Водородные топливные элементы характеристики. Топливные элементы: виды и принцип работы

Главная / Фундамент

Универсальный источник энергии для всех биохимических процессов в живых организмах, одновременно создавая разность электрических потенциалов на своей внутренней мембране. Однако копирование этого процесса для получения электроэнергии в промышленных масштабах затруднительно, так как протонные помпы митохондрий имеют белковую природу.

Устройство ТЭ

Топливные элементы - это электрохимические устройства, которые теоретически могут иметь высокий коэффициент преобразования химической энергии в электрическую .

Принцип разделения потоков горючего и окислителя

Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент) или метанол и кислород воздуха. В отличие от топливных элементов, одноразовые гальванические элементы и аккумуляторы содержат расходуемые твёрдые или жидкие реагенты, масса которых ограничена объёмом батарей, и, когда электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы запустить обратную химическую реакцию, или по крайней мере в них нужно поменять израсходованные электроды и загрязнённый электролит. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая их «отравлением» побочными продуктами недостаточно чистых исходных веществ.

Пример водородно-кислородного топливного элемента

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом ») содержит протонопроводящую полимерную мембрану, которая разделяет два электрода - анод и катод . Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором - платиной или сплавом платиноидов и др. композиции.

Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами , компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода) образуют устройство для хранения энергии.

Мембрана

Мембрана обеспечивает проводимость протонов , но не электронов . Она может быть полимерной (Нафион (Nafion), полибензимидазол и др.) или керамической (оксидной и др.). Впрочем, существуют ТЭ и без мембраны .

Анодные и катодные материалы и катализаторы

Анод и катод, как правило, - это просто проводящий катализатор - платина, нанесенная на высокоразвитую углеродную поверхность.

Типы топливных элементов

Основные типы топливных элементов
Тип топливного элемента Реакция на аноде Электролит Реакция на катоде Температура, °С
Щелочной ТЭ 2 H 2 + 4 OH − → 2 H 2 O + 4 e − Раствор КОН O  2 + 2 H 2 O + 4 e − → 4 OH − 200
ТЭ с протонно-обменной мембраной 2 H 2 → 4 H + + 4 e − Протоннообменная мембрана 80
Метанольный ТЭ 2 CH 3 OH + 2 H 2 O → 2 CO 2 + 12 H + + 12 e − Протоннообменная мембрана 3 O 2 + 12 H + + 12 e − → 6 H 2 O 60
ТЭ на основе ортофосфорной кислоты 2 H 2 → 4 H + + 4 e − Раствор фосфорной кислоты O 2 + 4 H + + 4 e − → 2 H 2 O 200
ТЭ на основе расплавленного карбоната 2 H 2 + 2 CO 3 2− → 2 H 2 O + 2 CO 2 + 4 e − Расплавленный карбонат O 2 + 2 CO 2 + 4 e − → 2 CO 3 2− 650
Твердотельный оксидный ТЭ 2 H 2 + 2 O 2 − → 2 H 2 O + 4 e − Смесь оксидов O 2 + 4 e − → 2 O 2 − 1000

Воздушно-алюминиевый электрохимический генератор

Воздушно-алюминиевый электрохимический генератор использует для производства электроэнергии окисление алюминия кислородом воздуха . Токогенерирующую реакцию в нем можно представить в виде

4 Al + 3 O 2 + 6 H 2 O ⟶ 4 Al (OH) 3 , {\displaystyle {\ce {4 Al + 3 O_2 + 6 H_2O -> 4 Al(OH)_3,}}} E = 2 , 71 V , {\displaystyle \quad E=2,71~{\text{V}},}

а реакцию коррозии - как

2 Al + 6 H 2 O ⟶ 2 Al (OH) 3 + 3 H 2 ⋅ {\displaystyle {\ce {2 Al + 6 H_2O -> 2 Al(OH)_3 + 3 H_2.}}}

Серьёзными преимуществами воздушно-алюминиевого электрохимического генератора являются: высокий (до 50 %) коэффициент полезного действия , отсутствие вредных выбросов, простота обслуживания .

