Индикатор уровня воды в баке на светодиодах. Датчик уровня воды
». Бывает так, что надо узнать, сколько воды осталось в какой-либо непрозрачной емкости. Например, цистерна, бочка или любая другая, закопанная в землю либо поднятая на высоту так, что не видно её содержимого. Тогда на помощь придет датчик уровня воды. Схема настолько проста, что ее может повторить даже тот, кто только взял в руки паяльник. Состоит она всего из 10 резисторов, 3 транзисторов и 3 светодиодов.
Приступим к постройке схемы датчика. Сначала вырежем плату 30 мм на 45 мм. Потом нарисуем дорожки, как на фото. Рисовать желательно краской или лаком для ногтей. Но под рукой у меня оказался только маркер (хотелось бы обратить внимание, что подойдет только перманентный маркер). Если вы рисуете маркером, то лучше всех держится маркер, купленный в магазине дисков или компьютеров. Нарисовав, приступайте к травлению.
Я травил перекисью водорода, так как ни хлорного железа, ни медного купороса нет. Наливал 50 мл 3% перекиси водорода, потом клал 1 ложку соли и 2 ложки лимонной кислоты. Смешивал, пока все не растворилось. При периодическом легком покачивании протравил плату где-то минут за 50.
Приступим к пайке схемы. Для этого нам понадобятся: 3 резистора сопротивлением 10 кОм, 3 резистора сопротивлением 1 кОм, 2 зеленых и 1 красный светодиоды, 4 резистора на 300 Ом. Аккуратно все впаяв, припаиваем провода, и подключаем батарейку. Провода отрезаем через каждые 2 сантиметра.
Готово! Теперь опускаем провода в стакан и постепенно наливаем воды. Для наглядности чуть подкрасил воду. Как видим, всё отлично работает.
Когда в стакане 1/3 воды - горит только красный светодиод. Когда 2/3 - загорается еще и зеленый. А когда стакан заполнен по верхнюю линию - горят все светодиоды. в своём случае собрал схему, где всего 3 светодиода, но можно делать и больше - хоть 10. Тогда уровень воды будет виден более точно. Также хотелось бы добавить, что корпус использовал из-под корректора. Схему собрал: bkmz268
Обсудить статью ИНДИКАТОР УРОВНЯ ВОДЫ
Для измерения и индикации уровня воды в промышленности и в бытовой сфере применяются индикаторы уровня воды, обеспечивающие непрерывные измерения и визуальный контроль истинного уровня в емкостях различных форм и размеров.
Индикатор | Описание | Тип/принцип | Диапазон измерения | Место установки | Контролируемый материал |
Индикатор уровня байпасный | Беспоплавковый | 0,05…2 метра | Сбоку | Жидкости Вода |
|
Индикатор уровня байпасный | Беспоплавковый | 0,1…2 метра | Сбоку | Жидкости | |
Индикатор уровня байпасный | Беспоплавковый | 0,1…2 метра | Сбоку | Жидкости | |
Магнитный | 0,15…5,8 метров | Сбоку | Жидкости | ||
Магнитный индикатор уровня с возможностью внедрения в АСУ | Магнитный | 0,15…3 метров | Сбоку | Жидкости | |
Буйковый | 0…2,5 метров | Сверху | Топливо Вода |
||
Механический индикатор уровня | Буйковый | 0,9…2,0 метров | Сверху | Топливо Вода |
|
Пневматический уровнемер индикаторного типа | Пневматический | 0,7…4,0 метров | Сверху | Топливо Вода |
|
Байпасный индикатор для ответственных применений | Поплавковый | 0,5…5,5 метров | Сбоку | Жидкости Вода |
|
Электронный цифровой индикатор уровня топлива и воды | Гидростатический | 0,9…4,0 метра | Погружной | Топливо Вода |
|
Электронный цифровой индикатор уровня топлива | Гидростатический | 0,9…4,0 метров | Погружной | Топливо Вода |
Выбор индикатора уровня зависит от множества факторов. Коснемся самых важных из них.
1. Требуемая точность прибора напрямую зависит от реализованного принципа измерений :
- механический - точность ±5%;
- пневматический - точность ±3%;
- гидростатический - точность ±1,5%.
Так, специально разработанные индикаторы уровня Unitel для воды и для воды, реализуют пневматический принцип измерения уровня, цифровой индикатор наличия воды в емкости - гидростатический.
Кроме того, в качестве индикаторов уровня воды могут быть использованы механические индикаторы уровня жидкости , поплавковые измерители уровня , а также гидростатический индикатор уровня наполнения емкости .
