Виды, состав и способы нанесения полиэфирных красок. Способ получения полиэфирного покрытия Характеристики стали с полимерным покрытием
Компания «Евро-Декор» более двадцати лет занимается реализацией порошковых красок на рынке России. Полиэфирные краски занимают лидирующие позиции по спросу среди всей порошковой продукции. Ориентируясь на широкий спрос, наша компания уделила особое внимание ассортименту, удовлетворяющему все потребности в качестве, цене и цвете. Нашим поставщиком является один из европейских лидеров по производству лакокрасочных материалов – компания «EUROPOLVERI».
Что такое полиэфирная порошковая краска
Полиэфирная краска – это экологически чистый и безотходный современный покрасочный материал. Полиэфирная порошковая краска применяется для окрашивания металлических, керамических, и других изделий для защиты от коррозии, химического и механического воздействия. Ее наносят на сельскохозяйственный инвентарь и оборудование, металлические двери, элементы фасадов зданий, изделия, попадающие под атмосферные осадки, детали автомобилей и прочее.
Характеристика полиэфирных покрытий
Полиэфирная порошковая краска – это особый мелкодисперсный порошок, в основе которого используется полиэфир (полиэфирная смола), пигменты и добавки (отвердитель, наполнитель, пленкообразующие элементы и прочее). Полиэфирные краски не содержат в себе никаких растворителей
Процесс окрашивания поверхностей порошковыми красками также сильно отличается от покрасочных работ традиционными видами лакокрасочных материалов.
В результате нанесения полиэфирных покрытий и их полимеризации образуется устойчивая к большинству механических и химических воздействий пленка с высокой адгезией с окрашиваемой поверхностью.
Порошковая краска обладает высокими показателями розлива и укрывистости поверхностей, на которые она наносится. Этот материал имеет высокую стойкость к таким химическим веществам, как:
- ацетон,
- метилэтилкетон,
- этиловый/метиловый спирт,
- минеральные масла,
- карбоксилсодержащие вещества,
- растворы соляной, серной, фосфорной, уксусной, азотной, лимонной и прочих кислот.
Благодаря образованию на поверхности окрашивания тонкого эластичного слоя пластмассы с высоким уровнем адгезии, создается металлопластиковое ударопрочное покрытие. Полиэфирное покрытие устойчиво к коррозионному, электрическому и тепловому (в диапазоне от — 60 до 150 градусов Цельсия) воздействию. Толщина полиэфирного слоя составляет всего 60÷200 мкм.
За счет высокой скорости полимеризации, порошковое окрашивание производится в короткие сроки. А процесс рекуперации позволяет достичь максимального использование порошка на уровне 96-98%.
Хранение полиэфирной краски не имеет никаких особенных требований. Производитель рекомендует хранить материал при температурах не ниже 25 градусов Цельсия, но при этом нельзя даже кратковременно нагревать до 50 градусов. В нормальных условиях краска хранится не менее 12 месяцев.
Особенности полиэфирных покрытий
Достоинства полиэфирной краски:
- Однородность;
- Неизменность цвета с течением времени;
- Высокая стойкость к механическим нагрузкам;
- Минимальный расход и потери порошка;
- Экологическая безопасность;
- Отсутствие токсичных веществ;
- Долговечность покрытия;
- Декоративность;
- Негорючесть;
- Возможность нанесения равномерного слоя покрытия на поверхности сложной геометрической формы (в том числе на внутренние поверхности).
По сравнению с эпокси-полиэфирными порошковыми красками, полиэфирные не изменяют своего цвета под воздействием ультрафиолета солнца (не выгорают). То есть, пропадает ограниченность использования окрашенных изделий внутри помещений.
Полиэфирные покрытия не требуют никакого особенного ухода, а благодаря химической устойчивости, их можно очищать любым химическим средством.
Технология покраски
Окрашивание поверхностей, используя полиэфирные порошковые краски, состоит из трёх стадий:
- Подготовка поверхностей;
- Нанесение слоя порошка;
- Полимеризационный процесс.