Преимущества и недостатки

Преимущества водородных топливных элементов

Компактные размеры

Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива . Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [ ] Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Проблемы топливных элементов

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью , долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Проблема отравления катализатора и долговечности мембраны решается созданием элемента с механизмами самовосстановления - регенерация ферментов-катализаторов [ ] .

Топливные элементы, в силу низкой скорости химических реакций, обладают значительной [ ] инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (суперконденсаторы , аккумуляторные батареи).

Также существует проблема получения и хранения водорода . Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора , во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Из простых химических элементов водород и углерод являются крайностями. У водорода самая большая удельная теплота сгорания, но очень низкая плотность и высокая химическая активность. У углерода самая высокая удельная теплота сгорания среди твёрдых элементов, достаточно высокая плотность, но низкая химическая активность из-за энергии активации. Золотая середина - углевод (сахар) или его производные (этанол) или углеводороды (жидкие и твёрдые). Выделяемый углекислый газ должен участвовать в общем цикле дыхания планеты, не превышая предельно допустимых концентраций.

Существует множество способов производства водорода , но в настоящее время около 50% водорода , производимого во всём мире, получают из природного газа . Все остальные способы пока очень дорогостоящие. Очевидно, что при неизменном балансе первичных энергоносителей, с ростом потребностей в водороде как в массовом топливе и развитию устойчивости потребителей к загрязнениям, рост производства будет расти именно за счёт этой доли, а с наработкой инфраструктуры, позволяющей иметь его в доступности, более дорогие (но более удобные в некоторых ситуациях) способы будут отмирать. Прочие способы, в которые водород вовлечён в качестве вторичного энергоносителя, неизбежно нивелируют его роль от топлива до своего рода химического аккумулятора. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт из-за этого неизбежно. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика , Производство водорода). Например, средняя цена электроэнергии в США выросла в г. до $0,09 за кВт·ч , тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04-$0,07 (см. Ветроэнергетика или AWEA). В Японии киловатт-час электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами . Учитывая территориальную удалённость некоторых перспективных областей (например, транспортировать полученную фотоэлектрическими станциями электроэнергию из Африки напрямую, по проводам, явно бесперспективно, несмотря на её огромный энергетический потенциал в этом плане), даже работа водорода как «химического аккумулятора» может быть вполне рентабельной. По данным на 2010 г. стоимость энергии водородного топливного элемента должна подешеветь в восемь раз, чтобы стать конкурентноспособной с энергией, производимой тепловыми и атомными электростанциями .

К сожалению, в водороде, произведённом из природного газа , будет присутствовать СО и сероводород , отравляющие катализатор . Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160 °C в топливе может присутствовать 1% СО.

К недостаткам топливных элементов с платиновыми катализаторами можно отнести высокую стоимость платины, сложности с очисткой водорода от вышеупомянутых примесей, и как следствие, дороговизну газа, ограниченный ресурс элемента вследствие отравления катализатора примесями. Кроме того, платина для катализатора - невозобновляемый ресурс. Считается, что её запасов хватит на 15-20 лет производства элементов .

В качестве альтернативы платиновым катализаторам исследуется возможность применения ферментов. Ферменты являются возобновляемым материалом, они дёшевы, не отравляются основными примесями в дешёвом топливе. Обладают специфическими преимуществами . Нечувствительность ферментов к СО и сероводороду сделала возможным получение водорода из биологических источников, например, при конверсии органических отходов.