2. В зависимости от назначения измерений может быть выбран прибор :
- с индикацией уровня по месту установки емкости (MT-Profil R, Unimes, Unimes E, Unitel, Unitop, DIT 10);
- с возможностью передачи сигнала на верхний уровень (TankControl 10, NivoFlip совместно с датчиком и/или переключателем).
3. От расположения емкости с водой зависит возможность применения индикатора уровня воды , устанавливаемого:
- непосредственно на емкость (MT-Profil R, Unimes, NivoFlip);
- с выносным устройством отображения в случае расположения емкости в труднодоступном месте, например, если речь идет об индикаторе уровня воды в колодце или в баке, установленном под землей, в зоне подтоплений, либо на крыше (Unitel, Unitop, DIT 10, TankControl 10);
- с двумя показывающими устройствами: одно устанавливается непосредственно на емкость, второе - выносное (Unimes E).
4. От габаритов емкости зависит выбор конкретной модели индикатора уровня воды (см. Диапазон измерения в табл.выше)
5. Имеет значение и качество воды : некоторые модели индикаторов непригодны для использования с питьевой водой.
При выборе индикатора уровня необходимо также учитывать температуру окружающей среды, воды в емкости, материал емкости, а также другие условия применения прибора.
Для того чтобы грамотно подобрать, купить индикатор уровня воды,
отвечающий всем условиям эксплуатации, удовлетворяющий все Ваши запросы,
обращайтесь к специалистам нашей компании.
Данное устройство было разработано для септика загородного дома, в качестве индикатора, для слежения за уровнем наполнения канализации. Задача была создать надежный датчик, который должен работать в условиях влаги и в разных температурных режимах. В начале, думал применить принцип поплавка в цилиндре, взяв за основу емкость из под силикона (как видно на рисунке возможных вариантов исполнения датчика уровня жидкости). Но, сама жизнь, направляет и подсказывает нужные пути, нужно только уметь осознавать это! Исходя из того, что в моем септике уже имелся вывод канализационных труб на 110мм и на 50мм, решение пришло само по себе. Таким образом, появилась возможность закрепить устройство на 50мм-й трубе, исключив другие варианты крепления. Все материалы должны быть из пластмассы, алюминия, бронзы, нержавейки, и так далее – устойчивыми к среде, к которой вы их собирайтесь применить!
Принцип работы датчика уровня жидкости основан на магните и герконах. Перемещением магнита вдоль двух герконов, происходит срабатывание датчиков и соответственно свечение светодиодов определенным цветом, указывая о мере заполнения резервуара жидкостью. Я пытался максимально упростить схему изделия, и добился использования всего двух герконов. Также, было важно применить как можно меньше деталей для надежной, долгосрочной эксплуатации.
Схема датчика уровня жидкости
Принцип работы датчика уровня жидкости
Возможные варианты исполнения датчика уровня жидкости
По схемам видно, что в нижнем положении поплавка, когда горит зеленый светодиод HL1, задействован 2-йгеркон. То есть уровень жидкости находится ниже поплавка, который ограничен стопором и соответственно магнит замыкает контакты геркона. По мере поднятия уровня жидкости (заполнения резервуара), происходит перемещение магнита и переключение 2-го геркона, который подключает желтый светодиод HL2 и выключает HL1. При достижении критического уровня, магнит задействует 1-й геркон, загорится красный светодиод HL3, а желтый погаснет, оповещая вас о заполнении резервуара. При какой-либо неисправности с поплавком или магнитом, должен будет гореть желтый светодиод (например, опрокидывание поплавка или смешением магнита, поломки стопора, и т.д.). Добавив реле в схему, можно будет применить его в качестве исполнительного устройства для подключения более мощных нагрузок. Также, можно подключить ко 2-у геркону зуммер, для звукового оповещения или мобильный телефон и так далее.
Питание девайса от любого источника 3-12В. Например от телефонной зарядки с импульсным блоком питания на 5 вольт или двух батареек по 1,5В, также подойдет более компактная на 3В. При этом, надо будет снизить сопротивление резистора R1. Кнопка или выключатель подберите поменьше, хотя можно обойтись и без него, держа индикатор включенным постоянно. Монтаж навесной, в доме, например в электрощите. Заранее проведите проводку (она у меня была уже наготове). Таким образом, можно обойтись очень простой схемотехникой, без микроконтроллеров и т.п. Ведь чем проще – тем надежнее!
Итак, нам понадобится следующие материалы:
Муфта соединительная для канализационных труб ПП d=50mm х2шт.
- заглушка канализационная d=50mm х2шт.
- хомут пластиковый (браслет) х1шт.
- профили пластмассовые U-образные (из мебельной фурнитуры).
- термоусадочный кембрик d=30-40mm, d=3-10mm.