В процессе подготовки поверхностей к нанесению покрытия, их очищают от любых загрязнений и ржавчины, моют, обезжиривают и высушивают. Для лучшей адгезии и увеличения долговечности покрытия, рекомендуется применять цинковое фосфатирование стальных поверхностей, хромирование для изделий из цинка или алюминия, травление прочих металлических поверхностей.
Полиэфирные краски наносятся электростатическим или трибостатическим методом. Порошковое напыление лакокрасочного материала осуществляется в камере с рекуператором, который собирает неиспользованный порошок для повторного использования.
Электростатический способ напыления основывается на передаче порошку электростатического заряда. Наэлектризованный порошок наносится на окрашиваемую поверхность и равномерно на ней удерживается. Излишки просыпаются и удаляются в рекуператор. Исходя из этого, происходит максимальная экономия порошка, достигающая 96-98%. То есть не происходит загрязнение окружающей среды и в то же время экономия финансов.
Трибостатический способ нанесения полиэфирной краски, является менее эффективным и применяемым на практике. Он заключается в создании электростатического заряда при трении частиц порошка о стенки распылителя из электризующего типа материала, чаще всего, тефлона.
Заключительным этапом окрашивания является полимеризация слоя краски на основе полиэфира. Для этого достаточно выдержать окрашиваемую деталь в камере с температурой около 180÷190 градусов Цельсия в течение 20-30 минут, в зависимости от типа окрашиваемого изделия. По сути, это простое расплавление порошка и растекание расплава полиэфирсодержащего полимера по окрашиваемой поверхности. Каждая частичка полимера расплавляется и полимеризуется, образуя сплошную плёнку толщиной 60÷200 микрон.
Нагрев в покрасочной камере ведется, чаще всего, конвективный, что позволяет равномерно прогревать изделие сложной геометрической формы. Таким образом, полиэфир полимеризуется однородным пленочным покрытием.
Почему именно «Евро-Декор»
Компания «Евро-Декор» берет начало своей деятельности на рынке России с 1995 года. Реализуемая продукция имеет высокое качество, прочность, атмосферостойкость, декоративность и долговечность. Широкий ассортимент цветов и оттенков полиэфирных красок соответствует каталогу RAL, но кроме того имеется ряд нестандартных красок, например антики и металлики.
С недавнего времени компания занимается внедрением технологий декорирования окрашиваемых изделий в фактуре дерева. Такая технология хорошо сочетается с порошковым окрашиванием оконных профилей и металлических входных дверей, но кроме того часто применяется для покраски спортивного инвентаря, холодильных камер, бытовых приборов и прочего. Компания «Евро-Декор» имеет большой опыт работы с другими компаниями, занимающимися порошковой покраской, и рекомендует проверенных специалистов своим клиентам.
Купить полиэфирные краски компании «Евро-Декор» в Москве возможно в центральном офисе на Ивовой, либо заказав через наш сайт. Также есть представительства компании и в Санкт-Петербурге, Новосибирске, Пензе и других городах России. Купить краску можно в любом объеме от 1кг.
В качестве сырья для изготовления изделий, наша компания использует сталь с различными видами полимерных покрытий. Покрытия наносятся на заводах - изготовителях сырья, на сложном технологическом оборудовании. Оцинкованный лист покрывается фосфатным антикоррозионным слоем, затем для улучшения адгезии наносится грунтовка и покрывается с тыльной стороны защитным лаком, а с наружной - полимерным покрытием (полиэстер, матовый полиэстер, пластизол, ПВДФ, пурал, полиуретан) к тому же имеющее определенный цвет. Так же возможны варианты изготовления изделий из материала имеющего двустороннее полимерное покрытие.
Внешний вид и долговечность материалов из оцинкованной стали зависят от полимерного покрытия, предохраняющего ее от агрессивного воздействия среды. Покрытие наносится в заводских условиях по специальным технологиям.
Антикоррозионные свойства оцинкованной стали с полимерным покрытием, зависят от толщины цинкового слоя. Сталь с полимерным покрытием и массой цинкового слоя 275 г на кв. м прослужит до появления первых признаков коррозии черного металла на 5-7 лет дольше, чем сталь с массой цинкового слоя 180 г на кв. метр. Слой цинка без покрытия с годами смывается с крыши обыкновенной дождевой водой. Поэтому стальной лист, из которого делают фасадные и кровельные материалы, (металлочерепицу, профнастил, металлосайдинг, отливы , доборные элементы кровли) дополнительно покрывают двумя защитными слоями полимера с лицевой стороны и лака с тыльной стороны. Имеются материалы с двухсторонним полимерным покрытием.
