Биологический фильтр для очистки сточных вод. Сооружения биологической очистки сточных вод
Что такое биологический фильтр? Он имеет резервуар специальной формы, в котором очищаются сточные воды с применением биологических материалов — оболочка из разных микроорганизмов.
Во время очистительных работ происходит постоянная циркуляция воздуха благодаря температурной разнице атмосферы и очищаемой воды. Вентиляция является обязательным условием поддержания жизни – обеспечение микроорганизмов кислородом.
Классификация биофильтров
В биологических фильтрах предусмотрены разные материалы для загрузки. Выделяют:
- Биофильтры с объемной нагрузкой. Они содержат горный щебень, керамзит, гальку и т.д.
- Фильтры плоской нагрузки. Используются прочные пластмассы, работающие в температурном диапазоне от 6 до 30 градусов.
По используемой технологической схемы выделяют:
- Фильтры с двумя ступенями очистки, которые выдают высокоочищенную воду. Их применяют при ограничении высоты устройства или при неблагоприятном климате.
- Биофильтры с одной ступенью очистки.
По степени очистки биофильтры бывают:
- с полной очисткой;
- с неполной очисткой.
В зависимости от способа подачи воздуха биофильтры делятся:
- с естественной циркуляцией воздуха;
- с искусственной воздушной подачей.
Различают два режима работы биологических фильтров:
- рециркуляционны — высококонцентрированная вода подается небольшими порциями для более эффективной очистки;
- без рециркуляции – при низком загрязнении воды.
В зависимости от пропускной способности классифицируются на:
- капельные — с малой пропускной способностью;
- высоконагружаемые.
Биофильтры с объемной нагрузкой
Их принято разделять на:
- Капельные, которые характеризуются малой производительностью. Зернистость тела загрузки будет 20-30 миллиметров при двухметровой высоте слоя.
- Высоконагружаемые с размером загрузочного материала 40-60 миллиметров и четырехметровый слой.
- Башенные биофильтры имеют большую высоту – 16 метров, а зернистостью 40-60 миллиметров.
Биофильтры с плоской загрузкой
- Жесткая нагрузка обеспечивается кольцами, частями труб и подобными элементами. В бак засыпают крошку из металла, керамики или пластмассы. Их плотность доходить до 600 кг/м 3 , пористость материалов от 70%. Очищающий слой доходит до шести метров.
- Жесткая нагрузка с блочной или решетчатой нагрузкой. Блоки изготавливают из асбестовых листов (плотность до 250 кг/м 3 , пористость от 80%, шесть метров загрузки) или некоторых разновидностей пластмасс (плотность от 40 до 100 кг/м 3 , пористость от 90%, фильтрующий слой до 16 метров).
- Рулонная или мягкая нагрузка создается сеткой из металла, синтетическими тканями, пленкой из пластмассы. Загрузку выкладывают рулонами или закрепляют на каркас. Плотность до 60 кг/м3, пористость от 95% при высоте загрузки до 8 метров.
- Биофильтры для погружения – резервуары с вогнутым днищем. Диски из пластмассы, металла или асбеста монтируются выше уровня очищаемых вод. Диски расположены 10-20 миллиметров друг от друга, их диаметр – 06-3 метра. Вал вращается с частотой до 40 мин -1 .
Засыпная и мягкая нагрузка используется при максимальном расходе 10 000 м 3 /сутки, блочная нагрузка – 50 000 м 3 /сутки. Погружные биофильтры эффективны при низких нагрузках.
Схема работы фильтра
Подача водной массы осуществляется капельным или струйным методом. Воздух проходит через дренаж фильтра или забирается с поверхности. Предварительно очищенная сточная вода с невысокой концентрацией загрязнений сама течет в распределитель, который порциями подает ее на поверхность загрузочной массы. Далее вода идет в систему дренажа, а оттуда на водные лотки за границами биологического фильтра. Во втором отстойнике удаляется биопленка.
Капельные биофильтры характеризуются низкой органической нагрузкой. Что бы вовремя очистить тело фильтра от мертвой биопленки, используют гидравлическую нагрузку.
Должно быть обеспечено равномерное орошение всей загрузки биофильтра. Это необходимо для исключения возникновения повышенной или пониженной гидравлической нагрузки.
Капельные фильтры почти невозможно регулировать под изменения внешних условий. При эксплуатации следят за показателями загрязненности и состоянием биофильтров. Очистка загрузки имеет высокую стоимость – используют полную ее замену. В биофильтр должна поступать сточная вода с количеством взвешенных частиц менее 100 мг/л.
При эксплуатации важным является аэрация фильтра. Концентрация кислорода не должна снижаться за 2 мг/л. Необходимо обеспечить периодическую очистку полости под дренажем и над днищем.
Капельный биологические фильтры плохо переносит зимой ветер. Для эффективной работы предусматривают противоветровую защиту. Неоднородная нагрузка приводит к заболачиванию фильтра, которая ликвидируется заменой загрузки. Работу нарушают и посторонние предметы в загрузочной массе и дозирующих баках.
Высоконагружаемые биофильтры
Этот тип фильтров имеет повышенный воздухообмен и, соответственно, окислительную способность. Обеспечивается повышенный обмен воздуха крупной фракцией загрузки и повышенной водонагрузки.
Очищаемые воды двигаются с большой скоростью и выносят трудноокисляемые вещества и отработанную биопленку. Кислород расходуется на оставшиеся загрязнения.
Высоконагружаемые биофильтры имеют высокий загрузочный слой, повышенную зернистость дренажа и днище особой формы для обеспечения искусственной циркуляции воздуха.
Промывка фильтра будет происходить только условиях постоянного беспрерывного и высокой подаче воды.
Высота массы загрузки прямо пропорциональна эффективности биофильтра.
В состав биологических фильтров могут входить:
- тело фильтра – фильтрующая загрузка, которая расположена в резервуаре, доступном для проникновения воды. Наполнители (пластмасса, шлак, щебень, керамзит и т.д.) должны иметь низкую плотность и повышенную поверхностную площадь;
- устройство для распределения воды, позволяющее равномерно орошать фильтрующую загрузку грязной водой;
- дренаж;
- устройство распределения воздуха – подает кислород для окислительных реакций.
Окислительные процессы в биофильтрах схожи с орошением полей или как в сооружениях биологической очистки, но интенсивнее.
Схема работы биофильтра
Загрузочная масса очищает воду от нерастворенных примесей, которые остались после пройденных отстойников. Биопленка сорбирует растворенную органику. Микроорганизмы в биопленки живут за счет окисления органических веществ. Так же часть органики идет на увеличении биомассы. Происходит два эффективных действия: уничтожение ненужной органики из воды и увеличения биологической пленки. Поток сточной воды уносит с собой омертвевшую часть пленки. Кислород подается естественным и искусственным путем с помощью вентиляции.
Расчет биофильтров
Расчет производится для поиска эффективной толщины загрузочной массы и характеристик водораспределительного устройства, фракции дренажа и диаметра лотков, отводящих воду.