- пластмассовая или текстолитовая пластина =4-6mm.
- заклепки алюминиевые х10шт.
- магнит неодиновый (от жесткого диска компьютера) х1шт.
- герконы 3-хконтактные х2шт.
- кнопка или выключатель низковольтный х1шт.
- резистор 680-1,5к. х1шт.
- светодиоды х3шт.
- провода низковольтные (например для охранной сигнализации, 5-и жильный).
- штекер на 4 ножки (например от диммера для RGB LED).
- термоклей или силикон.
- питание 12В или батарейка на 3В (от компьютера).
Из инструмента:
Дрель
- фен строительный
- термопистолет
- паяльник
- также другой подручный инструмент, который найдется у любого мастера.
Изготовление
Сперва надо найти все нужные материалы и запастись терпением. У меня работа заняла дня три, включительно разработка и эксперименты. Схему устройства советую сперва испытать, а потом уже собирать. Будьте внимательны при работе с герконами, очень легко разбить стеклянный корпус при сгибании ножек. Используя пластиковый хомут, закрепите герконы термоклеем. Расстояние для них, подберите экспериментально, оно должно обеспечить срабатывание герконов при прохождении магнита. За герметизируйте соединение термоусадкой и термоклеем или силиконом. Готовый браслет одевается на муфту и позволяет регулировку наилучшего положения срабатывания. Также, его легко заменить при неисправности отсоединением штекера. Штекер найдите влагоустойчивый, на четыре или более ножек. Если штекер подвержен воздействию влаги, закройте его термоусадкой или засиликоньте. Можно обойтись и без него, припаяв провода напрямую.
Исходя от длины держателя поплавка, зависит ход срабатывания устройства. В моем случае, длина составляет примерно 40см. Профиль поплавка надо нагреть строительным феном и уложить на муфту (это делается быстро), в последствии склеить и соединить заклепками. Получившейся хомут, должен обеспечить легкое вращение относительно муфты с герконами. Сам поплавок, установив заглушки, просто крепится к профилю заклепками. То, что конструкция поплавка имеет определенную гибкость, предотвратит, в дальнейшем его поломку. Также крепится к конструкции неодиновый магнит, так чтобы он находился на расстоянии срабатывания герконов. Просверлив отверстия в муфте, установите стопор поплавка, он нужен для правильного положения срабатывания при работе аппарата.
В вашем домашнем хозяйстве может возникнуть необходимость в различного рода датчиках уровня воды или другой жидкости, каковые можно без особых сложностей сделать своими умелыми руками. Поискал в сети и предлагаю вам для использования несколько вариантов схем для разного рода нужд, связанных с уровнем жидкости, их отслеживанием, контролем, регулированием и прочим.
Варианты схем таковы: светодиодная индикация шести уровней жидкости, автоматическое управление насосом и пару простых схем просто звуковой индикации при наполнении емкости водой.
Для решения необходимости регулировать автоматически уровень воды с помощью откачки либо, наоборот, наполнения насосом, а также просто контроля, будь то визуальный по световой индикации, либо с помощью звуковых сигналов, подобраны схемы на не очень продвинутого пользователя, как и прочие на этом сайте. Постарался подобрать варианты как на интегральных микросхемах, так и на транзисторах.
Для включения и выключения насоса, более удобно использовать при согласовании с управляющей схемой, исполнительное реле на электромагните. Все найденные схемы, используют такую коммутацию. И это логично, так как электронные ключи в случае с двигателями вещь менее надежная. Важно только подобрать реле, подходящее по параметрам к двигателю насоса, чтобы потом не пришлось искать замену при порче его контактов.
Индикатор шести уровней жидкости со световой индикацией
При кажущемся обилии проводов и элементов на приведенной схеме, на самом деле, она до смешного проста. Поскольку из активных элементов лишь одна логическая микросхема, остальные элементы все пассивны, к тому же схема абсолютно не требует никакой наладки, поскольку это «логика» в чистом виде. А все номиналы элементов каждого из шести каналов при каждом логическом элементе одинаковы, так что требуется просто подключить вход и выход каждого и повторить это шесть раз. Далее понятно: контакт 7 общий, а 1-6 это уровни, каждый их них можно расположить на нужной высоте непосредственно в емкости для световой индикации. Светодиоды можно расположить в ряд (либо на другой манер), которые и будут индицировать уровень жидкости в наполняемой емкости: светится от 1 до 2 штук одновременно. При желании можно конечно же применить светодиоды разных цветов.
Разумеется, при сегодняшнем обилии светодиодов, можете применить любые, которые вас устроят. Возможно, для подгона рабочего тока для них, потребуется подбор резистора R13.