История

Первые открытия

Принцип действия топливных элементов был открыт в 1839 г. английским ученым У. Гроувом , который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества . Свой прибор, где удалось провести эту реакцию, ученый назвал "газовой батареей", и это был первый топливный элемент. Однако в последующие 100 лет эта идея не нашла практического применения.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника . Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

История исследований в СССР и России

Первые исследования начались в -х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы . С 1987 года по «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран », исследовались щелочные AFC элементы. На «Буране » были установлены 10 кВт топливные элементы.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению 4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

В 2008 году была основана компания «ИнЭнерджи», которая занимается научно-исследовательскими и опытно-конструкторскими работами в области электрохимических технологий и систем электропитания. По результатам проведенных исследований, при кооперации с ведущими институтами РАН (ИПХФ, ИФТТ и ИХТТ), был реализован ряд пилотных проектов, показавших высокую эффективность. Для компании «МТС» была создана и введена в эксплуатацию модульная система резервного питания на базе водородно-воздушных топливных элементов, состоящая из ТЭ, системы управления, накопителя электроэнергии и преобразователя. Мощность системы до 10кВт.

Водородно-воздушные энергетические системы обладают рядом неоспоримых преимуществ, среди которых широкий температурный диапазон эксплуатации внешней среды (-40..+60С), высокий КПД (до 60%), отсутствие шума и вибраций, быстрый старт, компактность и экологичность (вода, как результат “выхлопа”).

Совокупная стоимость владения водородно-воздушных систем значительно ниже обычных электрохимических батарей. Кроме того, они обладают высочайшей отказоустойчивостью за счет отсутствия движущихся частей механизмов, не нуждаются в техническом обслуживании, а срок их эксплуатации достигает 15 лет, превосходя классические электрохимические батареи вплоть до пяти раз.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы , разработка которых сейчас активно ведётся, появятся, видимо, после 2016-го года.

Применение топливных элементов

Топливные элементы первоначально применялись только в космической отрасли, однако в настоящее время сфера их применения непрерывно расширяется. Их применяют в стационарных электростанциях, в качестве автономных источников тепло- и электроснабжения зданий, в двигателях транспортных средств, в качестве источников питания ноутбуков и мобильных телефонов. Часть этих устройств пока не покинула стен лабораторий, другие уже коммерчески доступны и давно применяются.

Примеры применения топливных элементов
Область применения Мощность Примеры использования
Стационарные установки 5-250 кВт и выше Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения
Портативные установки 1-50 кВт Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники
Транспорт 25-150 кВт Автомобили и другие транспортные средства, военные корабли и подводные лодки
Портативные устройства 1-500 Вт Мобильные телефоны, ноутбуки, карманные компьютеры, различные бытовые электронные устройства, современные военные приборы

Широко используются высокомощные энергетические установки на базе топливных элементов. В основном такие установки работают на основе элементов на базе расплавленных карбонатов, фосфорной кислоты и твёрдых оксидов. Как правило, такие установки используют не только для выработки электроэнергии, но и для получения тепла.

Большие усилия прилагаются для разработки гибридных установок, в которых высокотемпературные топливные элементы комбинируются с газовыми турбинами. КПД таких установок может достигать 74,6 % при усовершенствовании газовых турбин.

Активно выпускаются и маломощные установки на базе топливных элементов.

Техническое регулирование в области производства и использования топливных элементов

В 19 августа 2004 г. Международной электротехнической комиссией (International Electrotechnical Commission, IEC) был выпущен первый международный стандарт IEC 62282–2 «Технологии топливных элементов. Часть 2, Модули топливных элементов». Это был первый стандарт серии IEC 62282, разработка которой осуществляется Техническим комитетом «Технологии топливных элементов» (TC/IEC 105). В состав Технического комитета ТС/IEC 105 входят постоянные представители из 17 стран и наблюдатели из 15 стран мира.

TC/IEC 105 разработал и издал 14 международных стандартов серии IEC 62282, охватывающих широкий спектр тематики, связанной со стандартизацией энергоустановок на основе топливных элементов. Федеральное агентство по техническому регулированию и метрологии Российской Федерации (РОССТАНДАРТ) является коллективным членом Технического комитета ТС/IEC 105 на правах наблюдателя. Координационную деятельность с МЭК со стороны Российской Федерации осуществляет секретариат РосМЭК (Росстандарт), а работы по имплементации стандартов МЭК производятся национальным Техническим комитетом по стандартизации ТК 029 «Водородные технологии», Национальной ассоциацией водородной энергетики (НАВЭ) и ООО «КВТ». В настоящее время РОССТАНДАРТ принял следующие национальные и межгосударственные стандарты, идентичные международным стандартам IEC.


Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов .

Протон-проводящая полимерная мембрана разделяет два электрода - анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.


На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

расширенный диапазон эксплуатационных температур (-40 0 С / +40 0 С),

– отсутствие теплового пятна, шума и вибрации,

надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

высокая энергоемкость,

– толерантность к примесям в водороде,

длительный срок службы,

– экологичность и бесшумность работы.

Применение:

системы энергоснабжения для БПЛА,

портативные зарядные устройства,

источники бесперебойного питания,

другие устройства.

Водородный топливный элемент компании Nissan

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания достижений индустрии становится недостаточно, поэтому вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

Видео: Топливный водородный элементсвоими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».

Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). В

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Видео: Топливный элемент или вечная батарейка дома

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания

Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью — еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Видео: Автомобиль на водородном топливном элементе

Большие надежды возлагаются на применение нанотехнологий и наноматериалов , которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы

Ни кого уже не удивишь ни солнечными панелями, ни ветряками, которые во всех регионах мира вырабатывают электроэнергию. Но выработка от этих устройств не постоянна и приходится устанавливать резервные источники питания, либо подключаться к сети для получения электроэнергии в период, когда объекты ВИЭ не вырабатывают электроэнергию. Однако существуют установки, разработанные в 19 веке, которые используют «альтернативное» топливо для получения электроэнергии, т.е не сжигают газ или нефтепродукты. Такими установками являются топливные элементы.

ИСТОРИЯ СОЗДАНИЯ

Топливные элементы (ТЭ) или топливные ячейки были открыты еще в 1838-1839 году Уильямом Гроувом (Гроу, Грове), когда он изучал электролиз воды.

Справка: Электролиз воды - процесс разложения воды под действием электрического тока на молекулы водорода и кислорода

Отключив от электролитической ячейки батарею, он с удивлением обнаружил, что электроды начали поглощать выделившийся газ и вырабатывать ток. Открытие процесса электрохимического "холодного" горения водорода стало знаменательным событием в энергетике. В дальнейшем он создал аккумулятор Гроува. В этом устройстве был платиновый электрод, погруженный в азотную кислоту, и цинковый электрод в сульфате цинка. Он генерировал ток в 12 ампер и напряжение 8 вольт. Сам Гроу назвал эту конструкцию «мокрой батарейкой» . Затем он создал аккумулятор, используя два платиновых электрода. Один конец каждого электрода находился в серной кислоте, а другие концы запечатаны в контейнеры с водородом и кислородом. Между электродами был стабильный ток, внутри контейнеров увеличивалось количество воды. Гроу смог разложить и улучшить воду в этом устройстве.

«Аккумулятор Гроу»

(источник: Королевское сообщество Национального музея естественной истории)

Термин «топливный элемент» (англ. «Fuel Cell») появился лишь в 1889 году Л. Мондом и
Ч. Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

КАК ЭТО РАБОТАЕТ?

Топливный элемент — относительно простое устройство . В нем есть два электрода: анод (отрицательный электрод) и катод (положительный электрод). На электродах происходит химическая реакция. Чтобы ее ускорить, поверхность электродов покрывается катализатором. ТЭ оснащены еще одним элементом — мембраной. Превращение химической энергии топлива непосредственно в электричество, происходит благодаря работе именно мембраны. Она отделяет две камеры элемента, в которые подают топливо и окислитель. Мембрана позволяет проходить из одной камеры в другую только протонам, которые получаются в результате расщепления топлива, на электроде, покрытом катализатором (электроны при этом пробегают по внешней цепи). Во второй камере протоны воссоединяются с электронами (и атомами кислорода), образуя воду.

Принцип работы водородного топливного элемента

На химическом уровне процесс превращения энергии топлива в электрическую энергию схож с обычным процессом горения (окисления).