Эффективный размер загрузочной массы рассчитывают по окислительной мощности – ОМ. ОМ – это масса необходимого кислорода в сутки. На нее влияет температура воды и окружающей среды, материала загрузочной массы, типа загрязнения, способа воздухообмена и т.д. Если за год средняя температура менее 3 градусов, то биофильтр переносят в более теплое помещение с возможностью обогрева и пятикратной подачей свежего.
Часто используют следующий алгоритм:
- Определяют коэффициент К как произведение БПК20 входящей и выходящей воды.
- Из таблиц определить высоту фильтра и допустимую гидравлическую нагрузку, зависящая от среднезимней температуры окружающей среды и К.
- Общая площадь определяется делением расхода входящей воды на гидравлическую нагрузку.
Высоконагружаемые биофильтры
Для них существует точная методика расчета:
- Определяется допустимая концентрация загрязнения входящей воды: табличный коэффициент К умножается на БПК вышедшей воды.
- Рассчитывается коэффициент рециркуляции по специальной формуле. Он равен частному двух разностей: БПК поступающей сточной воды минус ее допустимая концентрация и допустимая концентрация минус БПК очищенной воды.
- Для определения площади фильтра берется произведение объема среднесуточной подачи воды, увеличенное на 1 отношение рециркуляционного расхода к расходу сточной воды и коэффициента с пункта 2. Все нежно разделить на допустимую нагрузку и температуру.
Существуют дополнительные методы расчета биологических фильтров, которые используют сложные формулы и дают более точные результаты.
Схема вентиляции биофильтра
Как уже упоминалось выше, биофильтры имеют два способа подачи кислорода: искусственный и естественны. Вид вентиляции зависит от климатических условий и типа фильтра.
Для высоконагруженных биофильтров используют вентиляторы с низким давлением — ЭВР, ЦЧ. Аэрофильтры нуждаются в искусственной вентиляции. При монтаже биофильтра в закрытом пространстве, так же предусматривают принудительную подачу воздуха в него.
Обеспечивают постоянную циркуляцию воздуха, так как перерывы могут поднять температуру до 60 градусов и вызвать плохие запах от разложения отработанной биопленки.
Биофильтр эффективно работает при температуре выше 6 градусов. Если вода будет меньшей температуры, то следует предусмотреть подогрев подаваемой воды.
Что бы в зимнее время фильтр не переохлаждался, устанавливают противоветровую защиту в виде купольного сооружения и снижают коэффициент неравномерности подачи сточных вод. Так же вводят ограничение по подаче холодного воздуха: на квадратный метр за час должно подаваться только 20 кубических метров. В вентиляционные решетки вставляют жалюзи, экраны из тканевых материалов.
Толщина биопленки оказывает влияние на равновесие в фильтре. Большая толщина может привести к прекращению потребления кислорода и начнется гниение. Наиболее распространено в капельных фильтрах.
Ранее считалось, что естественная подача кислорода происходит только благодаря разности температур. Сегодня доказано, что на естественную вентиляцию влияют диффузные процессы во время окислительно-восстановительных реакций.
Прекрасно справляются со своими задачами и показывают высокую эффективность работы. Очищенные септиком воды могут использоваться для полезных целей либо просто впитываться в грунт. Помимо самих септиков, иногда необходимо использовать дополнительное оборудование для доочистки. Если необходимо чтобы вода уходила в грунт или любое другое место максимально чистой, следует установить систему доочистки стоков в виде биофильтра для септика . Бывает что водопоглощение грунта такое, что стоки после канализации не впитываются, и это довольно распространённый вариант, либо вы намерены использовать воду для полива приусадебного участка или сбрасывать в водоём. Установить станцию биологической очистки по каким то причинам невозможно, то мы рекомендуем Вам задуматься о приобретении биофильтра для очистки воды. На данной странице вы найдете актуальный материал по этим двум видам дополнительного оборудования для септиков.
Разновидности систем отведения очищенных стоков
Системы отведения очищенных стоков целесообразно применять при низкой водопроницаемости грунта. Они позволяют более эффективно отводить очищенную воду и, кроме этого, способствуют её фильтрации. Рассмотрим четыре основных разновидности систем отвода очищенных вод.
1. Поле поглощение
Такая система пользуется популярностью у многих наших клиентов. Она простая в установке, недорогая и вместе с тем эффективная.
Монтаж системы производится следующим образом: возле устанавливаемой станции биологической очистки сточных вод или септика раскапывается траншея необходимой ширины и глубины. На дно насыпается слой крупного щебня, образующего собой подушку для системы отвода. Затем устанавливается сама система. Если глубина, на которой она располагается, не превышает 120 см, систему необходимо утеплить (чаще всего песком). Затем она аккуратно закапывается.
Принцип действия поля поглощения: очищенная в септике вода через систему отвода попадает в грунт, проходя через песок и щебень. Это способствует её фильтрации (доочистки) и быстрому впитыванию.
2. Впитывающий колодец
Данная система наиболее хорошо подходит для песчаных грунтов с умеренным уровнем грунтовых вод. Сложнее в установке, чем поле поглощение, однако, и более эффективная.
Монтаж системы производится следующим образом: на определенном расстоянии от канализационной станции, выкапывается котлован. Посредством траншеи он соединяется с котлованом станции. В котлован устанавливается ёмкость без дна (по сути - колодец). Она может быть сделана из стеклопластика, бетонных колец или иных водонепроницаемых материалов. На дно колодца насыпается слой щебня.
Станция очистки и колодец соединяются трубой, расположенной под небольшим уклоном. Принцип действия впитывающего колодца: очищенные стоки, стекая по трубе, попадают в колодец, а затем, проходя сквозь слой щебня и фильтруясь, уходят в грунт.
3. Поле фильтрации
По сути, данная система отвода очищенных сточных вод является модернизированной и улучшенной системой «Поля поглощения». Она более объемная и трудоёмкая, однако, и намного эффективней. Монтаж системы производится следующим образом: вблизи от станции очистки выкапывается необходимой формы и размера котлован. На дно насыпается слой гравия. На него устанавливается двухуровневая система труб. Затем насыпается песчаный слой. После этого прокладывается еще слой щебня. Конечным этапом является засыпка оставшегося места в котловане грунтом.
Принцип действия поля фильтрации: такой же, как и у поля поглощения. Отличия состоят лишь в том, что воды, прежде чем попадут в грунт, проходят еще и через песчано-гравийный слой.
4. Фильтрующая кассета
Еще одна разновидность систем отвода. Будет удобна тем, у кого на участке мало места для поля поглащения/фильтрации.
Монтаж системы производится следующим образом: от станции очистки выкапывается необходимой формы и размера котлован. Дно котлована засыпается щебнем. На него устанавливается кассета (сооружение, выполненное в виде короба с несколькими отсеками и выводной трубой). Секции кассеты наполнены фильтрующими материалами (песок, щебень). После установки и подсоединения вводной трубы, котлован закапывается.