Рассмотрим распространенные покрытия:
Технические характеристики |
Полиэстер |
Матовый полиэстер |
Пластизол |
||
Поверхность |
тиснение |
||||
Толщина покрытия,мкм |
|||||
Толщина слоя грунтовки,мкм |
|||||
Толщина защитного лака (тыльная сторона),мкм |
|||||
Максимальная температура эксплуатации,град. |
|||||
Минимальная температура обработки,град. |
|||||
Минимальный радиус изгиба |
|||||
Цветостойкость |
|||||
Устойчивость к механическим повреждениям |
|||||
Коррозийная стойкость |
|||||
Атмосферостойкость |
ОЦИНКОВАННАЯ СТАЛЬ
ОЦИНКОВАННАЯ СТАЛЬ - сталь имеющая защитное покрытие из цинка. В производстве изделий применяется оцинкованная сталь специальных конструкционных марок стали (S250GD, S280GD) ведущих мировых комбинатов с толщиной слоя цинка 18-20мкр с каждой стороны (275 г на м2). Благодаря этому изделия оптимально подходят для строительства и обладают непревзойденной долговечностью. В России продаются изделия для кровельных покрытий из стали, покрытой более тонким слоем цинка (140-200 г цинка на кв. м). Профнастил, отливы и доборные элементы из такой стали подходят в тех случаях, когда срок службы кровли и элементов рассчитан на 10-20 лет.
Aluzinc ®
Aluzinc ® - сталь имеющая защитное металлическое покрытие, состоящее на 55% из алюминия, на 43,4% из цинка и на 1,6% из кремния. Толщина алю-цинкового покрытия 20 мкм (150г/м2) Алюминий, благодаря появляющейся на покрытии оксидной пленке, на порядок повышает коррозионную стойкость материала изделий. Кроме того, изделия с покрытием из Aluzinc® практически не меняют свой внешний вид в процессе эксплуатации. Именно благодаря оксидной пленке, Aluzinc ® имеет высочайшую коррозионную стойкость и неизменность внешнего вида. Проведенные тесты на открытом воздухе показали, что после 30 лет эксплуатации, подвергаясь различным условиям окружающей среды, на материале не появляется никаких следов ржавчины. Высокая коррозионная стойкость позволяет применять изделия из Aluzinc ® на крышах, с углом наклона менее 5 градусов.
- Aluzinc ® не темнеет в отличие от оцинкованной стали.
- Аluzinc ® не выцветает и не царапается.
- Aluzinc ® Благодаря 100% металлическому покрытию, обладает пользующимся большим спросом натуральным серебристым блеском.
Aluzinc ® также вносит свой вклад в процесс контроля климата внутри здания, обладая великолепным теплоотражающим свойством, что придает Aluzinc ® характеристики теплового защитного экрана. Рекомендуем использовать профилированные изделия из Aluzinc ® в качестве облицовки (стеновой профнастил и сайдинг). Aluzinc ® делает здание ярким, привлекательным и долговечным. С точки зрения жаростойкости Aluzinc ® имеет преимущество среди металлических покрытий, он не выделяет ядовитых паров, не воспламеняется и не загорается.
Полиэстер (PE)
ПОЛИЭСТЕР (PE) - покрытие на основе полиэфира. Изделия с этим покрытием выдерживает высокую температуру воздуха, и большую стойкость к коррозии. Материал прочен и достаточно долговечен: кровля из стальных листов, покрытых полиэстером, может исправно прослужить 20-30 лет. Гарантийный срок - 10 лет. Своей популярностью полиэстер обязан высокой стойкостью к атмосферным воздействиям, эстетичностью, хорошими показателями цветостойкости, пластичностью, долговечностью, огромным выбором цветовых решений и все это по вполне приемлемым ценам. В России данный материал активно используется для изготовления кровельных и стеновых конструкций, причем как в частном, так в многоэтажном и промышленном строительстве. Широкая область применения стали с покрытием полиэстер обуславливается в первую очередь тем фактом, что данное покрытие подходит для любых климатических условий. Изделия из оцинкованной стали с покрытием полиэстер - это гарантия долговечности и высокой коррозионной стойкости, широкая цветовая гамма, многоцелевая область применения, приемлемая цена.
