетчики стали невосприимчивыми к магнитному полю – здесь устанавливаются электронные учетные узлы.
Поэтому люди стали уделять внимание альтернативным источникам электроэнергии, например, ветрогенераторам.
Еще один способ разоблачить нарушителя, ворующего электроэнергию – провести экспертизу уровня намагниченности счетчика, которая с легкостью выявляет факты хищения.
Ветряки для дома становятся привычным явлением в районах, где часто дуют ветра. Ветровой электрогенератор использует для выработки электроэнергии энергию ветровых потоков воздуха. Для этого они оснащаются лопастями, которые приводят в движение роторы генераторов. Полученная электроэнергия преобразуется в постоянный ток, после чего передается потребителям или запасается в аккумуляторных батареях.
Ветрогенераторы для частного дома, как самодельные, так и заводской сборки, могут основными или вспомогательными источниками электроэнергии. Вот типичный пример работы вспомогательного источника – он греет воду в бойлере или питает низковольтные домашние светильники, в то время как остальная домашняя техника работает от основной электросети. Также возможна работа как основного источника электричества в домах, не подключенных к электрическим сетям. Здесь они питают:
- Люстры и светильники;
- Крупную бытовую технику;
- Отопительные приборы и многое другое.
Соответственно, для того чтобы обогревать свое жилье, необходимо сделать или приобрести ветряную электростанцию на 10 кВт – этого должно хватить на все нужды.
Ветровая электростанция может питать как традиционные электроприборы, так и низковольтные – они работают от 12 или 24 вольт. Ветряной генератор на 220 В выполняется по схеме с применением инверторных преобразователей с накоплением электроэнергии в аккумуляторах. Ветрогенераторы на 12, 24 или 36 В устроены проще – здесь применяются более простые контроллеры заряда батарей со стабилизаторами.
Самодельный ветрогенератор для дома и его особенности
Прежде чем мы расскажем, как сделать ветряк для получения электричества, поговорим о том, почему нельзя воспользоваться заводской моделью. Заводские ветрогенераторы действительно более эффективнее своих самодельных аналогов. Все, что можно сделать на производстве, будет надежнее того, что можно сделать в кустарных условиях. Это правило работает и в отношении ветрогенераторов.
Самостоятельное изготовление ветрогенератора выгодно своей дешевизной. Заводские образцы мощностью от 3 кВт до 5 кВт обойдутся в 150-220 тыс. рублей, в зависимости от производителя. Столь высокая цена и объясняет недоступность магазинных моделей для большинства потребителей, ведь она влияет и на срок окупаемости – в некоторых случаях он достигает 10-12 лет, хотя некоторые модели «отбивают» себя намного раньше.
Заводские ветряные электростанции для дома более надежные и реже ломаются. Зато каждая поломка может привести к гигантским расходам на запасные узлы. Что касается самоделок, то их легко отремонтировать самостоятельно, так как собираются они из подручных материалов. Этим и оправдывается далеко не самая совершенная конструкция.
Да, сделать ветрогенератор на 30 кВт своими руками будет очень сложно, но любой человек, умеющий работать с инструментами, сможет собрать маленький ветряк небольшой мощности и обеспечить себя необходимым количеством электроэнергии.
Схема самодельного ветрогенератора – основные узлы
Сделать самодельный ветрогенератор в домашних условиях сравнительно легко. Ниже вы можете увидеть простой чертеж, объясняющий расположение отдельных узлов. Согласно этому чертежу, нам необходимо сделать или подготовить следующие узлы:
Схема самодельного ветряка.
- Лопасти – они могут быть изготовлены из самых разных материалов;
- Генератор для ветрогенератора – можно приобрести готовый или сделать самостоятельно;
- Хвостовая часть – направляет лопасти по направлению ветра, позволяя добиться максимального КПД;
- Мультипликатор – повышает обороты вращения вала (ротора) генератора;
- Крепежная мачта – на ней будут удерживаться все вышеперечисленные узлы;
- Натяжные тросы – удерживают всю конструкцию и не дают упасть от порывов ветра;
- Контроллер заряда, аккумуляторы и инвертор – обеспечивают преобразование, стабилизацию и накопление полученной электроэнергии.
Мы попробуем сделать с вами простой роторный ветрогенератор.
Пошаговая инструкция по сбору ветрогенератора
Сделать ветряк из пластиковых бутылок сможет даже ребенок. Он будет весело вращаться под дуновением ветра, издавая шум. Существует гигантское количество всевозможных схем постройки таких ветряков, в которых ось вращения может располагаться как вертикально, так и горизонтально. Электричества такие штуки не дают, зато прекрасно разгоняют кротов на приусадебных участках, которые вредят растениям и повсюду роют свои норки.
Самодельный ветрогенератор для дома чем-то похож на такой вот бутылочный ветряк. Только размерами он побольше, да и конструкцией посерьезней. Но если приделать к такому ветрячку небольшой моторчик, то он сможет стать источником электроэнергии и даже запитать какую-нибудь электрическую штуку, например, светодиод – на большее его мощности не хватит. Глянув на схему такой «игрушки», вы сможете понять, как сделать полноценный ветрогенератор.
Делаем генератор для ветряка
Для того чтобы собрать ветряную электростанцию, нам потребуется генератор, причем с самостоятельным возбуждением. Иными словами, в его конструкции должны присутствовать магниты, наводящие электроэнергию в обмотках. Именно так устроены некоторые электродвигатели, например, в шуруповертах. Но сделать приличный ветрогенератор из шуруповерта не получится – мощность будет просто смешной, хватит максимум на работу небольшой светодиодной лампы.
Сделать ветряную электростанцию из автогенератора тоже не получится – здесь используется обмотка возбуждения, питающаяся от аккумулятора, поэтому он нам не подходит. Из вентилятора бытового у нас получится сделать разве что пугач для птиц, атакующих огород. Поэтому нужно поискать нормальный самовозбуждающийся генератор подходящей мощности. А еще лучше потратиться и приобрести покупную модель.
Генератор действительно выгоднее купить, чем сделать – КПД заводского образца будет более высоким, нежели у самоделки.
Давайте посмотрим, как сделать генератор для нашего ветряка своими руками.
Его максимальная мощность составляет 3-3,5 кВт. Для этого нам понадобятся:
- Статор – он изготавливается из двух кусков листового металла, раскроенных в форме окружностей диаметром 500 мм. На каждую окружность по краю (немного отступив от края) наклеиваются 12 неодимовых магнитов диаметром 50 мм. Их полюса должны чередоваться. Аналогичным образом готовим вторую окружность, но только полюса здесь должны располагаться со сдвигом;
- Ротор – он представляет собой конструкцию из 9 катушек, намотанных медным проводом диаметром 3 мм в лаковой изоляции. В каждой катушке делаем по 70 витков, хотя в некоторых источниках рекомендуется делать по 90 витков. Для размещения катушек необходимо сделать основу из немагнитного материала;
- Ось – ее необходимо сделать точно по центру ротора. Причем биений быть не должно, конструкцию нужно тщательно отцентровать, иначе ее быстро разобьет ветром.
Размещаем статоры и ротор – сам ротор вращается между статорами. Между этими элементами выдерживается расстояние 2 мм. Все обмотки мы соединяем по нижеприведенной схеме, чтобы у нас получился однофазный источник переменного тока.
Изготавливаем лопасти
В этом обзоре мы делаем довольно мощный ветрогенератор – его мощность составит до 3-3,5 кВт при сильном ветре или до 1,5 или 2 кВт при ветре средней силы. Причем он получится достаточно бесшумным, в отличие от генераторов на электродвигателях. Далее нужно подумать о расположении лопастей. Мы с вами задумали сделать простой трехлопастной горизонтальный ветрогенератор. Можно было бы подумать и над вертикальным ветрогенератором, но в этом случае коэффициент использования энергии ветра будет более низким – в среднем 0,3.
Если сделать вертикальный ветрогенератор, то у него будет лишь одно преимущество – он сможет работать при любом направлении ветра.
В домашних условиях проще всего сделать простые лопасти. Для их изготовления можно использовать различные материалы:
- Дерево – правда, со временем оно может потрескаться и рассохнуться;
- Полипропилен – этот вид пластика подходит для маломощных генераторов;
- Металл – надежный и долговечный материал, из которого можно сделать лопасти любого размера (хорошо подходит дюралюминий, используемый в авиации).
Прикинуть диаметр лопастей поможет небольшая таблица. Уточните примерную скорость ветра в вашей местной и узнайте, какого диаметра нужно сделать лопасти для ветрогенератора.
Сделать лопасти для ветрогенератора не так уж и сложно. Гораздо сложнее сделать так, чтобы вся наша конструкция получилась сбалансированной – иначе ее быстро разобьют сильные порывы ветра. Балансировка выполняется путем коррекции длины лопастей. После этого объединяем лопасти с ротором нашего ветрогенератора и устанавливаем конструкцию на монтажной площадке, к которой крепится хвостовая часть.