Принцип действия фильтрующей кассеты: очищенные сточные воды попадают через вводную трубу в фильтрующую кассету. Проходя через все секции с фильтрующими материалами, они подвергается доочистке. Затем через выводную трубу очищенные стоки поступают в грунт.
Принцип действия биофильтра и его конструкционные особенности
Биофильтр производит доочистку стоковых вод. Применяется совместно с септиками. Особенно удобен биофильтр для воды там, где невозможно установить систему отвода очищенных стоков. А такие случаи возможны при следующих факторах:
- На участке высокий уровень грунтовых вод;
- На участке расположена скважина или колодец с питьевой водой;
- Почва участка обладает низкими показателями фильтрации и поглощения (к примеру, глина);
- Сброс очищенных стоков в водоохранную зону (в таких случаях не редко применяется дополнительная УФ-очистка; очистка переработанных стоков до 100%).
Биофильтр для очистки сточных вод представляет собой особого типа емкость наполненную керамзитом. Через вводную трубу в биофильтр подаются (обычно самотеком) осветленные сточные воды (очищенные на 65-70%). Жидкость заполняет всю область загрузки биофильтра и подвергается аэробному окислению. Затем производится обработка сточных вод аэробными бактериями. После запуска фильтра в работу, в первые 2-3 недели в области инертной загрузки, в первой камере биофильтра, происходит формирование биоплёнки из бактерий, микроорганизмов и различных грибов. Бактерии и грибы окисляют поступающие вместе со стоками органические соединения. Также они являются пищей для различных микроорганизмов. Например, инфузорий или коловраток. Благодаря данной биологической активности, биоплёнки постоянно омолаживаются, и процесс очистки воды является постоянным. Для ускорения развития бактерий используются специальные ферментные добавки. Поступление кислорода, необходимого для активности бактерий и микроорганизмов, обеспечивается системой естественной вентиляции. Для её функционирования нет необходимости использования каких-либо технических средств. После очистки вода поступает во вторую камеру, а оттуда с помощью выводного шланга выводится из фильтра. В результате рассмотренных процессов сточные воды очищаются на 90-95%.
Важно помнить, что фильтр биологической очистки является лишь дополняющим оборудованием к септикам. Его использование без септика строго запрещено и чревато засорением камер и даже выходом из строя всего фильтра. Задумались о приобретении септика? Посетите соответствующие страницы нашего сайта – у нас есть, что Вам предложить.
Где приобрести биофильтры и системы отведения очищенных сточных вод?
В нашей компании Вы можете приобрести рассмотренные на данной странице системы отведения очищенных стоков, а также биофильтры "Flotenk ", рассчитанные на разное количество пользователей. Приобретая септики, системы отведения или биофильтры для очистки сточных вод в нашей компании, Вы получаете бесплатную профессиональную консультацию, бесплатный выезд (до 50 км) и замер, проектирование системы автономной канализации, а также качественный монтаж от опытных и грамотных специалистов.
Процесс изъятия и окисления органических загрязнений сточных вод в биологических фильтрах принципиально не отличается от аналогичных процессов, протекающих при очистке сточных вод в других сооружениях биологической очистки, однако ход процесса в биологических фильтрах во многом зависит от конструктивных особенностей этих сооружений. В частности, конструкцией биологического фильтра обусловлена специфика гидродинамических условий в нем, а следовательно, характер и скорость подвода органических веществ и кислорода воздуха к клеткам микроорганизмов биологической пленки, отвода от них продуктов биохимических реакций, что в свою очередь влияет на скорость процесса очистки сточных вод и эффективность работы сооружений.
Очистка осуществляется при контакте протекающей сточной воды через загрузку с неподвижно закрепленной на ее поверхности биологической пленкой. Ход массообменных процессов, происходящих в элементарном объеме биологаческого фильтра, схематично представлен на рис. 2.1 а. Перенос загрязнений определяется законами молекулярной и турбулентной диффузии вещества. При молекулярной диффузии массообмен происходит как за счет разности концентраций веществ на границе раздела фаз жидкость - воздух (максимальная концентрация загрязнений) и жидкость - биопленка (минимальная концентрация). Турбулентная диффузия происходит вследствие перемешивания жидкости при ее протоке через загрузку биологического фильтра. При этом скорость турбулентной диффузии может намного превышать скорость молекулярной диффузии.
t/почнал Soda
Эаеряонени*
воздух
Ppo?f/ктм реакций -
Лоробос
I HjP?/точмая I сТиоплснка
Оресничес/fue бещестба биогенные j/гсменты MP da, Mg, б и dp.
Рислород
А в I P I » I *u
биологическая
пленка
C0 Zl H;0, H0 2j Wj
Энергия
Прирост биомассы
Энергетические WMC
Нонструктиш обмен
Рис. 2.1. Схемы массообменных процессов, протекающих при очистке сточных вод на биологических фильтрах (а), и окислительных процессов , происходящих в биопленке (б)
Кислород воздуха, необходимый для протекания биологического процесса, поступает к биопленке из порового пространства загрузки биологического фильтра. Перенос и фиксирование (сорбция) органических веществ на поверхности клетки или в околоклеточном пространстве сопровождаются гидролизом сложных соединений под действием различных ферментов, а также в результате диффузии веществ через проницаемую мембрану клетки.
В ходе внутриклеточных процессов происходит окисление органических веществ (энергетический обмен) и синтез нового материала клетки (конструктивный обмен). Процесс окисления сопровождается выделением энергии, процесс синтеза идет с ее потреблением (рис. 2.16).
Продукты распада органических загрязнений выносятся из биогшенки в слой жидкости и отводятся с потоком жидкости (растворенные вещества) и с потоком воздуха (газообразные). Одновременно потоком жидкости вымывается избыточная (прирастающая) биопленка, которая выносится из биологического фильтра вместе с очищенной водой. Для отделения избыточной биопленки очищенные сточные воды после биологических фильтров отстаивают во вторичных отстойниках.
Характер протекания процесса очистки сточных вод на биологическом фильтре показан на рис. 2.2. Как видно из рисунка, концентрация органических загрязнений Ь н сначала быстро снижается при продолжительности процесса от г 0 До что свидетельствует о высоких скоростях изъятия загрязнений на этом участке. Одновременно резко увеличивается количество биопленки (кривая 2) по сравнению с начальным С н, причем скорость роста микроорганизмов биоиленки по мере уменьшения концентрации загрязнений в жидкости постепенно снижается. К моменту времени /1 количество биопленки становится стабильным, так как недостаток питания тормозит дальнейший рост клеток.
Рис. 2.2.