карта цветов покрытий
МАТОВЫЙ ПОЛИЭСТЕР (PEMA)
МАТОВЫЙ ПОЛИЭСТЕР (PEMA) - покрытие на основе полиэфира.. Это покрытие выбирают люди, которым не нравится, когда крыша блестит. Если провести по матовому полиэстеру рукой, он покажется бархатистым. Причина в том, что его поверхность не гладкая, как у остальных покрытий, а испещрена микроскопическими неровностями. Солнечный свет, отражаясь от него, становится рассеянным. Поэтому покрытие матовое. Так как точно установить, какова толщина покрытия, в этом случае невозможно, его на всякий случай наносят толстым слоем, про запас. Поэтому срок службы у него больше, чем у покрытия «полиэстер», хотя химический состав тот же. Срок службы - 40 лет. Гарантийный срок - 15 лет.
Материал обладает высокой цветостойкостью и механической стойкостью, сохраняет свои качества в любом климате. Оригинальное покрытие на основе полиэстера, благодаря бархатистой поверхности очень точно имитирует натуральные материалы.
Матовый полиэстер имеет привлекательную текстуру. За счет матовой, а не глянцевой поверхности, как у традиционного полиэстера, достигается имитация натуральных материалов. Повышенная стойкость к химическому воздействию и хорошие механические характеристики матового полиэстера достигается за счет толщины покрытия - 35 мкм.
Выбрать необходимый цвет Вам поможет - карта цветов покрытий
PVDF
PVDF - покрытие состоящее из поливинилфторида (80%) и акрила (20%). Самое стойкое полимерное покрытие стали к любым немеханическим воздействиям окружающей среды. Изделия из PVDF рекомендуется применять для облицовки стен, так как именно в стеновых панелях покрытие PVDF наилучшим образом проявит свои характеристики и обеспечит наиболее долгий срок эксплуатации. PVDF гарантирует долговечную сохранность кровли и стеновой облицовки. PVDF - самое экологичное покрытие, не выцветает со временем и обеспечивает повышенную стойкость к коррозионному воздействию воды, снега, кислот и щелочей. Максимальная температура эксплуатации +120 градусов, минимальная -50 0 С. Цвет облицовки или кровли вашего дома, если он сделан из стали с покрытием PVDF, со временем не потускнеет и не выгорит на солнце.
Если ваше помещение находиться в промышленной части города, вблизи дорог, возле озер или на морском побережье, если вы строите или облицовываете помещение химического производства, стены которого будут часто мыться водой или дезрастворами, то лучшим материалом для Вас тоже будет сталь с покрытием PVDF.
Оцинкованная сталь с покрытием PVDF производства Corus выпускается как стандартных цветов, по каталогу RAL так и цветов, имитирующих натуральные металлы - алюминий, медь, золото.
ПЛАСТИЗОЛ (PVC)
ПЛАСТИЗОЛ (PVC) - полимер, состоящий из поливинилхлорида и пластификаторов. Благодаря большой толщине (0,2 мм) это покрытие - самое устойчивое к механическим повреждениям, обладает высокой коррозионной стойкостью, что создает дополнительную защиту в условиях загрязненной окружающей среды или на морском побережье, однако оно обладает сравнительно низкой температурной стойкостью и быстро выцветает на солнце. Рекомендуется применять светлые цвета пластизола, которые меньше выгорают, нагреваются и лучше отражают свет. Покрытие имеет рельефную поверхность - тиснение, имитирующее кожу или штриховую насечку, которое не дает солнечных бликов.