Запуск и проверка
Самое главное в дальнейшем – выбрать правильное место для установки мачты. Она должна располагаться строго вертикально. Генератор с лопастями размещается как можно выше, где ветер более сильный. Проследите, чтобы рядом не было лесопосадок, отдельно стоящих деревьев, домов и крупных сооружений, загораживающих воздушные потоки – при наличии каких-либо помех разместите ветрогенератор на удалении от них.
Как только ветрогенератор придет в движение, необходимо сделать следующее – подключить к отводу генератора мультиметр и проверить наличие напряжения. Теперь система готова к полноценной эксплуатации, остается только определиться, какое напряжение будет подаваться в дом и как это будет происходить.
Подключение потребителей
У нас уже получилось сделать малошумный ветряк, причем довольно мощный. Настало время подключить к нему электронику. Собирая ветрогенераторы своими руками на 220В, необходимо позаботиться о приобретении инверторных преобразователей. КПД данных приборов достигает 99%, поэтому потери на преобразовании подаваемого постоянного тока в переменный ток с напряжением 220 Вольт будут минимальными. Итого в системе будут три дополнительных узла:
- Блок аккумуляторов – накапливает излишки генерируемой электроэнергии впрок. Эти излишки используются для питания потребителей в периоды безветрия или в моменты, когда он дует очень слабо;
- Контроллер заряда – контролирует зарядный ток, продлевая срок службы аккумуляторных батарей;
- Преобразователь – преобразует постоянный ток в переменный.
Также возможна схема, когда в доме устанавливаются бытовая техника и осветительные приборы, способные работать с напряжением 12 или 24 Вольта. В этом случае надобность в инверторном преобразователе отпадает. Что касается питания приборов для приготовления еды, то для того чтобы не создавать излишней нагрузки на ветрогенератор, советуем использовать газовое оборудование, питающееся от баллона со сжиженным газом.
Ветряные генераторы на 220В выгодны тогда, когда в доме уже присутствует техника, работающая на переменном токе с указанным напряжением.
Видео
Человечество на протяжении всего времени его развития делало, как незначительные, так и колоссальные, буквально меняющие когнитивную и объективную реальность и представления открытия, основанные на самых широких спектрах существующих законов на планете Земля. Все они так или иначе обуславливались определёнными факторами и были плодами нужд и необходимости что-либо улучшить, создать, изменить, подстроить под себя. Исходя из этого, на сегодняшний день буквально пришли к тому, что появляются строго индивидуальные нужды в использовании уже современных и эффективных приборов и механизмов, позволяющих извлекать максимум из всего, что окружает. Речь пойдет о таком устройстве, как ветроустановка (в народе – ветродуйка, ветродуй), а также о том, как же всё-таки сделать его своими собственными руками, затратив минимум энергии и средств, и получив максимальный результат.
Что такое ветровой генератор
Отличным примером для преставления ветрогенератора и его действия может стать известная компьютерная игра Майнкрафт, где ветрогенераторы раскрыты во всех их качествах. Устроен средний мини-генератор определенным образом.
Все ветрогенераторы в своей сущности дифференцируются на следующие основные виды:
- Одни из самых распространённых – роторные (вертикальные) ветрогенераторы, действующие на основе вертикального осевого вращения, осуществляемого с помощью ротора и лопастей.
- Крыльчатые ветрогенераторы – горизонтальный механизм осевого вращения, осуществляемых с помощью так называемого колеса и имеющей в своей системе, как правило, пропеллер.
- Реже также можно наткнуться на барабанные ветрогенераторы, являющиеся, по своей сути, подвидом роторных и действующих на тех же принципах, но в горизонтальной плоскости.
Конечно, первые картинки, что приходят на ум при возникновении образа ветрогенератора – это вращающиеся лопасти, винт, хвост, турбина или, как её ещё называют, ветротурбина, так называемый ротор.
Ключевое звено всей деятельности – генератор, мачта, аккумуляторы, инвертор, подключённый к электросети, мультипликатор (редуктор, при необходимости) и флюгер.
Как сделать ветряк своими руками
Вертикальные ветрогенераторы являются наиболее эффективными и простыми в изготовлении и эксплуатации, что обуславливает их достаточную распространённость, будь то спиральный или прямой механизм.
Большое значение имеет, как цель создания ветрогенератора, так и местность, на которой он будет установлен, от чего и следует отталкиваться при планировке.
Существуют основные моменты, требующие обязательного внимания, при создании ветрогенератора. Первое, что следует определить, – конечно же двигатель всего прогресса, сердце всей системы – генератор, который можно как приобрести, так и сделать самому, что, в сущности, требует определённой сноровки и умений, однако, при должном желании, можно справиться и новичку. В зависимости от поставленной цели, хотите серьёзный аппарат на 10кВт, 5кВт (5kW) или менее мощный на 12V, или более маленький и простой ветродвиатель велосипедного образца, используемый, как электрическая установка на балконе квартиры.
Ветровик может быть оснащён практически любым генератором:
- Будь то многим известный сельский тракторный генератор;
- Деталь из старого компьютера или ЭВМ;
- А может быть это малошумный автомобильный мотор;
- Элемент двигателя стиральной машины, имеет значение лишь его работоспособность.
Далее определяемся с лопастями – теми самыми крутящимися объектами, напоминающими лопасти мельницы. Лопасти можно изготовить из также большого количества материалов, наиболее перспективными и распространёнными из которых являются, например, фанеры, пластика, иногда жести (краёв бочки, например), ПВХ материала и так далее. При изготовлении, следует учитывать все существенные факторы – как влияние центробежной силы, так и размеры лопастей, поток ветра на местности и другие. Наиболее рационально создавать крыльчатого характера, в силу повышения эффективности, путём влияния на распределение ветрового потока.
Следующий шаг – изготовление прибора для определения скорости и направления ветра – флюгера. Представляет собой что-то вроде металлического флажка, изменяющего своё положение в соответствии с потоками ветра. В роль флюгера может подойти практически любой сравнительно прочный, но лёгкий слой металла.
Мачта – в её роли может использоваться также широкий спектр подручных средств, например, прочная водопроводная труба. Самодельный ветряной аппарат (самоделки) вполне реально изготовить самому, как уже было описано, из максимально доступных средств, при чём сила ветряка зависит от используемых материалов и продуманности использования в конкретных условиях. Самый простой представитель таких устройств вполне способен создавать электричества на освещение помещения, зарядки устройств, а при должном желании, даже для обеспечения базовых нужд сравнительно небольшого загородного домика.
Подбор генератора для ветряка
Генератор – важнейший элемент всей установки, без которого невозможно создание ни единого вольта электроэнергии. Изготовить низкооборотный генератор самостоятельно из подручных средств вполне реально, но следует подбирать все элементы под конкретные цели, ведь если речь идёт о мощной установке, то здесь необходимы достаточно серьёзные детали.
Генератор включает в себя:
- Ротор – подвижный элемент в механизме, выполняющий оборотную функцию, а также на котором размещён прибор, получающий энергию от источника (тела).
- Статор – тесно взаимосвязанный элемент с ротором, являющийся неподвижным, собирающийся, если речь идёт об генераторе, из металлических листов, присоединённых друг к другу, и на котором размещается индуктор (металлическая обмотка).
- Неодимовые магниты, выполняющие индукционную функцию.
При этом, для выполнения функции генератора, в зависимости от цели, можно использовать практически любой работоспособный механизм, будь то остатки тракторного двигателя или же электромотор от принтера или стартера вентилятора.
Важно, как подбирается медная электро проволока.
Если речь идёт об изготовлении генератора с нуля, то здесь необходимы элементы. Ступица – средняя часть колеса, металлическое основание для будущего моторчика. Неодимовые магниты в определённом количестве и размерах. Необходимы металлические диски, на которые будут крепиться магниты, полиэфирная смола или иной способный закрепить и склеить магнитный слой, плотный слой бумаги, фанера.
Изготовление ветрогенераторов своими руками на 220В
Изготовить ветрогенератор мощностью 220 вольт вполне реально самому, и даже это далеко не предел возможностей, при должном желании и наличии необходимых материалов.
Отличительными чертами генераторов со сравнительно значимой мощностью до мелких с небольшой мощностью являются:
- Конечно, более мощная электростанция требует более надежных, прочных деталей и элементов, а также более сильный ветер.
- Также при создании и содержании ветрогенераторов с мощностью, достаточной для содержания хотя бы одного крупного электробытового прибора, обязательным элементом является аккумулятор, используемый для запасания на нём лишней энергии.
- Нужно учитывать, что для большего количества энергии, требуется более серьёзная система контроля, что обуславливает встраивание блока управления, включающие в свою систему стабилизаторы напряжения, в такие ветряки.
- Для более серьёзных и некомпактных систем требуется соответствующая стабильная установка.
Из последнего вытекает потребность в фундаменте, хотя бы в виде небольших подготовленных и залитых лунок для того, чтобы установить в них макет.Также аксиальные генераторы лишены свойства залипания, или, что называется, отправной точки, в силу чего даже малейший ветер способен сдвинуть с места лопасти такого прибора.