1 - концентрация органических загрязнений; 2 - общая масса биогшенки, закретенной на загрузке и циркулирующей; 3 -масса биопленки, закрепленной на загрузке биологического фильтра; 4 - концентрация нитритов и нитратов; 5 - зольность биомассы
Прирост биомассы в этот момент времени максимальный. При дальнейшем увеличении продолжительности процесса очистки сточных вод в биологическом фильтре концентрация органических загрязнений продолжает снижаться (кривая /), но скорость на участках б - / 2 и / 2 - Ь значительно ниже, чем в начале процесса. Ввиду низкой остаточной концентрации загрязнений в жидкости, отсутствия достаточного питания для жизнедеятельности микроорганизмов биопленки на этих участках начинается процесс отмирания (самоокисления) биомассы. Часть биопленки смывается с за1рузки биологического фильтра и поступает в очищаемую жидкость. Вследствие распада биомассы ее общее количество уменьшается (кривая 2), также уменьшается количество биопленки, закрепленной на загрузке (кривая 3), зольность биомассы повышается (кривая 5).
Участок I (см. рис. 2.2) при продолжительности процесса очистки сточных вод от /] до? 2 характеризует режим работы биологических фильтров при неполной биологической очистке. При работе в этом режиме концентрация загрязнений по ВПК снижается до 100...30 мг/л, наблюдается большой прирост биомассы, процесс идет без нитрификации.
При продолжительности процесса очистки от до Ь (участок II) биологические фильтры работают в режиме полной биологической очистки; ВПК жидкости снижается до Ь 0 - = 15...25 мг/л, в очищенной жидкости появляются нитриты и нитраты (кривая 4). Количество биомассы как закрепленной на загрузке биологического фильтра, так и выносимой с очищенной жидкостью, снижается вследствие процессов самоокисления.
Увеличение продолжительности процесса от и до / 4 сопровождается дальнейшим распадом и следовательно, уменьшением количества биомассы в биологическом фильтре (кривые 2 и 3), зольность ее повышается. Этот участок III характеризует режим стабилизации биомассы , аналогичный режиму продолженной аэрации при очистке сточных вод с активным илом. При работе биологических фильтров в этом режиме можно получить наименьший прирост биопленки, высокую степень минерализации выносимой из биологического фильтра избыточной биопленки, что позволяет облегчить дальнейшую ее обработку. Стабилизированная избыточная биомасса, выносимая из биологических фильтров, работающих в этом режиме, не требует дополнительного сбраживания и может быть сразу направлена на иловые площадки для подсушивания.
Концентрация загрязнений сточных вод на участке III не только не снижается по сравнению с концентрацией загрязнений на участке II, но и может даже несколько увеличиваться (кривая 1 ) за счет вторичного загрязнения очищенной жидкости продуктами распада биомассы. В конце участка III при продолжительности процесса Ц в биологическом фильтре развиваются микроорганизмы, адаптированные к остаточным трудноокисляемым загрязнениям сточных вод, что обусловливает дальнейшее снижение концентрации загрязнений.
Участок IV характеризует работу биологических фильтров в режиме доочистки сточных вод до величины остаточных загрязнений по ВПК Ь й = 15...5 мг/л. В этом режиме прирост биомассы крайне незначительный, зольность избыточной биомассы высокая, процесс нитрификации протекает интенсивно.
Рассмотренный ход процесса очистки сточных вод на биологических фильтрах на контакте иллюстрирует возможность работы этих сооружений в различных режимах, а их режим работы, принятый на основании местных условий и требуемого качества очищенных сточных вод, обусловливает выбор конструкции этих сооружений, технологических параметров их работы, схемы всей очистной станции.
Основные технологические параметры, определяющие режим работы биологических фильтров: нагрузка по органическим загрязнениям, окислительная мощность, гидравлическая нагрузка, средняя продолжительность протока сточных вод, коэффициент рециркуляции, расход подаваемого воздуха.
измеряется количеством органических загрязнений, подаваемых вместе со сточными водами на биологический фильтр в единицу времени, и является основным показателем, определяющим режим и условия биологического процесса (см. рис. 2.2). Обычно пользуются удельной нагрузкой по БПК полн, отнесенной к 1 м 3 объема биологического фильтра: N - Ь еп QJW, где N - удельнаянагрузка по БПК П0Л11 , г/сут-м 3 ; Ь еп - БПК полн исходных сточных вод, г/м 3 ; 0^, - расход сточных вод, м 3 /сут; ]Г- объем биологического фильтра, м 3 .
Для сравнения режимов работы биологических фильтров удельную нагрузку правильнее определять на единицу площади поверхности биопленки или площади поверхности фракций загрузки: Ы = Ь е „ 0,^ а, где - удельная нагрузка, г/сут-м 2 ; /в - площадь поверхности загрузки, м 2 .
Окислительную мощность, или производительность биологического фильтра по количеству изъятых органических загрязнений в процессе очистки сточных вод, выражают в граммах БПК полн на 1 м 3 загрузки в сутки: ОМ = (Ь еп ~ ()*/№, где ОМ - окислительная мощность, г/сут-м 3 ; А^-БПКполн очищенных сточных вод, г/м 3 .
- количество сточных вод, поступающих на биологический фильтр, отнесенное к 1 м 2 площади сооружения в плане: ц - ()„/Г, где q - гидравлическая нагрузка, м 3 /м 5 -сут; площадь биологического фильтра, м 2 .Средняя продолжительность протока сточных вод через биологический фильтр Г со зависит от гидравлической нагрузки, высоты биологического фильтра, способа подачи сточных вод на поверхность загрузки, типа загрузки и распределения в ней биопленки. Величина г ср является показателем продолжительности процесса очистки сточных вод в биологическом фильтре. При повышении гидравлической нагрузки увеличивается скорость движения жидкости через биологический фильтр и уменьшается продолжительность протока; с увеличением высоты биологического фильтра увеличивается продолжительность пребывания сточных вод в загрузке. Загрузка, а также закрепленная на ней биопленка, оказывая сопротивление движению протекающей жидкости, тем самым определяют путь, по которому движется поток жидкости, а следовательно, влияют на продолжительность протока.
Коэффициент рециркуляции - отношение расхода рециркулируемой очищенной жидкости к общему расходу исходных сточных вод, поступающих на биологический фильтр, п = (2и-
Рециркуляция, т.е. повторный пропуск части очищенной ЖИДкости через биологический фильтр, позволяет увеличить продолжительность процесса очистки, снизить начальную концентрацию загрязнений исходных сточных вод и повысить гидравлическую нагрузку, обеспечивающую промывку загрузки сооружения в процессе его работы. Коэффициент рециркуляции принимают в зависимости от предельно допустимой концентрации загрязнений по БПК полн смеси исходных и рециркулируемых сточных вод, которую можно направить на биологический фильтр без опасений заиливания пор загрузки в результате прироста биопленки. Коэффициент рециркуляции определяют по формуле п = (L en - L mix)/ (L mix - L ex ), где L mix -БПК п0ЛН смеси исходных и рециркулируемых сточных вод, г/м 3 .