Автоматическое управление водяным насосом
Приведенная схема тоже в общем-то не так и сложна, также основа ее логическая микросхема К561ЛЕ5 она состоит из четырех элементов логики 2ИЛИ-НЕ. Собрав и используя данную схему, можно либо наполнять, либо опустошать необходимый резервуар водой. Для передачи исполнения включения/выключения насоса добавлен лишь транзистор и реле.
В качестве датчиков используются два прута — длинный и короткий. Длинный – для минимального уровня, короткий – для максимального уровня воды. Берется за данность, что резервуар в нашем случае металлический. Если у вас не из металла, то в таком случае нужно добавить еще один прут, опустив его до самого дна.
Принцип схемы таков: при соприкосновении воды одновременно с длинным, а также с коротким датчиком, логический уровень на выводах 9 и 1,2 микросхемы DD1 изменяется с высокого на низкий, чем вызывает изменение режима насоса.
При уровне воды ниже обоих датчиков, в микросхеме DD1 на выводе 10 — логический ноль. При повышении уровня воды, даже при соприкосновении воды с длинным датчиком — на выводе 10, также логический ноль. Но при достижении уровня воды короткого датчика, на 10-м выводе появится логическая единица, тогда транзистор VT1 включает реле, а оно — управление насосом, который начинает откачивать воду из резервуара.
Уровень воды начинает уменьшаться, короткий стержень не контактирует с водой, но на выводе 10 все же остается логическая единица, поэтому насос продолжает работать. А вот по достижении уровня воды ниже длинного стержня, на выводе 10 уже появится логический ноль, вот тогда насос остановит работу.
Переключатель же S1 позволяет переключить всю логику схемы и, соответственно, работы насоса на обратную.
Данная схема также предполагает два контакта: при погружении их в воду, запускается работа звукового генератора, звук излучает динамик ВА1. При указанных на схеме номиналах, частота генерируемого звукового сигнала около 1кГц.
Интегральная микросхема К561ЛА7 состоит их четырех элементов логики «И-НЕ». Чувствительность схемы датчика очень высокая, это обеспечивается использованием в логической микросхеме К561ЛА7 униполярных (полевых) транзисторов с изолированным затвором (КМОП).
Транзистор КТ972, примененный в схеме, составной. Но его можно заменить, соединив два транзистора (КТ3102 и КТ815) как на схеме слева.
Питается схема напряжением 3-15 В. При напряжении питания выше 6-ти Вольт, можно ограничить ток динамика и транзистора, включив последовательно динамической головке резистор.
С помощью любимого таймера 555 можно изготовить датчик для воды, для омывайки, тосола и т.д. Стоит отметить, что подобный датчик пригодится как в Вашем автомобиле, так и в бытовых условиях. Схема довольно проста и доступна для повторения. Микросхема получила широкое распространение именно благодаря своей простоте.
Для датчика воды будет использоваться такая схема.
Работа устройства предельно проста. При погружении электродов в жидкость, С1 – конденсатор, зашунтирован. Когда электроды находятся в воздухе, то шунт исчезает, и микросхема начинает работать.
От микросхемы исходят прямоугольные импульсы. С помощью таких импульсов можно управлять при помощи более большей нагрузки. К примеру, можно подавать сигнал на лампочку через транзистор. Такая технология позволяет включить в схему сигнализацию или индикатор. С помощью последнего можно определять наличие воды в баке. Подобный датчик можно установить как в баке, так и в радиаторе. Питание датчика – 12 вольт. Это говорит о том, что с питанием не возникнет вопросов.
Как правило, датчики изготавливают из стеклотекстолита. Но чаще всего используют обычную медь (провода). Для датчика подойдет два одинаковых отрезка провода с сечением 1 миллиметр. Важно заметить, что с проводов нужно счистить лак, который может быть на поверхности металла. Делается это с помощью огня или же наждачной бумаги. Так, длина проводом должна быть до 3,5 сантиметров.
Чтобы провода держались в пробке, их укрепляют силиконом. Потом провода крепятся к самой микросхеме. Провода в крышке можно соединить с микросхемой более тонкими проводниками.
Микросхема может быть навесной – без установочной платы. Когда все будет готово, другой подобной крышкой закрывают полученное устройство. Соединение крышек необходимо герметизировать клеем или другими средствами.
Таким образом, не совершая излишних затрат можно самостоятельно изготовить датчик, который поможет не только в автомобиле, но и в быту. Так, можно избавить себя от частых подъемов на душ для того, чтобы посмотреть уровень воды в баке. Самодельный датчик уровня воды решит проблему. Важно лишь выполнять все работы аккуратно и внимательно, чтобы устройство работало исправно.