Выбрать необходимый цвет Вам поможет - карта цветов покрытий
ПОЛИУРЕТАН (PU)
ПОЛИУРЕТАН (PU) - такое покрытие делают из полиуретана, модифицированного полиамидом и акрилом. Полиамид придает ему отличную стойкость к ультрафиолетовому излучению, а акрил обеспечивает высокую прочность. Имеет шелковисто-матовую поверхность. Долговечность материала складывается из высокой коррозионной стойкости, стойкости к негативному воздействию ультрафиолета, и непревзойденной стойкости к механическим повреждениям. Номинальная толщина покрытия - 50 мкм. Кроме того, полиуретан имеет очень высокую стойкость к воздействию многих кислот, т.е. химических веществ, характерных для промышленной атмосферы. Результаты теста на стойкость солевому туману подтверждают, что долговечность материалов с полиуретановым покрытием сохраняется и в условиях морского климата.
При обработке и гибке в условиях низких температур, материал не образует микротрещин в местах сгибов. Это покрытие является более долговечным, чем полиэстер. Срок службы - 30-50 лет. Гарантийный срок - 15 лет.
Покрытие на основе полиуретана, получило широкое распространение в России, благодаря своему английскому аналогу. Colorcoat Prisma производится в Англии, одним из крупнейших в мире металлургических концернов Corus. Сталь с покрытием Prisma имеет защитный слой Galvalloy состоящий из 95% цинка и 5% алюминия, обеспечивающий непревзойденную антикоррозионную защиту материала. Изделия, изготовленные с покрытием Prisma, имеют высочайшую стойкость к ультрафиолету и механическому воздействию.
сайт 2009
Подробнее остановимся на важнейшей характеристике профилированной кровли - покрытию металлочерепицы, отвечающей за сохранность ее внешнего вида и защиту металла от коррозии и воздействию природных факторов. Многообразие защитных полимеров, использующихся в тонколистовой металлической кровле (профнастиле в том числе), сводится к основным пяти. Их мы рассмотрим в данной статье и попробуем выяснить, какое покрытие кровельного железа лучше.
Для начало приведем сравнительные характеристики всех типов полимерных покрытий:
Характеристики
покрытий |
PE | Мат. PE | PVDF | PU | PVC |
Толщина, мкм | 25 | 35 | 27 | 50 | 200 |
Текстура | гладкая | матовая | гладк. | гладк. | тис-нение |
Макс. температура эксплуатации, °C | 100 | 100 | 120 | 120 | 60 |
Устойчивость к коррозии | хор. | хор. | хор. | отл. | отл. |
Механическая устойчивость | низкая | низкая | низкая | хорошая | отл. |
Стойкость к УФ излучению | хор. | отл. | отл. | отл. | низкая |
Стойкость цвета | низкая | хор. | отл. | отл. | низкая |
Металлочерепица с покрытием Полиэстер (PE)
В силу своей невысокой стоимости металлочерепица с таким видом покрытия стала самой распространенной. Полиэстер (PE) или полиэфир представляет собой глянцевое напыление средней толщины 25мкм. Минусом можно считать низкую стойкость к механическим воздействиям, в связи с чем продукция, именуемая "полиэстер", требует бережной транспортировки и аккуратности при монтаже. Металлочерепица PE благодаря своим характеристикам и невысокой стоимости неплохо зарекомендовала себя в средней полосе России и странах СНГ.
Матовый полиэстер (Matt PE, Purex)
Внешние отличия покрытий "полиэстер" и "матовый полиэстер"Еще одна разновидность защитного полимера "полиэстер" с добавлением тефлона, благодаря чему металлочерепице придается благородный матовый оттенок и немного шершавая поверхность. Также плюсом такого покрытия является дополнительная защита от воздействия ультрафиолетовых лучей, что улучшает цветостойкость кровельного материала. Как правило, толщина Matt PE составляет 35мкм. Наиболее известные представители матового полиэстера - Викинг (Металл Профиль) и Velur (Grand Line).
PVDF
Обычно применяется для отделки фасадов и реже используется для кровельных материалов. PVDF - очень стойкое глянцевое покрытие как к потере цвета, так и к механическим повреждениям. В таком варианте обычно используется высококачественная сталь с первым классом цинкового содержания (275 г/м2). PVDF состоит на 80% из поливинилфторида и на 20% из акрила. Также выпускается финским металлургическим концерном Ruukki в матовом исполнении (matt PVDF).