Количество кислорода, требуемое для окисления органических загрязнений сточных вод микроорганизмами биопленки, должно обеспечиваться подачей в тело биологического фильтра соответствующего количества воздуха. Недостаток кислорода замедляет скорость биологического процесса. Однако влияние количества подаваемого воздуха на скорость процесса очистки сказывается только до тех пор, пока процесс не будет полностью обеспечен требуемым количеством кислорода. Если достаточный воздухообмен в поровом пространстве загрузки биологических фильтров не обеспечивается естественной вентиляцией, то предусматривают принудительную подачу воздуха.
Наиболее важным конструктивным элементом биологического фильтра является загрузка. Тип и характеристика загрузки существенно влияют на протекание процесса очистки сточных вод. Загрузка биофильтра характеризуется следующими основными параметрами: высотой слоя, удельной площадью поверхности, пористостью и плотностью загрузки. Высота слоя загрузки, или рабочая высота биологического фильтра, определяет наравне с другими параметрами продолжительность пребывания сточных вод в биологическом фильтре.
От удельной площади поверхности загрузки зависит и общая площадь поверхности закрепленной на ней биопленки, а следовательно, и площадь, через которую осуществляется перенос органических загрязнений из жидкости, обтекающей загрузку, к бактериальным клеткам. Как правило, процесс массо-переноса является фактором, лимитирующим скорость изъятия загрязнений, и потому от площади поверхности загрузки в значительной мере зависит окислительная мощность биологического фильтра.
Следует отметить, что для процесса очистки сточных вод важным является площадь поверхности биопленки, а не общее количество биомассы в загрузке. При накоплении биомассы увеличивается толщина биопленки, а активно работающим остается по-прежнему только наружный аэробный слой. Внутри, у поверхности загрузки, образуется анаэробная зона (рис. 2.1а), которая почти не участвует в процессе изъятия и окисления загрязнений. Увеличение количества биомассы уменьшает объем порового пространства загрузки, затрудняет воздухообмен в биологическом филыре, а также снабжение микроорганизмов кислородом воздуха. Пористость загрузки биологических фильтров должна быть такой, чтобы при установившемся режиме работы сооружения (когда количество биопленки в загрузке остается постоянным и ее прирост соответствует выносу) объехМ свободных пор был достаточен для снабжения биоплёнки кислородом воздуха.
Загрузку, применяемую для биологических фильтров, условно можно разделить на два вида: объемную и плоскостную. В качестве объемной загрузки используют щебень, гравий прочных горных пород, кокс, керамзит и другие материалы, характеризуемые определенной крупностью фракций, механической прочностью и стойкостью к разрушению . Такой материал имеет пористость 40...50 %, плотность 500... 1500 кг/м 3 , удельную поверхность в зависимости от размера фракций загрузки 30... 120 м 2 /м 3 .
В качестве плоскостной загрузки применяют листовой материал (пластмассу, асбестоцемент и др.), мягкие рулонные материалы (пластмассовую пленку, синтетические ткани), а также засыпные элементы (кольца, отрезки труб и др.). Загрузку из листовых материалов выполняют в виде различных блоков и кассет, которые укладывают в тело биологического фильтра, мягкие рулонные материалы закрепляют на каркасах или свободно подвешивают.
Пористость плоскостной загрузки из листовых материалов составляет 80...97 %, из рулонных материалов - 94...99, из засыпных элементов - 70...90 %. Удельная поверхность листовой и рулонной загрузки - 80... 130 м 2 /м 3 , засыпной - 70... 100 м 2 /м 3 , плотность листовой загрузки 40-100 кг/м 3 , рулонной - 5.. .60 кг/м 3 , засыпной- 100...600 кг/м 3 .
Применение плоскостной загрузки позволяет упростить конструкцию биологического фильтра, снизить строительные и монтажные расходы.
Для начала необходимо разобраться с тем, что представляет собой биологический фильтр. Итак, биофильтр – это специальных резервуар, который обеспечивает фильтрацию сточных вод посредством специального загрузочного материала, покрытого биологической пленкой, состоящей из колоний различных микроорганизмов.
Следует отметить, что непрерывная вентиляция атмосферного воздуха через загрузку фильтра возможно за счет разницы в температурах между сточными водами и воздухом. Именно так обеспечивается тот уровень концентрации кислорода, который необходим для жизнедеятельности микроорганизмов.
Какие бывают биофильтры?
Одной из важнейших составных частей биофильтра можно считать загрузочный материал. По его типу все биофильтры для очистки сточных вод можно разделить на:
1. Фильтры с объемной нагрузкой (для них характерно широкое использование щебня прочных горных пород, гальки, шлака и керамзита);
2. Фильтры с плоскостной нагрузкой (в данном случае необходимо применения пластмасс, которые способны выдерживать температуру 6-30 градусов по Цельсию, и при этом не потерять свою прочность).
Также биофильтры можно классифицировать на:
1. Двухступенчатые, которые могут обеспечить высокую степень очистки сточных труб в том случае, когда увеличить высоту устройства невозможно;
2. Биофильтры с капельным типом фильтрации. Хоть они и обладают низкой производительностью, но именно данный вид может обеспечить полную очистку вод.
Для всех биофильтров, независимо от их конструкции, характерно наличие следующих составных частей:
1. Фильтрующая нагрузка, которая также является телом фильтра. Она состоит из щебня, керамзита, гравия, шлака и пластика. Обычно она помещается в специальном резервуаре, стенки которого как водопроницаемы, так и водонепроницаемы;
2. Водораспределительное устройство, которое обеспечивает равномерность орошения сточными водами поверхности загрузки биологического фильтра;
3. Дренажное устройство, с помощью которого происходит удаление сточной воды;
4. Воздухораспределительное устройство, которое обеспечивает бесперебойное попадание в систему биофильтра потоков воздуха, с участием которого происходит окислительный процесс.
Также несколько слов необходимо сказать и о биопленке, которая способствует разложению органических веществ для их дальнейшего использования в качестве дополнительного источника энергии м питания. Омертвевшая биопленка в процессе дальнейшей эксплуатации биофильтра отслаивается, смывает протекающей сточной водой и в дальнейшем выносится из оборудования для очистки сточных вод. Для того, чтобы обеспечить загрузку биофильтра, к использованию рекомендуются материалы, характеризующиеся высокой пористостью, малой плотностью и высокой удельной поверхностью. К ним, в первую очередь, относятся щебень, шлак, керамзит, гравий, металл и различные пластиковые сетки, которые обычно скручивают в специальные рулоны. Также следует отметить, что функции биопленки идентичны функциям активного ила: она успешно адсорбирует и перерабатывает биологические вещества, находящиеся в сточных водах.
Механизм действия биофильтра
После того, как сточные вода прошли свою первичную механическую очистку в отстойнике, где удаляются тяжелые фракции загрязняющих веществ, они попадают в секцию биологической очистки. Она осуществляется следующим образом: загрязненная вода при прохождении через фильтрующую нагрузку оставляет на ней все примеси, которые не смогли образовать осадок на уровне первичного отстойника. Также на ней остаются различные коллоидные и растворенные органические вещества, которые сорбируются биологической пленкой.