В остальном ветрогнераторы на 220 В (в том числе их изготовление) практически не отличаются от иных представителей и подчиняются общим правилам, изложенным выше.
Наиболее распространён ветровой генератор, основа которого – аксиальная система ветроустановок, основанная на использовании в ней неодимовых магнитов, завоевавших своё высокое место на рынке в силу качества, стойкости и доступности.
Этапы строительства ветряков для дома своими руками
Если говорить о загородном участке дачи или усадьбе, но следует понимать, что чем больше потребность, тем больше стоимость. Особенно, если иметь в виду цели отопления или постоянного содержания всех домашних приборов, трудоёмкость и содержание такого устройства, пусть даже он и является одним из самых выгодных.
Ветродвигатель, как уже освещалось выше, вполне может выполнять функцию основного источника электроэнергии даже для целого дома.
Если сравнивать с близкими аналогами, например, солнечный источник во многом уступает ветрякам, ведь солнце бывает не ежедневно, а электрогенератор и подавно не чета ветрогенератору в экономической и экологической составляющей.
Основные компоненты ветрогенератора для дома (к онечно же, говоря о ветрогенераторе для дома, следует понимать, что необходимы все базовые элементы
- Статор, ротор, индуктор, являющиеся основными составными элементами генератора;
- Аккумуляторы для накопления энергии;
- Ветроуловитель, если речь идёт об маловетреной местности.
Помимо того, при изготовлении также можно использовать принципы изобретений ВСУ Склярова, Бирюкова или Третьякова, что существенно повысит рационализм и выгоду использования системы и, для комфорта, уменьшит шумовые эффекты.
Инструкция: как сделать ветрогенератор своими руками
Процесс изготовления ветрогенератора является творческим и то, как он будет устроен, зависит только от мастера. Нет универсальной инструкции, так как каждая конструкция – совокупность различных деталей и других факторов каждого частного случая.
Делается всё с помощью базовых инструментов – шуруповерта, молотка, болгарки и иных подобных.
Первым, что нужно сделать при изготовлении ветрогенератора – это определиться с целью и сделать базовые расчёты, чертежи, определить место и так далее. Далее следует собрать и закрепить лопасти, хвост к аккумулятору (подключить к генератору).
Основная и наиболее оптимальная, апробированная и подробная инструкция по изготовлению ветрогенератора своими руками:
- Изготовить генератор из заранее приготовленных деталей – 2 подготовленных металлических блина с неодимовыми магнитами скрепляются друг на против друга, между которыми вставляется статор с уже имеющейся на ней медной обмоткой.
- На мачте (трубе) устанавливается опора (кронштейн), а над ним – ступица.
- Далее на ступицу следует установить генератор, после чего статор нужно соединить с опорой.
- На другую часть устанавливается ветротурбина.
Забетонировать и построить основание конструкции, чтобы стабилизировать её при сильном ветре, рассчитав основные параметры, ведь для значительной установки шагового расстояния может быть недостаточно.
Преимущества самодельного ветрогенератора
В заключение, следует отметить, что самодельный ветряной генератор – отличный, современный и с каждым днём всё более доступный источник энергии, распространяющийся с невероятной скоростью. Основные преимущества ветрогенератора, чего не могут присвоить электрогенераторы на основе бензогенератора – высокая экономичность, доступность, эффективность, простота монтажа и эксплуатации, современность, большинство – малошумные, экологичные.
Ветрогенераторы на сегодняшний день являются перспективным и всё более эффективным и набирающим обороты средством получения электроэнергии, при этом являющимися сравнительном экономичными и вполне доступными, даже для того, чтобы сделать такой прибор своими руками.
Ветрогенератор своими руками: 4 кВт (видео)
Ветрогенераторы-самоделки – отличный способ узнать что-то новое, попробовать в новом деле, а также сделать доступный и простой способ обеспечить домик электроэнергией в простейших домашних условиях.
Из-за высокой стоимости альтернативных конструкций для получения энергии с помощью ветра, многие считают, что выгоднее изготовить ветрогенератор своими руками. В этом есть резон, но нужно понимать, что дело это непростое, требующее время и специальных знаний.
Иметь такую конструкцию мечтают дачники, домики которого удалены от цивилизации. Да и городской житель стал внимательнее присматриваться к ветрогенераторам, поглядывая на приходящие ежемесячно счета на использованную электроэнергию.
Растущие тарифы приводят к мысли, что ветрогенератор генератор своими руками не помешали бы и горожанам.
Нужны ли разрешительные документы?
Воплотить мечту в реальность сложно, но возможно. Для дачи будет достаточно маломощной установки, например, 1-киловатной. В России подобные конструкции приравниваются к бытовой технике.
Чтобы их установить не нужно оформлять сертификаты и бегать за разрешениями. Главное – определиться, действительно ли ставить подобный источник энергии целесообразно.
Для местности, где планируется установить ветряк, потребуется знать потенциал ветра. Поможет это сделать Интернет: потребуется найти «Карту ветров» и использовать разработанную формулу.
Налогообложение
На расходуемую для личных нужд энергию, налогообложения не предусмотрено никакого, поэтому ветряки малой мощности устанавливать можно смело и получать бесплатную энергию с их помощью.
Об индивидуальном энергоснабжении нет нормативных актов, способных препятствовать установке и использованию ветрогенераторов своими руками, как и купленных в торговой сети.
Тоже касается недовольства соседей: установка ветрогенераторов своими руками, нужная для решения личных потребностей, не должна вызывать неудовольствия. Последние вправе выдвинуть претензии, если ветряки будут им причинять реальные неудобства. Ведь права конкретного человека заканчиваются, когда другому они причиняют дискомфорт.
Высота мачты
Учитывая сказанное, собираясь монтировать ветрогенератор своими руками, особое внимание нужно уделить выбору высоты мачты. Помимо этого, требуется учитывать существующие ограничения, касающиеся частных построек, и местонахождения вашего участка. Например, если поблизости существуют тоннели, построены мосты, находятся аэропорты, не допускается возведение зданий, высотой больше отметки в 15 м.
Шумность
Во время работы шумит редуктор и вращающиеся лопасти. Рекомендуется шум измерить соответствующими приборами и полученные показатели документально зафиксировать. Принятые нормативами значения не должны превышаться. Тогда и споров с соседями не возникнет.
Помехи
В идеальном варианте защита от возможных телепомех должна быть у ветряков предусмотрена.
Экологическая служба
Она вправе установщику запретить проводить монтаж в единственном случае, когда это препятствует миграции птиц. А это маловероятно.
Своими руками собирая ветрогенератор, перечисленные моменты необходимо учесть.
Если ветряк покупается, эти моменты отображаются в паспорте, изучить который нужно сразу, чтобы себя обезопасить от неожиданностей.
Целесообразность
Насколько целесообразна установка ветряка определяет во многом сила и стабильность ветра в данном районе.
Условия
Для монтажа ветрогенератора для дома своими руками необходима обширная площадка. Он должен располагаться от соседей на определенном расстоянии.
Ветрогенератором называется конструкция, способная преобразовывать энергию кинетическую воздушных масс в механическую.
Благодаря ей ротор приводится в движение, благодаря чему, человек получает нужное ему для функционирования приборов электричество.
Конструкция
Составляют ветровую систему:
- лопасти;
- турбинный ротор;
- генератор;
- инвертор, преобразующий ток. Последний заряжает аккумулятор;
- батарея, питающая конструкцию.
Суть функционирования
Она для подобных конструкций отличается простотой. Вращающийся ротор позволяет получить трехфазный ток. Он, после прохождения контроллера, подзаряжает аккумулятор. Далее, благодаря инвертору, он преобразуется до «состояния», пригодное для использования бытовыми приборами – холодильниками, телевизорами, микроволновыми печами, стиральными машинами и бойлерами, пр.
Показанная схема дает представление о том, какие трансформации претерпевает электроэнергия, которую производит ветрогенератор.
Некоторая часть ее аккумулируется, остальную потребляют приборы.
Лопасти подвергаются во время вращения сразу трем воздействиям:
- подъемной силе;
- импульсной;
- тормозящей.
Последние две стараются преодолеть силу торможения, заставляют вращаться маховик, благодаря чему, ротором создается в неподвижной части генератора магнитное поле, принуждающее по проводам течь ток.
Выбор мотора
Тем, кто решил сделать ветрогенератор своими руками, рекомендуется использовать мотор от бытовых устройств и автомобилей, понимая, что эффективность возрастает прямо пропорционально вольтам, приходящимся на 1 виток.