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива переходит в тепловую энергию. Посмотрим что происходи при окислении водорода кислородом в среде электролита и при наличии электродов.

Подавая водород к электроду, находящемуся в щелочной среде протекает химическая реакция:

2H 2 + 4OH - → 4H 2 O + 4e -

Как видно получим электроны, которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция:

4e- + O 2 + 2H 2 O → 4OH -

Видно, что результирующая реакция 2H 2 + O 2 → H 2 O - такая же, что и при обычном горении, но в топливном элементе получается электрический ток и частично тепло .

ВИДЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Классифицировать ТЭ принято по виду электролита использующемся для протекания реакции:

Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей - воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

КПД ТОПЛИВНОГО ЭЛЕМЕНТА

Особенностью топливных элементов является отсутствие жёсткого ограничения на КПД , как у тепловых машин.

Справка: КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами.

Поэтому КПД топливных элементов в теории может быть выше 100%. Многие улыбнулись и подумали «Вечный двигатель изобрели значит». Нет, тут стоит вернуться к школьному курсу химии. В основе топливного элемента лежит преобразование химической энергии в электрическую. Вот тут и возникают чудеса. Определённые химической реакции в процессе протекания могут поглощать теплоту из окружающей среды.

Справка: Эндотермические реакции — химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения (Δ H>0, Δ U>0), таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

Примером такой реакции может служить окисление водорода, которая и используется в большинстве топливных элементов. Поэтому теоретически КПД может больше 100%. Но сегодня топливные элементы в процессе работы нагреваются и не могут поглощать теплоту из окружающей среды.

Справка: Это ограничение накладывает второй закон термодинамики. Не возможен процесс передачи тепла от «холодного» тела к «горячему».

Плюс ко всему имеются потери, связанные с неравновесными процессами. Такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Поэтому топливные элементы не вечные двигатели и КПД их меньше 100%. Но их КПД больше, чем у остальных машин. Сегодня эффективность топливного элемента достигает 80% .

Справка: В сороковые годы английский инженер Т. Бэкон сконструировал и построил батарею топливных элементов общей мощностью 6 кВт и КПД 80 %, работающую на чистом водороде и кислороде, но отношение мощности к весу батареи оказалось слишком малым - такие элементы были непригодны для практического применения и слишком дорогими (источник: http://www.powerinfo.ru/).

ПРОБЛЕМЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Практически все топливные элементы в качестве топлива используют водород, так что возникает логичный вопрос: «Где его взять?»

Кажется, открыли топливный элемент в результате электролиза, вот и можно использовать водород выделившейся в результате электролиза. Но давайте разберем этот процесс подробнее.

Согласно закону Фарадея: количество вещества, которое окисляется на аноде или восстанавливается на катоде, пропорционально количеству электричества, прошедшего через электролит. Значит, чтобы получить больше водорода необходимо потратить больше электроэнергии. Существующие методы электролиза воды проходят с кпд меньше единицы. Затем полученный водород мы используем в ТЭ, где кпд также меньше единицы. Следовательно мы затратим энергии больше, чем сможем выработать.

Конечно, можно использовать водород, получаемый из природного газа. Этот способ получения водорода остается самым дешевым и популярным. В настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Но возникает проблема с хранением и транспортировкой водорода. Водород имеет маленькую плотность (один литр водорода весит 0,0846 гр ), поэтому чтобы транспортировать его на дальние расстояния его необходимо сжимать. А это дополнительные энергетические и денежные затраты. Так же не стоит забывать о безопасности.

Впрочем, тут тоже есть решение - в качестве источника водорода можно применять жидкое углеводородное топливо. Например, этиловый или метиловый спирт. Правда, тут уже требуется специальное дополнительное устройство - топливный преобразователь, при высокой температуре (для метанола это будет где-то 240°С) преобразующее спирты в смесь газообразных H 2 и CO 2 . Но в этом случае уже сложнее думать о портативности - такие устройства хорошо применять в качестве стационарных или автомобильных генераторов, а вот для компактной мобильной техники нужно что-нибудь менее громоздкое.