Далее колонии микроорганизмов, которые питались веществами органического происхождения, получают новый источник энергии для продолжения своей жизнедеятельности. Часть органических веществ будут использованы микроорганизмами как материал для увеличения их численности. Так обеспечивается одновременно и очистка сточных вод, и рост численности микроорганизмов в колонии. Кислород, без которого невозможен данный биохимический процесс, поступает в загрузку путем естественной и искусственной вентиляции фильтра.
На эффективность очистки сточных вод с помощью биофильтра оказывают влияние следующие факторы:
- Биологическая потребность в кислороде (БПК) сточной воды, которая проходит процесс очищения;
- Природа загрязнения веществ;
- Скорость окислительных реакций;
- Интенсивность дыхания микроорганизмов;
- Толщина используемой биопленки;
- Состав веществ, обитающих в биопленке;
- Температура сточных вод, которые проходят через биофильтр.
Капельные биофильтры
Данный вид биофильтров характеризуется тем, что сточная вода подается в виде капель или струй. Для обеспечения вентиляции воздуха предусмотрены открытая крыша фильтра для очистки сточных вод и дренаж. Такой вид биофильтров характеризуется низкой нагрузкой по воде.
Принцип работы капельных биофильтров следующий: после прохождения сточной воды через первичный отстойник, она осветляется и поступает в распределительное устройство, из которого она периодически напускается на поверхность биофильтра. Вода, профильтрованная при помощи биофильтра, попадает в дренаж, откуда вытекает к специальным отводным лоткам, расположенным за пределами устройства. После этого вода попадает во вторичные отстойники, где происходит отделение выносимой пленки от уже очищенной воды.
Следует отметить, что если сделать нагрузку на поверхность биофильтра выше допустимой, то поверхность биофильтров данного вида быстро заиливается, что приводит к ухудшению их работы. Также капельные биофильтры чаще всего проектируются круглой или прямоугольной формы, со сплошными стенками и двойным дном. Верхнее дно изготавливается в виде колосниковой решетки, а нижнее является сплошным. Расстояние между доньями равно 0,6 метров, что дает возможность специалистам периодически проводить осмотр устройства.
Высоконагружаемые биофильтры (аэрофильтры)
Главное отличие данного вида биофильтров от капельных в первую очередь состоит в повышенной окислительной мощности. Она в первую очередь обусловлена лучшим обменом воздуха и неспособностью загрузки заиливаться. Это достигается с помощью использования специального загрузочного материала с показателем крупности, равным 40-70 мм, а также увеличением высоты работы нагрузки и ее гидравлики.
Материалом загрузки чаще всего выступают антрацит, песок, сланец, пемза, обычных диаметр частиц которых колеблется от 4 до 8 миллиметров. По направлению потока сточной воды, которая подверглась обработке, биофильтры делятся на восходящие и нисходящие. Фильтрование сточных вод достигается за счет рециркуляции допустимой смеси поступающей и циркулируемой сточной воды, которая подается в биофильтр.
Для чего используется плоскостная загрузка в биофильтрах?
В первую очередь, она обеспечивает пропускную способность биофильтров, пористость которой увеличивается до 70-90 %. Следует отметить, что биофильтр с плоскостной загрузкой чаще всего устанавливают в помещении. Также многие специалисты уже давно установили, что качество очищенной воды с помощью биофильтра данного типа практически приравнивается к качеству очищенной сточной воды, которая была достигнута с помощью специальных установок, которые обеспечивают полное биологическое окисление с активным илом.
У данного метода есть один недостаток: фильтрация сточных вод происходит по причине необходимости 20-кратной рециркуляции. Это объясняется тем, что снабжение кислородом осуществляется по причине насыщения ем жидкости в период орошения загрузки биофильтра. Следует отметить, что биофильтры с плоскостной нагрузкой обладают большой производительностью и эффективностью, чем другие виды биофильтров.
Биологический фильтр -- сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:
а)фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
б)водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;
в) дренажного устройства для удаления отфильтровавшейся воды;
г)воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.
Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.
Проходя через загрузку биофильтра, загрязненная вода оставляет в ней не растворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, абсорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.
Классификация биофильтров
Биофильтры классифицируются по различным признакам.
1. По степени очистки --на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.
2. По способу подачи воздуха -- на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.
3. По режиму работы -- на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках -- на неполную очистку.
4. По технологической схеме -- на биофильтры одноступенчатые и двухступенчатые. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.
Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.
5. По пропускной способности -- на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоко-нагружаемые).
6. По конструктивным особенностям загрузочного материала -- на биофильтры с объемной загрузкой и с плоскостной загрузкой.
Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20--30 мм и высоту слоя загрузки 1--2 м;
высоко нагружаемые биофильтры, имеющие крупность загрузочного материала 40--60 мм и высоту слоя загрузки 2--4 м;биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60--80 мм и высоту слоя загрузки 8--16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100--600 кг/м8, пористость 70--90%, высота слоя загрузки 1--6 м;биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40-- 100 кг/м3, пористость 90--97%, высота слоя загрузки 2--16 м. Плотность асбестоцементной загрузки 200--250 кг/м3, пористость 80--90%, высота слоя загрузки 2--6 м;биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5--60 кг/м3, пористость 94--99%, высота слоя загрузки 3--8 м.
К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6--3 м. Расстояние между дисками 10--20 мм, частота вращения вала с дисками 1--40 мин-1.
Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой-- до 50 тыс. м3/сутки, погружные биофильтры -- для малых расходов до 500 м3/сутки.
Союзводоканалниипроектом составлен экспериментальный проект биофильтров пропускной способностью 200--1400 м3/сутки с загрузкой из пеностекольных блоков 375X375 мм, из гофрированных листов полиэтилена размером 500X500 мм типа «сложная волна» и асбестоцементных листов размером 974X2000 мм.
Основные типы биофильтров
Капельные биофильтры. В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха происходит через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде; обычно она колеблется от 0,5 до 1 м3 воды на 1 м3 фильтра.
Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, отфильтровавшаяся через толщу биофильтра, попадает в дренажную систему и далее по сплошному непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых выносимая пленка отделяется от очищенной воды.
При нагрузке по загрязнениям больше допустимой поверхность капельных биофильтров быстро заиливается, и работа их резко ухудшается.
Проектируются они круглыми или прямоугольными в плане со сплошными стенками и двойным дном: верхним в виде колосниковой решетки и нижним -- сплошным.
Высота между донного пространства должна быть не менее 0,6 м для возможности периодического его осмотра. Дренаж биофильтров выполняют из железобетонных плит, уложенных на бетонные опоры. Общая площадь отверстий для пропуска воды в дренажную систему должна составлять не менее 5--8% площади поверхности биофильтров. Во избежание заиливания лотков дренажной системы скорость движения воды в них должна быть не менее 0,6 м/с.
Уклон нижнего днища к сборным лоткам принимается не менее 0,01, продольный уклон сборных лотков (максимально возможный по конструктивным соображениям) -- не менее 0,005.