Разновидности
Ветряки классифицируются по нескольким параметрам:
- числу лопастей. Модели бывают одно-, двух-, трех – пяти – и многолопастными. Помните, что количество лопастей обратно пропорционально скорости, т.е. чем больше первых, тем при меньшей скорости воздуха начинается вращение. Многолопастные используются часто там, где преимущество отдается вращению перед получением энергии – например, при подъеме воды из скважин;
- материалу, из которого делают лопасти. Помимо твердых, как стало известно, подходят даже плотные ткани, стоимость которых невысокая. Их делят на жесткие и парусные, которые по цене ниже, чем первые, изготовленные из металла или стеклопластика, но менее прочные. Поэтому ремонтировать такие лопасти придется часто;
- расположению оси относительно земли. По этому признаку ветряки бывают горизонтальными (имеющие более высокую мощность, надежность) и вертикальные. Эти ветрогенераторами своими руками намного чувствительнее к ветряным порывам;
- шагу винта, который бывает фиксированным (более распространены) и изменяемым. У последнего увеличена скорость вращения, но установка очень сложна для исполнения и массивна.
Ветряк своими руками сделать получится практически бесплатным, если найдутся ненужные детали, без дела валяющиеся где-то в гараже: мотор старого авто, обрезанные канализационные трубы и др.
Ветряк роторный
Простейший ветрогенератор своими руками этого вида имеет вертикальную ось вращения, обеспечит легко частный дом энергией на 100%. Его смастерить сложно, но возможно. При этом, это проще даже, чем кажется. Лопасти, к примеру, несложно сделать из металлической бочки. Их вырезают ножницами для резки металла.
Для сборки ветрогенератора своими руками, мощность которого, предположим. должна составлять 1,5 кВт, под руками должны быть перечисленные ниже элементы:
- автогенератор 12В;
- 12 — вольтовая батарея (лучше кислотная либо гелиевая);
- «кнопка» (полугерметичный выключатель так же12 V);
- преобразователь 700-ваттный;
- достаточной вместимости емкость из алюминия или нержавеющей стали – бак, выварка и пр.
- реле (подойдет автомобильное);
- вольтметр;
- метизы (болты, гайки и пр.);
- провод 4 мм в сечении и 2,5 мм;
- пара хомутов для закрепления на мачте генератора.
Инструменты
Для изготовления своими руками ветряка необходимы:
- болгарка;
- кусачки;
- строительный карандаш для нанесения разметки либо маркер;
- ножницы для металла;
- сверла с дрелью;
- рулетка;
- отвертки;
- ключи гаечные.
С чего начать?
Ветряк своими руками, как говорилось, начинают изготавливать с поиска большой емкости. Она составит основу.
На нее наносят разметку, пользуясь маркером, т.е. делят на равные 4 части. Далее будет объясняться, как делать разрезы болгаркой. При их выполнении металл до конца разрезать нельзя.
Нельзя болгаркой пользоваться для работы с окрашенной жестью, а также оцинкованной сталью, которые сильно нагреваются. Их режут ножницами для металла, помня, что вырезаются лопасти не до конца.
Параллельно с изготовлением лопастей, переделывают у генератора шкив. В нем и днище исходной кастрюли необходимо просверлить отверстия, в которые вставляться будут болты.
Делают это максимально аккуратно, чтобы соблюсти симметрию. Это нужно, чтобы в ходе работы не возникал дисбаланс.
Далее, каждую лопасть отгибаем поочередно. Но делаем это с учетом направления, в котором вращаться станет генератор. Чаще она совпадает с движения стрелки часов. Угол, изгиба, определяет скорость и площадь воздействия воздушного потока.
Ведро с готовым пропеллером прикрепляют на шкив, а на мачту, применив хомуты, устанавливают генератор. В последнюю очередь соединяют провода, создавая цепь.
Для присоединения аккумулятора выбирают провод диаметром 4 мм². Достаточно будет 1 метра. Такой же потребуется, чтобы подключить инвертор.
Меньшего сечения – 2,5 мм хватит для подсоединения нагрузки. Если делали все последовательно и точно, ветряк своими руками работать будет хорошо, а проблем возникнуть не должно.
Если батарею, к примеру, использовали 75 амперную, а преобразователь 1000-ватный, ветряка своими руками хватит, чтобы работали одновременно сигнализация охранная, камеры видеонаблюдения и освещение улицы.
Плюсы и минусы
Достоинства:
- экономичность модели;
- ремонтопригодность. При выходе из строя элемента, он просто заменяется новым;
- отсутствие требований к условиям эксплуатации;
- надежность;
- бесшумность.
Недостатки:
- не высокая производительность;
- зависимость сильная от ветра (пропеллер может просто слететь).
Неодимовые магниты для ветряков
В России о них узнали не слишком давно, поэтому ветряки с их использованием также делают недавно. Ажиотажный продукт рынок постепенно насытил, поэтому теперь эти магниты доступны народным умельцам.
Изготовление ветряка
Эта конструкция сложнее, чем ранее описанная. Ось вращения у нее горизонтальная.
До того, как приступать к сборке ветряка своими руками, желательно приобрести ступицу (сгодится от автомобиля) и тормозные диски.
Ступица выступит базой. Поскольку она уже использовалась, стоит ее смазать, предварительно разобрав и обратив на подшипники особое внимание. Ни наслоений, ни ржавчины остаться на них не должно. Генератор обязательно красят. Забывать об этом нельзя.
Как закрепятся магниты?
Они требуют грамотного распределения и надежного крепления. Их часто приклеивают к роторным дискам. Для работы необходимо двадцать магнитов 25х8 мм.
Важно: Можно это количество изменять, помня основное, что совпадает число магнитов с полюсами в однофазном генераторе и соответствует 2/3 или 4/3 — в трехфазном.
Полюса должны чередоваться. Для удобства изготавливают шаблон или наносят на диск разметку секторов. Лучше, как показала практика, использовать их круглой формы, чем прямоугольной, поскольку в последних поле магнитное имеется на всей длине, а у первых лишь в центре.
Определяем полюса
Чтобы не перепутать полюса их следует точно определить. Магниты для этого подносят друг к другу. В случае их притягивания, ставят «+», отталкивания – «-».
Размещают их, так, чтобы полюса чередовались.
Клей должен быть качественным для надежности конструкции. Неплохо магниты держатся на эпоксидной смоле, покрывающей полностью диск. Ее разводят по инструкции.
Она не должна стекать с диска. Чтобы предотвратить стекание смолы, по периметру делают временные бортики из пластилина или скотчем обматывают диск.
Сравнение однофазных устройств и трехфазных
Предпочтение стоит отдать трехфазному статору, поскольку он меньше вибрирует, чем однофазный. Вызваны вибрации разницей в токовой амплитуде, причиной которой является непостоянная отдача.
Тесты показали, что она больше на 50% у трехфазной модели. Другим важным преимуществом 3-фазной является высокий акустический комфорт во время функционирования под нагрузкой. Другими словами, он не гудит. К тому же, отсутствие вибрации положительно сказывается на сроке службы.
Наматываем катушку
Выбрав не очень скоростной вариант, зарядка 12V батареи начинается при 100-150 об/м. Число витков для этого должно соответствовать 1000-1200. Поделив витки на все катушки, получим их число для одной.
Мощность ветряку добавит число полюсов. При этом вырастет частота токовых колебаний.
Если используется для витков провод большого сечения, уменьшается сопротивление и возрастает сила тока.
Облегчить процесс ручной намотки можно, если пользоваться специальным станком.
На характеристики ветрогенераторов, собранных своими руками, влияет толщина магнитов, имеющихся на диске и количество их.
Катушки, как правило, делаются круглой формы, но, слегка вытянув их, удастся выпрямить витки. Готовыми, катушки должны быть равными или чуть превышать по размерам магниты. С магнитами соотноситься должна и толщина статора.
Если последний больше из-за большего количества витков, пространство между дисками увеличивается, а поток магнитный уменьшается.
Но большее сопротивление катушек приведет к уменьшению тока. Для формы статора подойдет фанера. Чтобы увеличить прочность изделия поверх катушек (на дно формы) кладут стеклоткань. Перед нанесением смолы эпоксидной, форму обрабатывают вазелином или воском, или используют скотч.
Закреплены катушки между собой жестко. Наружу выводятся 6 концов фаз, для соединения которых пользуются схемами «звезда» или «треугольник».
Генератор тестируют, крутя его рукой. Для напряжения в 40V, сила тока достигает 10 А.
Сборка
Длину мачты выбирают от 6 до 12 метров, основание бетонируют. Сам ветрогенератор, собранный своими руками, крепят вверху. Чтобы обеспечить возможность добраться к нему, если потребуется ремонт, необходимо предусмотреть устройство, которое даст возможность поднять или опустить трубу.
Обеспечит это ручная лебедка. Из трубы ПВХ, диаметр которой 160 мм, реально изготовить винт длиной 2 метра, имеющего 6 лопастей.
Форму подбирают опытным путем. Но, такой винт-пропеллер необходимо защищать от сильного ветра, для чего и служит складывающийся хвост.
Итог
Рассмотренные модели эффективны каждая по-своему. А полученная информация свидетельствует, что ветряк изготовить своими руками вполне возможно.
Видео: Вертикальный ветрогенератор 4kw
Из этой статьи Вы узнаете, как изготовить несложный ветрогенератор своими руками в домашних условиях. Такая ветряная электростанция всегда пригодится в удалённых местах, где нет доступа к бытовой электрической сети, например, на удалённом дачном участке. Конечно, можно использовать бензиновый генератор, но рокот и дым от двигателя внутреннего сгорания вряд ли кому-то придётся по душе, и уж точно это не располагает к отдыху на природе. Кроме того, расходы на бензин будут весьма немаленькими.