Полиуретановое покрытие (Pural)
Самый качественный и стойкий по своим свойствам защитный полимер для металлочерепицы толщиной 50мкм. Более известен как "pural" (сокращенно PU) благодаря родоначальнику данного продукта - финскому заводу Ruukki. Полиуретановый вид покрытия стоек к выцветанию, воздействию окружающей среды и перепаду температур. В настоящее время пурал выпускается большинством металлургических заводов по производству кровельных металлических материалов. Например Colorcoat (английская разработка - Prisma, поставщик - Металл Профиль), Arcelor (бельгийское покрытие Granite HDX, поставщик - Grand Line), финский производитель Pelti ja Rauta (покрытие Prelaq Nova, поставщик - Мир Кровли).
Важно: полиуретановое покрытие при максимальном визуальном сходстве с полиэстером имеет небольшую шершавую поверхность, напоминающую порошковое напыление!
Как и полиэстер, такой вид защитного слоя металлочерепицы имеет матовый вариант, что позволяет достигать максимального сходства профилированного стального материала с керамической кровлей.
Пластизол (PVC)
Самый толстый, а, следовательно, самый стойкий к механическим воздействием верхний слой кровли. Толщина - 200мкм. Сокращенно обозначается PVC, у некоторых производителей можно встретить под маркой Solano или HPS200. В состав полимера входят пластификаторы и поливинилхлорид. Текстура металлочерепицы имеет характерный рисунок, напоминающий "кожу".
Металлочерепица в покрытии "пластизол"
При всех своих видимых достоинствах "пластизол" крайне неустойчив к перепадам температуры и воздействию ультрафиолетовых лучей. Поэтому не рекомендуется использовать металлочерепицу с таким видом полимера в южных регионах. Обычно используется в промышленных и производственных объектах.
Это основные типы защитных покрытий. Другие названия и вариации являются модификациями приведенных выше полимеров.
Например, в основе бельгийской металлочерепицы Cloudy , имитирующей натуральную кровлю, лежит модифицированный полиэстер. Тем самым создается неповторимый рисунок, напоминающий обжиг керамики.
По аналогии с Cloudy, сталь ECOSTEEL , которая имеет максимальное сходство с камнем или деревом, также является результатом модификации полиэстера. В основном такой тип полимера используют при изготовлении материалов для забора (профнастил) или фасада (металлический сайдинг).
Профнастил и металлический сайдинг, имитирующий бревно, в покрытии "ECOSTEEL"
Какое покрытие лучше?
На основании изложенных свойств и характеристик защитных полимеров металлочерепицы можно выделить самые надежные покрытия. Полиуретан обладает как достаточной толщиной, так отличными показателями стойкости к УФ. Такая металлочерепица прослужит долгий период времени практически в любом регионе, и по праву считается лучшей. Для центральных или северных регионов идеально подойдет пластизол. Благодаря толщине полимера в 200 мкм покрытие выдержит повышенные снеговые нагрузки или наледь. Остальные виды цветного слоя кровли уступают полиуретану и пластизолу по своим характеристикам. Не рекомендуется использовать металлочерепицу с покрытием "полиэстер" в регионах с агрессивным климатом.
Производители постоянно совершенствуют защитные полимеры для тонколистовой продукции, предлагая все новые решения, продлевающие срок службы металлочерепицы, профнастила и другой продукции из стали. Надеемся, что статья оказалась полезной при выборе лучшего покрытия железа для кровли.
Полимерное покрытие - это уникальная возможность защитить металлические поверхности. Это самый эффективный и современный способ борьбы с коррозией, которая рано или поздно все равно появляется на металлических изделиях.
В чем суть?
Для улучшения эксплуатационных свойств металла используются полимеры, которые могут вступать в реакцию в определенных условиях. Подобные покрытия представляют собой сухие составы на основе порошка мелкой дисперсии, куда дополнительно добавляются отвердители, наполнители и пигменты. Полимерное покрытие было выбрано для повышения металла не случайно: металлы проводят электрический ток, как следствие, заряд передается изделию, в результате чего образуется Оно притягивает частицы порошка, удерживая их на поверхности обрабатываемого изделия. Особенность полимерного покрытия - в высокой степени устойчивости к любым видам воздействия. Кроме того, оно эстетично.