Стенки биофильтров выполняются из сборного железобетона и возвышаются над поверхностью загрузки на 0,5 м для уменьшения влияния ветра на распределение воды по поверхности фильтра. При наличии дешевого загрузочного материала и свободной территории небольшие биофильтры можно устраивать без стенок; фильтрующий материал в этом случае засыпается под углом естественного откоса. Наилучшими материалами для засыпки биофильтров являются щебень и галька.
Все примененные для загрузки естественные и искусственные материалы должны удовлетворять следующим требованиям: при плотности до 1000 кг/м3 загруженный материал в естественном состоянии должен выдерживать нагрузку на поперечное сечение не менее 0,1 МПа, не менее 10 циклов испытаний на морозостойкость; кипячение в течение 1 ч в 5%-ном растворе соляной кислоты; материал не должен получать заметных повреждений или уменьшаться в весе более чем на 10% первоначальной загрузки биофильтров; загрузка биофильтров по высоте должна быть одинаковой крупности, и только для нижнего поддерживающего слоя высотой 0,2 м следует применять более крупную загрузку (диаметром 60--100 мм).
Высоко нагружаемые биофильтры . В начале текущего столетия появились биофильтры, которые у нас в стране получили название аэрофильтры, а за рубежом -- биофильтры высокой нагрузки. Отличительной особенностью этих сооружений является более высокая, чем в обычных капельных биофильтрах, окислительная мощность, что обусловлено незаиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря более крупному загрузочному материалу и повышенной в несколько раз нагрузке по воде.
Повышенная скорость движения сточной воды обеспечивает постоянный вынос задержанных трудно окисляемых нерастворимых примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела фильтра.
В СССР конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции.
Конструктивными отличиями высоко нагружаемых биофильтров являются большая высота слоя загрузки, большая крупность ее зерен и особая конструкция днища и дренажа, обеспечивающая возможность искусственной продувки материала загрузки воздухом.
Между донное пространство должно быть закрытым, и туда подается вентиляторами воздух. На отводных трубопроводах должны быть предусмотрены гидравлические затворы глубиной 200 мм.
Особенностями эксплуатационного характера являются необходимость орошения всей поверхности биофильтра с возможно малыми перерывами в подаче воды и поддержание повышенной нагрузки по воде на 1 м2 площади поверхности фильтра (в плане). Только при этих условиях обеспечивается промывка фильтров.
Высоко нагружаемые биофильтры могут обеспечить любую заданную степень очистки сточных вод, поэтому применяются как для частичной, так и для полной их очистки.
Как показали исследования, в одинаковых условиях (одинаковая высота и крупность загрузки, характер загрязнений, степень очистки сточных вод и т. д.) высоко нагружаемые биофильтры по сравнению с капельными имеют большую пропускную способность по объему пропускаемой через них воды, а не по количеству переработанных (окисленных) загрязнений. Повышенная же эффективность этих биофильтров по извлечению из сточных вод загрязняющих веществ достигается при увеличении высоты слоя загрузки, увеличении крупности зерен загрузки и лучшем воздухообмене.
Башенные биофильтры . Эти биофильтры имеют высоту 8--16 м и применяются для очистных станций пропускной способностью до 50 000 м3/сутки при благоприятном рельефе местности и при БПКго очищенной воды 20--25 мг/л. В отечественной практике они распространения не получили.
Вентиляция биофильтров
Естественная вентиляция в биофильтрах происходит вследствие разницы температур наружного воздуха и тела биофильтра.
Основная масса воздуха поступает в тело биофильтра через между донное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то устанавливается восходящий (от дренажа к поверхности) поток воздуха, при обратном соотношении---нисходящий; при равенстве температур вентиляция может совсем прекратиться. Интенсивность вентиляции биофильтров зависит также от высоты слоя фильтрующей загрузки, размеров ее зерен и высоты между донного пространства. Чем мельче загрузка, тем хуже условия вентиляции.
Исследования, проведенные Н.А. Базякиной, показали, что объем кислорода воздуха, используемого в биофильтрах, как и в других сооружениях биологической очистки, не превышает 7--8%.
Температура внутри биофильтра не должна быть ниже 6° С, иначе окислительный процесс практически прекращается.
В установках большой и средней пропускной способности необходимая температура поддерживается вследствие постоянного притока сточных вод, температура которых почти всегда выше 8° С. Поэтому такие фильтры обычно не требуют утепления. Небольшие фильтры, как уже отмечалось, приходится размещать в утепленных помещениях во избежание их переохлаждения, особенно в ночное время, когда приток сточной воды уменьшается.
Распределение сточных вод по биофильтрам
Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение производится распределительными устройствами, которые подразделяются на две основные группы: неподвижные и подвижные.
К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным -- качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители).
В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение при помощи подвижных оросителей.
Спринклерное орошение . Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров.
Спринклеры (спринклерные головки) -- специальные насадки, надетые на концы стояков, которые ответвляются от водораспределительных труб, уложенных на поверхности или в теле биофильтра. Отверстия спринклерных головок невелики -- обычно 19, 22 и 25 мм. Во избежание коррозии спринклеры изготовляют из бронзы или из латуни.
Достоинством головки этого типа является, то, что опора, к которой прикреплен отражательный обратный конус, находится в стороне от движущейся струи и не мешает ее действию.
Дозирующий бак автоматически подает воду в спринклерную сеть под постоянным напором. Продолжительность опорожнения бака (период орошения), зависящая в основном от вместимости бака и размеров выпускаемой трубы, всегда одинакова; продолжительность же наполнения бака зависит только от притока сточных вод, который колеблется в течение суток. Поэтому орошение биофильтра производится периодически, через неровные по продолжительности интервалы. Во избежание сильного охлаждения не обогреваемых биофильтров интервал между орошением не должен превышать 5--8 мин.
При большой площади биофильтры разделяются на секции с самостоятельными распределительными сетями и отдельными дозирующими баками.
В отечественной практике наибольшее распространение получил дозирующий бак с сифоном. Преимущество его перед другими состоит в том, что он совершенно не имеет движущихся частей.
Выпускная труба из дозирующего бака представляет собой сифон, верхний срез которого возвышается над дном бака. Внутри дозирующего бака расположен опрокинутый стакан, установленный на подставках и не доходящий до дна бака. К стакану в верхней его части присоединены две трубки: одна из них -- воздушная трубка -- заканчивается открытым концом в баке, другая трубка, представляющая собой вентиляционный затвор, или регулятор напора, заканчивается открытым концом, выведенным выше максимального уровня воды в баке. Кроме того, регулятор напора присоединен патрубком к главной выпускной трубе. В верхней части бака имеется переливная труба, диаметр которой принимается в соответствии с притоком воды в бак.