Ветряная электростанция сможет заряжать аккумуляторные батареи для автономной работы не сильно мощной бытовой техники и освещения. Впрочем, куда именно тратить полученную энергию, решать Вам.
Эта статья рассчитана на любителей в области конструирования ветрогенераторов своими руками, и поэтому в качестве конструкции выбрана максимально простая схема ветряной электростанции. Это будет относительно тихоходный самодельный ветряк (показатель быстроходности Z=3). Такая конструкция является надёжной и безопасной при работе.
Выбор мощности ветряной электростанции
Наверняка многим, кто читает эту статью, не захочется ограничиваться постройкой ветрогенератора для питания холодильника и освещения на даче, а сразу построить такую электростанцию, чтобы запитать ею не только аккумуляторные батареи, но и батареи отопления или бойлер для горячей воды. Но такая мощная электростанция будет чрезвычайно сложна в изготовлении, ведь усложнение конструкции с ростом мощности возрастает даже не в квадрате, а чуть ли не в кубе!
Как пример ветряной электростанции мощностью всего 2 кВт можно привести промышленный ветрогенератор W-HR2 международной компании AVIC (изображен на фото). Этот ветрогенератор номинальной мощностью 2 кВт имеет ротор диаметром 3,2 м с аэродинамически металлическими лопастями, прочную стальную башню высотой 8 м на массивном железобетонном фундаменте. Монтаж узлов производится при помощи автокрана. Очевидно, что расчет и изготовление подобного ветрогенератора сложно даже для отдельных специализированных фирм, и практически нереально силами одного человека непрофессионала для сооружения такого ветряка своими руками.
Таблица 1. Зависимость мощности ветрогенератора от количества лопастей и диаметра ветроколеса при скорости ветра 4 м\с
Мощность, Вт |
Диаметр ветроколеса при числе лопастей, м |
|||||
В табл. 1 показано зависимость мощности ветроколеса крыльчатого типа от его диаметра и количества лопастей. Или другими словами, какой длинны нужно взять лопасти определённого ветроколеса, чтобы получить нужную мощность. Данные в этой таблице основаны на практических испытаниях эксплуатируемых ветрогенераторов, у которых КИЭВ (коэффициент использования энергии ветра) ветроколеса равен 0,35 (профиль среднего качества), КПД генератора имеет значение 0,8 и КПД редуктора — 0,9.
Для кого-то эти данные могут на первый взгляд показаться слишком завышенными. Так, для примера, из табл. 1 видно, что для постройки ветряной электростанции мощностью 500 Вт с тремя лопастями, диаметр ветроколеса должен быть равным 11,48 м. Но не стоит пугаться этой цифры, поскольку данные приведены для слабого ветра 4 м/с. Это обычный ветер для равнинной местности вдали от моря.
При этом с ростом скорости ветра мощность ветряной электростанции увеличивается. На рис. показано такую зависимость для электростанции номинальной мощностью 240 Вт. Из графика видно, что при минимальном ветре 4 м/с (при котором электростанция начинает работать), мощность составляет всего 30 Вт. Но мощность ветроэлектростанции пропорциональна скорости ветра в кубе. То есть при увеличении скорости ветра в два раза до максимальной рабочей скорости 8 м/с, мощность ветряной электростанции увеличивается в 2 3 =8 раз или с 30 Вт до полной мощности 240 Вт. При более высокой скорости ветра работа ветровой станции должна будет ограничиваться.
В целом, основываясь на практическом опыте можно заключить, что относительно несложный самодельный ветрогенератор будет иметь мощность в пределах 200-500 Вт. Это своего рода «золотая середина». Редко индивидуальным конструкторам удаётся собрать более мощный ветрогенератор своими руками, который реально будет работать.
Выбор конструкции ветроколеса
Ветряное колесо — самая важная часть ветрогенератора. Именно оно преобразует энергию ветра в механическую. И от его конструкции зависит выбор всех остальных узлов, например, генератора электрического тока.
Наверняка, всем хорошо знакома форма ветряных колёс старинных ветряных мельниц. Это как раз тот случай исключение, когда всё забытое старое не всегда хорошо. Такие ветроколёса ветряной мельницы имеют очень низкий КИЭВ порядка 0,10-0,15, что намного меньше КИЭВ современных быстроходных крыльчатых колёс, которое достигает 0,46. Всё потому, что низкие познания в аэродинамике старинных мастеров не позволяли им сконструировать более совершенную конструкцию.
На рисунке изображена работа двух типов лопастей: парусной (1) и крыльчатой (2). Для того чтобы сделать парусную лопасть (1), достаточно просто прикрепить листовой материал к оси, расположив под углом к ветру, то есть по аналогии с ветряными мельницами древности. Но при вращении такой лопасти она будет иметь значительное аэродинамическое сопротивление, которое возрастает с увеличением угла атаки. Также на её концах образуются завихрения, и за лопастью возникает зона пониженного давления. Всё это делает парусные лопасти неэффективными ветровыми движителями.
Гораздо более эффективной является лопасть крыльчатого типа (2). При такой форме лопасти, которая похожа на крыло самолёта, потери от трения и разрежения сведены к минимуму. Что касается угла атаки лопасти, то на практике установлено, что наиболее оптимальный угол составляет 10-12º. При более высоком угле атаки прирост мощности в результате более высокого давления ветра на лопасть не покрывается ростом аэродинамических потерь.
Конечно, есть много других интересных типов ветровых двигателей, например, вертикально-осевые роторы Савониуса или роторы Дарье. Но все они имеют более низкие коэффициенты использования энергии ветра при более высокой материалоёмкости (в сравнении с крыльчатыми колёсами). Например, установка с ротором Савониуса диаметром 2 метра и высотой 2 метра при тихом ветре 4 м/с будет иметь полезную мощность 20 Вт. Такую же мощность выработает шестнадцатилопастный крыльчатый винт диаметром всего 1 метр.
Поэтому мы не будем «изобретать велосипед» и сразу за основу возьмём конструкцию, где используются лопасти крыльчатого типа с горизонтальной осью вращения. Именно этот тип ветряного двигателя имеет максимальный КИЭВ при минимальном расходе материалов. Неудивительно, что такая конструкция используется почти в 99% всех действующих промышленных ветровых электростанциях.
Прежде всего, нужно выбрать число лопастей. Наиболее дешевыми являются двух- и трёхлопастные ветроколёса, но они являются быстроходными и обладают следующими недостатками:
— высокие рабочие обороты приводят к возникновении больших центробежных и гироскопических сил. Гироскопические силы нагружают ось генератора, крепления и мачту, а центробежные стремятся разорвать лопасти на части. Так, окружная скорость концов лопастей быстроходных двухлопастных ветроколёс нередко достигает 200 м/с и более. Для сравнения скорость пули, выпущенной из винтовки Бейкера 1808 г., равнялась 150 м/с. Таким образом, осколки разлетающегося сломанного винта могут ранить или даже убить человека. По этой причине никому не рекомендуется изготавливать лопасти высокоскоростных ветроколёс из пластиковой трубы. Для этих целей лучше подходит более прочная на растяжение древесина. Изготовление же лопастей из дерева весьма трудоёмкий процесс.
— известно, что чем быстрее вращаются лопасти, тем больше сила трения о воздух. Поэтому лопасти быстроходных ветроколёс гораздо более требовательны к аэродинамическому качеству изготовления. Даже небольшие погрешности сильно снижают КИЭВ быстроходных лопастей. Крайне нежелательно делать быстроходные лопасти вогнутыми, они должны иметь форму крыла самолёта. Изготовить же лопасти тихоходного винта гораздо проще для любителя. Нужно сильно «постараться», чтобы сделать лопасть для тихоходного винта из разрезанной трубы с КИЭВ хуже 0,3.
— быстроходные ветродвигатели издают сильный шум при вращении, ведь даже аэродинамически высококачественные лопасти при быстром вращении создают значительные зоны сжатий и разряджений воздуха, а кустарно изготовленные лопасти и подавно. Соответственно, чем больше окружная скорость и размеры лопасти, тем больше шум. Поэтому мощный быстроходный ветряк нельзя просто установить на крыше дома или в огороде при плотной застройке, иначе Вы рискуете просыпаться ночью от шума взлетающего вертолёта и испортить отношения с соседями в придачу.
— чем меньше лопастей у ветроколеса, тем больше вибрации. Поэтому ветроколёса с малым числом лопастей (2-3) будет труднее сбалансировать.
Учитывая все эти недостатки быстроходных ветроколёс, для более-менее мощного «ветряка» лучше выбрать число лопастей не менее 5-6.