Катализатор

Для повышения протекания реакции в ТЭ поверхность анода обычно катализатором. До не давнего времени в качестве катализатора использовалась платина. Поэтому стоимость топливного элемента была высока. Во-вторых, платина относительно редкий металл. По мнению специалистов, при промышленном производстве топливных элементов разведанные запасы платины закончатся через 15-20 лет. Но ученые всего мира пытаются заменить платину на другие материалы. Кстати некоторые из них достигли неплохих результатов. Так китайские ученые заменили платину на окисел кальция (источник: www.cheburek.net).

ИСПОЛЬЗОВАНИЕ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Впервые топливный элемент в автотехники испытали в 1959 г. Трактор Элис-Чемберз, использовал для работы 1008 аккумуляторов. Топливом являлась смесь газов, в основном пропана и кислорода.

Источник: http://www.planetseed.com/

С середины 60-ых в разгар «космической гонки» топливными элементами заинтересовались создатели космических аппаратов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытаны в США на космическом корабле "Джемини-5", а в дальнейшем - на кораблях "Аполлон" для полетов на Луну и по программе "Шатл". В СССР топливные элементы разрабатывали в НПО "Квант", тоже для использования в космосе (источник: http://www.powerinfo.ru/).

Так как в топливном элементе конечным продуктом сгорания водорода является вода, то они считаются наиболее чистыми с точки зрения влияния на окружающую среду. Поэтому свою популярность ТЭ стали приобретать на фоне всеобщей заинтересованности в экологии.

Уже в настоящее время производители автомобилей, такие как «Honda», «Ford», «Nissan» и «Mercedes-Benz» создали автомобили работающие на водородных топливных элементах.

Mercedes-Benz - Ener-G-Force, работающий на водороде

При использовании автомобилей на водороде, решается проблема с хранением водорода. Строительство заправок с водородом позволит получить возможность заправки в любом месте. Тем более заправлять автомобиль водородом быстрее, чем заряжать электромобиль на заправке. Но при реализации подобных проектов столкнулись с проблемой как у электромобилей. Люди готовы «пересесть» на автомобиль на водороде, если будет инфраструктура для них. А строительство заправок начнется, если будет достаточное количество потребителей. Поэтому опять пришли к дилемме яйца и курицы.

Широкое применение топливные элементы нашли в мобильных телефонах и ноутбуках. Уже прошло то время когда телефон заряжали раз в неделю. Сейчас телефон заряжается, чуть ли не каждый день, а ноутбук без сети работает 3-4 часа. Поэтому производители мобильной техники решили синтезировать топливный элемент с телефонами и ноутбуками для зарядки и работы. Например, компания «Toshiba» в 2003г. продемонстрировала готовый прототип метанолового топливного элемента. Он дает мощность порядка 100мВт. Одной заправки в 2 кубика концентрированного (99,5%) метанола достаточно на 20 часов работы МРЗ-плеера. Опять же, та же «Toshiba» демонстрировала элемент для питания ноутбуков размером 275x75x40мм, дающий возможность компьютеру работать в течение 5 часов от одной заправки.

Но некоторые производители пошли дальше. Компания «PowerTrekk» выпустила зарядное устройство с одноименным названием. PowerTrekk - первое зарядное водяное устройство в мире. Использовать его очень легко. В PowerTrekk необходимо добавить воды, чтобы обеспечить мгновенную подачу электричества через шнур USB. Данный топливный элемент содержит кремниевый порошок и силицид натрия (NaSi) при смешивании с водой, данное сочетание генерирует водород. Водород смешивается с воздухом в самом топливном элементе, и он преобразует водород в электричество посредством его мембранно-протонного обмена, без вентиляторов или насосов. Купить такое портативное зарядное устройство можно за 149 € (

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

© 2020 reabuilding.ru -- Портал о правильном строительстве