Действие автоматического сифона заключается в следующем. Вначале вода в баке стоит на низшем уровне А, соответствующем нижнему колену воздушной трубки. В сифоне вода в это время стоит на уровне выходного отверстия спринклеров; регулятор напора заполнен водой до уровня на котором он присоединен к стакану. По мере поступления воды горизонт ее в баке повышается, причем давление под стаканом и в отводной трубе остается равным атмосферному до тех пор, пока уровень ее не дойдет до отверстия воздушной трубки. После этого выход воздуха из-под стакана прекращается и воздушное давление в нем по мере заполнения бака начинает возрастать.
Когда горизонт воды в баке достигнет наивысшего уровня, а горизонт воды под стаканом достигнет верхнего края отводной трубы, уровень воды в регуляторе напора упадет до нижнего его колена В2, а в главном сифоне -- до уровня Б2> также почти у нижнего колена. При этом давление воздуха под стаканом, в главной трубе сифона и в регуляторе напора будет равно высоте столба воды. В следующий момент гидравлический затвор в регуляторе напора прорвется, давление под стаканом упадет до атмосферного, вследствие чего вода из бака устремится в главную трубу и будет вытекать из нее до тех пор, пока горизонт в баке не упадет до уровня А нижнего колена воздушной трубки. Как только через нее воздух проникнет под стакан, действие сифона приостановится, причем колено регулятора напора, засасывающего во время действия сифона воду из главной отводной трубы, останется заполненным водой.
Для регулирования наивысшего уровня воды в баке, при котором начинают действовать сифоны, верхнюю часть регулятора напора делают подвижной на сальниках; поднимая или опуская переливной патрубок регулятора напора, можно установить начало действия сифона как раз в тот момент, когда уровень воды под стаканом дойдет до края выпускной трубы. Отводную трубу от бака можно устраивать с гидравлическим затвором и без него. Диаметр сифона равен диаметру разводящей трубы. Внутренний диаметр колокола принимают равным двум диаметрам трубы сифона, но он может быть и больше.
По мере вытекания воды из бака радиус действия спринклера, зависящий от напора, постепенно уменьшается и таким образом орошается вся площадь круга вокруг спринклера. Для более равномерного распределения воды по орошаемой площади дозирующему баку придают такую форму, при которой площадь его горизонтальных сечений на различных уровнях пропорциональна расходу воды из бака в данный момент. Этому требованию с достаточным приближением удовлетворяет форма опрокинутой усеченной пирамиды. Площадь нижнего ее сечения назначают в зависимости от размера выходной трубы; площадь верхнего сечения (соответствующего уровню воды при максимальном напоре) определяется из указанного соотношения.
Расчет водораспределительной системы сводится к определению расхода воды из каждого разбрызгивателя (спринклера), определению необходимого их числа, диаметра разводящей сети, емкости и времени работы дозирующего бака.
Распределительную сеть укладывают или на специальные столбы, или прямо на фильтрующую загрузку на глубине 0,7--0,8 м от поверхности биофильтра. Сеть укладывают с уклоном с тем, чтобы ее можно было опорожнить в случае необходимости. В конце каждой трубы целесообразно иметь пробку, через которую можно было бы промыть трубопровод чистой водой. Спринклерные головки устанавливают обычно на 0,15 м выше поверхности загрузки фильтра.
Реактивные вращающиеся водораспределители (оросители). Вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке.
Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг своей вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, распределитель вращается.
Такие реактивные оросители получили большое распространение за рубежом (в Англии, ФРГ и Чехословакии) и вполне себя оправдали. У нас они применяются на очистных станциях во многих городах (Харькове, Славянске, Шереметьеве, Владимире и др.).
Союзводоканалниипроектом разработаны типовые проекты вращающихся оросителей для биофильтров диаметром 15, 21, 27 и 29 м.
Для приведения в действие реактивного оросителя необходим сравнительно небольшой напор (0,2--1 м), что является одним из достоинств этого устройства. Кроме того, при реактивных оросителях отпадает необходимость в устройстве дозаторов.
Диаметр отверстий в радиально расположенных трубах обычно колеблется от 10 до 15 мм; расстояние между отверстиями увеличивается от периферии к центру, что обеспечивает более равномерное орошение биофильтра.
Биофильтры с загрузкой из пеностекла или пластмассы
Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло - это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших пор- 200 кв.м/куб.м. Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод. Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя. Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.
Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежания этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.
Биодисковые фильтры
Эти сооружения предназначены для расхода сточных вод до 1000 куб.м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла). Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой. Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30--45 %), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки. Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы. При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов. Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны. Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40 %, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка. Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.
Биофильтраторы
Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб.м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода.Биофильтратор состоит из аэрационной (сорбционной) зоны и зоны осветления. В сорбционной зоне установлены вращающиеся перфорированные диски из пенопласта или подобных материалов. Диски вращаются мотор-редукторм с частотой вращения 10-15 об/мин. За счет градиента давления жидкость и отторгнутая биопленка переливаются через отверстие, устроенное в разделительной перегородке. Укрупненные хлопья активного ила из зоны осветления опускаются вниз и через отверстия подсасываются в аэрационную зону за счет кинематики течения. Таким образом, происходит постоянный обмен биомассы между зонами сорбции и осветления. Очищаемая жидкость поднимается к лотку и отводится за пределы сооружения. Для интенсификации биотехнологии в биофильтре используется струйная аэрация, что позволяет исключить механическую систему привода мотор-редуктор. Такой метод очистки применяется дла расходов сточных вод от 0,5 до 1,5 куб.м в сутки и более, с загрузкой от низких до высоких значений концентрации биоразделяемых соединений (БПК). Струйный биофильтр работает следующим образом. Сточные воды, прошедшие механическую очистку, попадают в аэрационную зону, куда также поступает смесь осветленной жидкости и циркуляционного активного ила. Эта смесь из нижней части осветляется забирается по трубопроводу насосом и через струйный аэратор шахтного типа сбрасывается в аэрационную зону биофильтра. Струя потока вводится в межсекционное пространство (Рис. 4) ниже свободной поверхности на 15-30 см и отражается от специально спланированной поверхности дна. В результате возникают интенсивные воздушные восходящие потоки, которые приводят к движению биоротора. После контакта очищаемой жидкости в аэрационной зоне смесь или и сточной воды поступает на осветление. Зона осветления разделена на три отсека. В дегазационно-отстойной зоне при низходящем потоке отделяются выносимые из аэрационной зоне пузырьки газа малых размеров. Здесь укрупненные частицы ила осаждаются на дно отстойника и возвращаются в аэрационную систему. Далее смесь поступает во вторую зону отстаивания, где происоходит основной процесс разделения твердой и жидкой фаз с образованием взвешенного слоя, углубляющего процесс биофильтрации. Из этой зоны укрупненные хлопья активного ила также поступают в камеру аэрации. В последующем отделении обеспечивается окончательная очистка сточных вод. Вторая зона отстаивания работает в режиме отстойника. Осаждающиеся хлопья активного ила по стенке емкости сползают в зону их забора насосным агрегатом. Осветленные сточные воды через сбросный лоток отводятся на обеззараживание.