Теперь основываясь на данных табл. 1, давайте прикинем, какой максимальной длинны лопасти подойдут для изготовления несложной электростанции. Очевидно, шестилопастный винт диаметром 2,5-3 м будет сложен в изготовлении. Представьте себе хотя бы процесс балансировки такого винта и его установку на мачту, которая в свою очередь должна быть довольно прочной, чтобы выдержать вес такого винта и аэродинамические нагрузки. А вот шестилопастный винт диаметром 2 метра или около того будет по силам энтузиасту для изготовления своими руками.
Возможно у кого-то возникнет соблазн, не посчитаться с затратой материалов и ещё больше увеличить количества лопастей для увеличения полезной мощности ветроустановки. Так, при числе лопастей двухметрового винта равным 12 мощность при «свежем» ветре (8 м/с) достигнет почти 500 Вт. Но такое дорогое ветряное колесо получиться слишком тихоходным, а значит, неизбежно потребует применения отдельного редуктора, что сильно усложнит конструкцию ветровой электростанции.
Таким образом, наиболее оптимальной является конструкция винта ветрогенератора диаметром 2 м и количеством лопастей равным 6.
Электрический генератор для ветряной электростанции
При подборе генератора электрического тока для ветроэлектростанции прежде всего нужно определить частоту вращения ветроколеса. Рассчитать частоту вращения ветроколеса W (при нагрузке) можно по формуле:
W=V/L*Z*60,
L=π*D,
где V — скорость ветра, м/с; L — длинна окружности, м; D — диаметр ветроколеса; Z — показатель быстроходности ветроколеса (см. табл. 2).
Таблица 2. Показатель быстроходности ветроколеса
Число лопастей |
Показатель быстроходности Z |
Если в эту формулу подставить данные для выбранного ветроколеса диаметром 2 м и 6 лопастями, то получим частоту вращения. Зависимость частоты от скорости ветра показано в табл. 3.
Таблица 3. Обороты ветроколеса диаметром 2 м с шестью лопастями в зависимости от скорости ветра
Скорость ветра, м/с |
||||||||||||
Число оборотов, об/мин |
Примем максимальную рабочую скорость ветра равной 7-8 м/с. При более сильном ветре работа ветрогенератора будет небезопасной и должна будет ограничиваться. Как мы уже определили, при скорости ветра 8 м/с максимальная мощность выбранной конструкции ветроэлектростанции будет равна 240 Вт, что соответствует частоте вращения ветроколеса 229 об/мин. Значит, нужно подобрать генератор с соответствующими характеристиками.
К счастью, времена тотального дефицита «канули в Лету», и нам не придётся по традиции приспосабливать автомобильный генератор от ВАЗ-2106 к ветряной электростанции. Проблема в том, что такой автомобильный генератор, например, Г-221 является высокооборотным с номинальной частотой вращения от 1100 до 6000 об/мин. Получается, без редуктора наше тихоходное ветроколесо ни как не сможет раскрутить генератор до рабочих оборотов.
Делать редуктор к нашему «ветряку» мы не будем, и поэтому подберём другой тихоходный генератор, чтобы закрепить ветроколесо просто на валу генератора. Наиболее подходящим для этого является веломотор, специально разработанный для мотор-колеса велосипедов. Такие веломоторы имеет низкие рабочие обороты, и могут легко работать в режиме генератора. Наличие постоянных магнитов в этом типе двигателя будет означать отсутствии проблем с возбуждением генератора как в случае, например, с асинхронными двигателями переменного тока, у которых, обычно, используются электромагниты (обмотка возбуждения). Без подпитки током обмотки возбуждения такой двигатель не будет вырабатывать ток при вращении.
К тому же весьма приятная особенность веломоторов заключается в том, что они относятся к бесколлекторным двигателям, а значит, не требуют замены щёток. В табл. 4 представлен пример технических характеристик веломотора мощностью 250 Вт. Как видим из таблицы, этот веломотор отлично подойдёт в качестве генератора для «ветряка» мощностью 240 Вт и с максимальными оборотами ветроколеса 229 об/мин.
Таблица 4. Технические характеристики веломотора мощностью 250 Вт
Производитель |
Golden Motor(Китай) |
Номинальное напряжение питания |
|
Максимальная мощность |
|
Номинальные обороты |
|
Крутящий момент |
|
Тип питания статора |
бесколлекторный |
Изготовление ветрогенератора своими руками
После того как приобретён генератор, можно приступать к сборке ветрогенератора своими руками. На рисунке изображено устройство ветроэлектростанции. Способ крепления и расположения узлов может быть иным и зависит от индивидуальных возможностей конструктора, но нужно придёрживаться размеров основных узлов на рис. 1. Эти размеры подобранны под данную ветряную электростанцию с учетом конструкции и размеров ветроколеса.
На рис. 1 изображены размеры боковой лопаты (1), хвоста с оперением (2), а также рычага (3), через который передаётся усилие от пружины. Хвост с оперением для поворота ветроколеса по ветру нужно изготовить по размерам на рис. 1 из профильной трубы 20х40х2,5 мм и кровельного железа в качестве оперения.
Крепить генератор следует на таком расстоянии, чтобы минимальное расстояние между лопастями и мачтой было не менее 250 мм. В противном случае нет гарантий, что лопасти, прогнувшись под действием ветра и гироскопических сил, не разобьются об мачту.
Изготовление лопастей
Ветряк своими руками обычно начинается из лопастей. Наиболее подходящим материалом для изготовления лопастей тихоходного ветряка является пластик, точнее пластиковая труба. Изготовить лопасти из пластиковой трубы проще всего — небольшая трудоёмкость и трудно ошибиться новичку. Также пластиковые лопасти в отличии от деревянных гарантированно не покорежатся от влаги.
Труба должна быть из ПВХ диаметром 160 мм для напорного трубопровода или канализации, например, SDR PN 6,3. У таких труб толщина стенки не менее 4 мм. Трубы для безнапорной канализации не подойдут! Эти трубы слишком тонкие и непрочные.
На фото изображено ветроколесо с разбившимися лопастями. Эти лопасти были изготовлены из тонкой ПВХ трубы (для безнапорной канализации). Они прогнулись от давления ветра и разбились об мачту.
Расчет оптимальной формы лопасти довольно сложный и нет необходимости его тут приводить, пусть им занимаются профессионалы своего дела. Нам же достаточно изготовить лопасти, используя уже рассчитанный шаблон по рис. 2, на котором изображено размеры шаблона в миллиметрах. Нужно просто вырезать такой шаблон из бумаги (), далее приложить к трубе 160 мм, нарисовать контур шаблона на трубе маркером и вырезать лопасти с помощью электролобзика или вручную. Красными точками на рис. 2 изображено ориентировочное расположение креплений лопастей.
В итоге у Вас должно будет получиться шесть лопастей, формой как на фотографии. Чтобы полученные лопасти имели более высокий КИЭВ и меньше издавали шума при вращении, нужно сточить острые углы и края, а также отшлифовать все шершавые поверхности.
Для крепления лопастей к корпусу веломотора нужно использовать головку ветродвигателя, которая представляет собой диск из мягкой стали толщиной 6-10 мм. К нему приварены шесть стальных полос толщиной 12 мм и монтажной длинной 30 см с отверстиями для крепления лопастей. Диск крепится к корпусу веломотора с помощью болтов с контргайками за отверстия под крепление спиц.
После изготовления ветроколеса, его нужно обязательно отбалансировать. Для этого ветроколесо закрепляется на высоте в строго горизонтальном положении. Желательно, это сделать в закрытом помещении, где нет ветра. При сбалансированном ветроколесе лопасти не должны самопроизвольно поворачиваться. Если же какая-то лопасть тяжелее, её нужно сточить с конца до уравновешивания в любом положении ветроколеса.
Также нужно проверить вращаются ли все лопасти в одной плоскости. Для этого замеряется расстояние от конца нижней лопасти до какого-нибудь ближайшего предмета. Затем ветроколесо поворачивается и замеряется расстояние от выбранного предмета до других лопастей. Расстояние от всех лопастей должно быть в пределах +/- 2 мм. Если разница больше, то перекос нужно устранить, подогнув стальную полосу к которой крепится лопасть.
Крепление генератора (веломотора) к раме
Поскольку генератор испытывает большие нагрузки, в том числе и от гироскопических сил, его следует надёжно закрепить. Сам веломотор имеет прочную ось, поскольку используется при больших нагрузках. Так, его ось должна выдерживать вес взрослого человека при динамических нагрузках, возникающих при ездё на велосипеде.
Но на раме велосипеда веломотор крепится с двух сторон, а не с одной, как будет при работе в качестве генератора тока для ветряной электростанции. Поэтому вал нужно крепить к станине, которая представляет собой металлическую деталь с резьбовым отверстием для накручивания на вал веломотора соответствующего диаметра (D) и четырьмя монтажными отверстиями для крепления стальными болтами М8 к раме.
Желательно, использовать максимально большую длину свободного конца вала для крепления. Чтобы вал не прокручивался в станине, его нужно закрепить гайкой с контршайбой. Станину лучше всего изготовить из дюралюминия.
Для изготовления рамы ветрогенератора, то есть основы, на которой будут располагаться все другие детали, нужно использовать стальную пластину толщиной 6-10 мм или отрезок швеллера подходящей ширины (зависит от наружного диаметра поворотного узла).
Изготовление токоприёмника и поворотного узла
Если к генератору просто привязать провода, то рано или поздно провода перекрутятся при вращении ветряка вокруг оси и оборвутся. Чтобы этого не произошло, нужно применить подвижный контакт — токоприёмник, который состоит из втулки, изготовленной из изоляционного материала (1), контактов (2) и щёток (3). Для защиты от осадков контакты токоприёмника должны быть закрыты.
Для изготовления токоприёмника ветрогенератора удобно использовать такой способ: сначала на готовом поворотном узле размещаются контакты, например, из толстой латунной или медной проволоки прямоугольного сечения (используется для трансформаторов), контакты должны быть уже с припаянными проводами (10), в качестве которых нужно использовать одно- или многожильный медный провод сечением не менее 4 мм 2 . Контакты накрываются пластиковым стаканчиком или другой ёмкостью, закрывается отверстие в опорной втулке (8) и заливается эпоксидной смолой. На фото использована эпоксидная смола с добавкой двуокиси титана. После затвердевания эпоксидной смолы деталь стачивается на токарном станке до появления контактов.
В качестве подвижного контакта лучше всего использовать медно-графитовые щетки от автомобильного стартёра с плоскими пружинами.
Для того чтобы ветряное колесо ветрогенератора могло поворачиваться по ветру, необходимо обеспечить подвижное соединения рамы ветродвигателя с неподвижной мачтой. Подшипники располагаются между опорной втулкой (8), которая через фланец соединяется с трубой мачты с помощью болтов и муфтой (6), которая приваривается дуговой сваркой (5) к раме (4). Чтобы облегчить поворот, нужен поворотный узел с использованием подшипников (7) с внутренним диаметром не менее 60 мм. Лучше всего подойдут роликоподшипники, которые лучше воспринимают осевые нагрузки.
Защита ветряной электростанции от ураганного ветра
Максимальная скорость ветра, при которой может эксплуатироваться данная ветряная электростанция, составляет 8-9 м/с. Если скорость ветра больше, работа ветряной электростанции должна ограничиваться.
Конечно, этот предлагаемый тип ветряка для изготовления своими руками тихоходный. Вряд ли лопасти раскрутятся до чрезвычайно высоких оборотов, при которых они разрушаться. Но при слишком сильном ветре давление на хвост оперения становится очень значительным, и при резком изменении направления ветра ветрогенератор будет резко поворачиваться.
Учитывая же, что лопасти при сильном ветре быстро вращаются, то ветроколесо превращается в большой тяжелый гироскоп, который противится любым поворотам. Именно поэтому между рамой и ветроколесом возникают значительные нагрузки, которые сосредотачиваются на валу генератора. Известно много случаев, когда любители строили ветрогенераторы своими руками без какой-либо защиты от ураганно ветра, и у них из-за значительных гироскопических сил ломались прочные оси автомобильных генераторов.
Кроме того, шестилопасное ветроколесо диаметром 2 м обладает значительным аэродинамическим сопротивлением, и при сильном ветре будет значительно нагружать мачту.
Поэтому, чтобы самодельный ветрогенератор служил долго и надёжно, а ветроколесо не свалилось на голову прохожим, необходимо защищать его от ураганных ветров. Проще всего защитить ветряк с помощью боковой лопаты. Это довольно простое устройство, которое хорошо зарекомендовало себя на практике.
Работа боковой лопаты заключается в следующем: при рабочем ветре (до 8 м/с) давление ветра на боковую лопату (1) меньше жесткости пружины (3), и ветряк устанавливается приблизительно по ветру с помощью оперения. Для того чтобы пружина не складывала ветряк при рабочем ветре более чем это нужно, между хвостом (2) и боковой лопатой натянута растяжка (4).
Когда скорость ветра достигает 8 м/с, давление на боковую лопату становится сильнее, чем усилие пружины, и ветрогенератор начинает складываться. При этом ветряной поток начинает набегать на лопасти под углом, что ограничивает мощность ветроколеса.
При очень сильном ветре ветряк складывается полностью, и лопасти устанавливаются параллельно направлению ветра, работа ветряка практически прекращается. Обратите внимание, что хвост оперения не связан с рамой жестко, а вращается на шарнире (5), который должен быть изготовлен из конструкционной стали и иметь диаметр не менее 12 мм.
Размеры боковой лопаты приведены на рис. 1. Саму боковую лопату, также как и оперение, лучше всего изготовить из профильной трубы 20х40х2,5 мм и стального листа толщиной 1-2 мм.
В качестве рабочей пружины можно использовать любые пружины из углеродистой стали с защитным цинковым покрытием. Главное, чтобы в крайнем положении усилие пружины равнялось 12 кг, а в начальном положении (когда ветряк ещё не складывается) — 6 кг.
Для изготовления растяжки следует использовать стальной велосипедный тросик, концы тросика загибаются в петлю, а свободные концы закрепляются восемью витками медной проволки диаметром 1,5-2 мм и спаиваются оловом.
Мачта ветрогенератора
В качестве мачты для ветряной электростанции можно использовать стальную водопроводную трубу диаметром не менее 101-115 мм и минимальной длинной 6-7 метров при условии относительно открытой местности, где на расстоянии 30 м не было бы препятствий для ветра.
Если же ветряную электростанцию невозможно установить на открытой площадке, то тут ничего не поделаешь. Нужно увеличивать высоту мачты так, чтобы ветроколесо было хотя бы на 1 м выше окружающих препятствий (домов, деревьев), иначе выработка электроэнергии ощутимо снизится.
Само основание мачты следует устанавливать на бетонную площадку, чтобы оно не продавливалось в размокшую почву.
В качестве растяжек нужно использовать стальные оцинкованные монтажные тросы, диаметром не менее 6 мм. Растяжки крепятся к мачте посредством хомута. У земли тросы крепятся к прочным стальным колышкам (из трубы, швеллера, уголка и т.д.), которые закопаны в землю под углом на полную глубину полтора метра. Ещё лучше, если они дополнительно замоноличенны у основания бетоном.
Поскольку мачта в сборе с ветрогенератором обладает значительным весом, то для ручной установки нужно использовать противовес, изготовленный из такой же стальной трубы, как и мачта или деревянного бруса 100х100 мм с грузом.
Электрическая схема ветряной электростанции
На рисунке изображена простейшая схема зарядки аккумуляторов: три вывода от генератора подключаются к трёхфазному выпрямителю, который представляет собой три диодных полумоста подключенных параллельно и объединённых звездой. Диоды должны быть рассчитаны на минимальное рабочее напряжение 50В и ток 20А. Так как максимальное рабочее напряжение от генератора будет равно 25-26 В, то выводы от выпрямителя подключаются к двух батареям на 12 вольт, соединённых последовательно.
При использовании такой простейшей схемы зарядка аккумуляторов протекает следующим образом: при низком напряжении менее 22 В зарядка аккумуляторов происходит очень слабо, поскольку ток ограничивается внутренним сопротивлением аккумуляторов. При скорости ветра 7-8 м/с вырабатываемое напряжение генератора будет в пределах 23-25 В, и начнётся интенсивный процесс зарядки аккумуляторов. При более высокой скорости ветра работа ветрогенератора будет ограничиваться боковой лопатой. Для защиты аккумуляторных батарей (при аварийной работе ветряной электростанции) от чрезмерного сильного тока в схеме должен быть плавкий предохранитель, рассчитанный на максимальный ток 25 А.
Как видите, эта простая схема имеет значительный недостаток — при тихом ветре (4-6 м/с) аккумуляторная батарея практически не будет заряжаться, а ведь именно такие ветра чаще всего встречаются на равнинной местности. Для того чтобы подзаряжать аккумуляторные батареи при несильном ветре, нужно использовать контроллер заряда, который подключается перед аккумуляторными батареями. Контроллер заряда будет автоматически преобразовывать необходимое напряжение, также контроллер более надёжен, чем плавкий предохранитель и предупреждает перезаряд аккумуляторов.
Чтобы использовать аккумуляторные батареи для питания бытовой техники рассчитанной на переменное напряжение 220 В, понадобится дополнительно инвертор для преобразования постоянного напряжения 24 В соответствующей мощности, которая подбирается в зависимости от пиковой мощности. Например, если Вы будете подключать к инвертору освещение, компьютер, холодильник, то вполне достаточно инвертора рассчитанного на 600Вт, если же планируете хоть изредка дополнительно пользоваться электродрелью или дисковой пилой (1500 Вт), то следует выбрать инвертор мощностью 2000 Вт.
На рисунке показано более сложную электрическую схему: в ней ток от генератора (1) сначала выпрямляется в трехфазном выпрямителе (2), далее напряжение стабилизируется контроллером заряда (3) и заряжает аккумуляторные батареи на 24 В (4). Для питания бытовых приборов подключается инвертор (5).
Токи от генератора достигают десятки ампер, поэтому для соединения всех приборов в цепи следует использовать медные провода общим сечением 3-4 мм 2 .
Желательно ёмкость аккумуляторных батарей взять не менее 120 а/ч. Общая емкость батарей будет зависеть от средней интенсивности ветра в регионе, а также от мощности и частоты подключаемой нагрузки. Более точно необходимая ёмкость будет известна в процессе эксплуатации ветряной электростанции.
Уход за ветряной электростанцией
Рассмотренный тихоходный ветрогенератор для изготовления своими руками, как правило, хорошо запускается при слабом ветре. Для нормальной работы ветрогенератора вцелом нужно придерживаться таких правил:
1. Через две недели после запуска опустить ветрогенератор при слабом ветре и проверить все крепления.
2. Не менее чем два раза в год смазывать подшипники поворотного узла и генератора.
3. При первых признаках разбалансировки ветроколеса (дрожание лопастей при вращении в установившемся по ветру положении) ветрогенератор следует опустить и устранить неисправность.
4. Раз в год проверять щетки токоприёмника.
5. Красить металлические детали ветряной электростанции один раз в 2-3 года.
Игорь Соларов, специально для
В последние годы тема зеленой энергетики стала чрезвычайно популярной. Некоторые даже предрекают, что такая энергетика уже в ближайшее время полностью вытеснит угольные, газовые, атомные электростанции. Одним из направлений зеленой энергетики является ветроэнергетика. Генераторы, преобразующие энергию ветра в электричество, бывают не только промышленными, в составе ветроэлектростанций, но и небольшими, обслуживающими частное хозяйство.
Ветрогенератор можно даже изготовить собственными руками - этому и посвящен данный материал.
Что такое генератор
В широком смысле генератором называют устройство, производящее какие-либо продукты или преобразующее один вид энергии в другой. Это может быть, к примеру, парогенератор (производит пар), генератор кислорода, квантовый генератор (источник электромагнитного излучения).
Но в рамках данной темы нас интересуют электрогенераторы. Под этим названием подразумеваются устройства, преобразующие различные виды неэлектрической энергии в электроэнергию.
Виды генераторов
Электрогенеаторы классифицируются как:
Кроме того, электромеханические генераторы классифицируют по типу двигателя. Выделяют следующие их виды:
- турбогенераторы приводятся в движение паровой турбиной;
- гидрогенераторы в качестве двигателя используют гидравлическую турбину;
- дизель-генераторы или бензиновые генераторы делают на основе дизельных или бензиновых двигателей;
- ветрогенераторы преобразуют энергию воздушных масс в электроэнергию при помощи ветротурбины.
Подробнее остановимся на ветрогенераторах (их еще называют ветроустановками). Простейший маломощный ветрогенератор обычно состоит из мачты, как правило, укрепляемой растяжками, на которую устанавливается ветротурбина.
Эта ветротурбина раскручивается винтом, приводящим в движение ротор электрогенератора. В состав устройства, кроме электрогенератора, также входят аккумулятор с контроллером заряда и инвертор, подключенный к электросети.
Знаете ли вы? К 2016 году общая мощность всех ветрогенераторных установок в мире составила 432 ГВт. Таким образом, ветроэнергетика превзошла по мощности атомную энергетику.
Схема работы этого устройства довольно проста: под действием ветра вращается винт, раскручивая ротор, электрогенератор вырабатывает переменный электроток, который преобразуется контроллером заряда в постоянный ток.
Этим током заряжается аккумулятор. Постоянный ток, поступающий с аккумулятора, преобразуется инвертором в переменный ток, параметры которого соответствуют параметрам электросети.
Промышленные устройства монтируются на башнях. Они дополнительно оборудуются поворотным механизмом, анемометром (прибор для измерения скорости и направления ветра), устройством изменения угла поворота лопастей, системой торможения, силовым шкафом с управляющими цепями, системами пожаротушения и защиты от молний, системой передачи данных о работе установки и т. д.
По расположению оси вращения относительно земной поверхности ветроустановки делят на вертикальные и горизонтальные. Простейшей вертикальной моделью является установка с ротором Савониуса .
В ней две или более лопастей, которые представляют собой полые полуцилиндры (цилиндры, разрезанные пополам по вертикали).
Ротор Савониуса
Существуют различные варианты компоновки и конструкции этих лопастей: симметрично закрепленные, заходящие краями друг за друга, с аэродинамическим профилем.
Преимуществом ротора Савониуса является простота и надежность конструкции, кроме того, его работа не зависит от направления ветра, недостатком - низкий КПД (не более 15%).
Знаете ли вы? Ветряные мельницы появились примерно в 200 году до н. э. в Персии (Иране). Они использовались для производства муки из зерна. В Европе подобные мельницы появились лишь в XIII веке.
Другой вертикальной конструкцией является ротор Дарье
. Его лопасти представляют собой крылья с аэродинамическим профилем. Они могут быть дугообразными, Н-образными, спиралевидными. Лопастей может быть две и более.
Ротор Дарье
Преимуществами такого ветрогенератора являются:
- его высокий КПД,
- пониженный шум при работе,
- сравнительно простая конструкция.
Из недостатков отмечаются:
- большая нагрузка на мачту (из-за эффекта Магнуса);
- отсутствие математической модели работы этого ротора, что затрудняет его совершенствование;
- быстрый износ из-за центробежных нагрузок.
Еще одним видом вертикальных установок является геликоидный ротор
. Он оснащен лопастями, которые закручены вдоль несущей оси.
Геликоидный ротор
Это обеспечивает долговечность конструкции и высокий КПД. Недостатком является высокая стоимость из-за сложности изготовления.
Многолопастный тип ветряка представляет собой конструкцию с двумя рядами вертикальных лопастей - внешним и внутренним. Эта конструкция дает наибольший КПД, однако отличается высокой стоимостью.
Горизонтальные модели отличаются:
- количеством лопастей (однолопастные и с большим количеством);
- материалом, из которого изготовлены лопасти (жесткие или гибкие парусные);
- изменяемым или фиксированным шагом лопастей.
Конструктивно они все схожи. В целом ветрогенераторы такого типа отличаются высоким КПД, но они нуждаются в постоянной подстройке под направление ветра, что решается использованием в конструкции хвоста-флюгера или автоматическим позиционированием установки с помощью поворотного механизма по показаниям датчика.
Ветрогенератор своими руками
Выбор моделей ветрогенераторов на рынке широчайший, доступны устройства самых разных конструкций и различной мощности. Но простую установку можно сделать самостоятельно.
В качестве генератора рекомендуется взять трехфазный на постоянных магнитах, например, тракторный. Но можно изготовить его из электромотора, о чем будет подробнее сказано ниже. Важен вопрос подбора лопастей. Если ветряк вертикального типа, обычно используют вариации ротора Савониуса.
Тракторный генератор
Для изготовления лопастей вполне подойдет емкость цилиндрической формы, например, старая выварка. Но, как говорилось выше, ветрогенераторы такого типа обладают низким КПД, а изготовить лопасти более сложной формы для вертикального ветряка вряд ли получится. В самоделках обычно используют четыре полуцилиндрические лопасти.
Что касается ветроустановок горизонтального типа, то для маломощной установки оптимальной является однолопастная конструкция, однако при всей ее кажущейся простоте крайне трудно будет изготовить сбалансированную лопасть кустарным образом, а без этого ветряк будет часто выходить из строя.
Важно! Не стоит увлекаться большим количеством лопастей, ведь они при работе могут образовывать так называемую «воздушную шапку», из-за которой воздух будет огибать ветряк, а не проходить сквозь него. Для самодельных устройств горизонтального типа оптимальными считаются три лопасти крыльчатого типа.
- В горизонтальных ветряках можно применять лопасти двух типов: парусные и крыльчатые. Парусные весьма просты, это всего лишь широкие полосы, внешне напоминающие лопасти ветряных мельниц. Минусом таких элементов является очень низкий КПД. В этом отношении гораздо перспективнее крыльчатые лопасти. В домашних условиях их обычно изготавливают из 160 мм ПВХ труб по лекалу.
Можно использовать и алюминий, но это обойдется значительно дороже. К тому же изделие из ПВХ трубы изначально имеет изгиб, который придает ей дополнительные аэродинамические свойства.
Лопасти из ПВХ трубы
Длина лопастей подбирается по следующему принципу: чем мощнее выходная мощность ветряка, тем они длиннее; чем их больше, тем они короче. К примеру, для трехлопастного ветряка на 10 Вт оптимальной является длина 1,6 метра, для четырехлопастного - 1,4 м.
Если мощность составляет 20 Вт, то показатель поменяется на 2,3 м для трехлопастного и 2 м для четырехлопастного.
Основные этапы изготовления
Ниже приведен пример самостоятельного изготовления горизонтальной трехлопастной установки с переделкой в генератор асинхронного двигателя от стиральной машины.
Переделка двигателя
Одним из ключевых моментов создания ветрогенератора собственными руками является переделка электродвигателя в электрогенератор. Для переделки используется электродвигатель от старой стиральной машины еще советского производства.