Как проходит полимеризация
Цех порошковой окраски состоит из нескольких участков:
- Участка подготовки изделий: чтобы полимерное покрытие было нанесено правильно и равномерно, металлическое изделие сначала тщательно очищается от пыли, ржавчины, грязи. Целесообразно использовать эффективную и фосфатирование. Обязательный этап - обезжиривание металлической поверхности.
- Камеры напыления: в окрасочной камере выполняется непосредственно термическая, она способна нагреться до температуры в 200 градусов и прогревается равномерно. Порошок начинает плавиться, за счет чего образуется ровное и гладкое покрытие по всей поверхности металла, заполняются и его поры.
- Полимеризация изделия выполняется в камере охлаждения: здесь температура постепенно падает, а полимерная пленка становится тверже. Спустя 24 часа полимерное покрытие уже готово к эксплуатации.
Технология окраски: в чем суть
Нанесение порошкового покрытия выполняется в несколько этапов. На первом обрабатываются поверхности. Очень важно, чтобы металлические изделия были тщательно очищены от загрязнений, окислов, а обезжиривание поверхности будет способствовать улучшенной сцепляемости. После подготовки выполняется этап маскировки, то есть скрываются те элементы металлического изделия, на которые не должен попасть порошковый состав.
Детали, которые должны быть обработаны, завешиваются на транспортную систему, затем отправляются в камеру покраски. После напыления на металле образуется порошковый слой. На этапе полимеризации формируется покрытие, которое представляет собой оплавление слоя краски.
В чем особенности?
Металл, обработанный полимерным покрытием, отличается надежностью и повышенной прочностью. Объясняется это тем, что образуется герметичная монолитная пленка, полностью покрывающая поверхность изделия и прочно держащаяся на нем. Благодаря полимерному покрытию металл обладает:
- высокой адгезией к поверхности;
- высокой прочностью и износоустойчивостью;
- длительным сроком эксплуатации при сохранении первоначальных свойств;
- богатой цветовой гаммой;
- быстрым производственным циклом.
Полимерное выполняется на основе различных материалов и красящих порошков. Выбор конкретного вещества зависит от того, для каких целей наносится покрытие, насколько важны декоративные свойства.
Полиэстер
Для полимерного покрытия металла чаще всего используется именно полиэстер. Это недорогой материал, обладающий высоким уровнем гибкости, формуемости, к тому же он может эксплуатироваться в любых климатических условиях. Лист с полимерным покрытием на основе полиэстера отличается стойкостью к ультрафиолетовому излучению и коррозии. Материал образует качественную и прочную пленку на поверхности, благодаря чему при любых условиях транспортировки стальные листы доставляются в целости.
Широко используется и матовый полиэстер: покрытие имеет совсем маленькую толщину, а поверхность металла получается матовой. Особенность данного материала - в высокой цветостойкости, хорошей стойкости к коррозии и механическому воздействию.
Пластизоль
Еще одно популярное полимерное покрытие металла - пластизоль. В составе этого декоративного материала - поливинилхлорид, пластификаторы; внешне он привлекает внимание тисненой поверхностью. Это самое дорогое покрытие, и в то же время самое стойкое к механическим повреждениям благодаря большой толщине покрытия. С другой стороны, материал не обладает высокой температурной стойкостью, а потому под воздействием солнечных лучей при высокой температуре покрытие будет портиться. За счет большой толщины стойкость к коррозии пластизоля высокая.
Популярна сталь с полимерным покрытием на основе пурала, которая отличается шелковисто-матовой структурной поверхностью. Стойкость к перепадам температуры и воздействию химических веществ делает данный состав популярным для обработки металлов.
Характеристики стали с полимерным покрытием
Особенности материалов с полимерным покрытием - в прочности, формуемости, высокой коррозийной стойкости. После обработки сталь обретает прекрасный внешний вид, которому можно придать любые цвета и оттенки. Прокат выполняется по ГОСТ, полимерное покрытие получается качественным. Окрашенный прокат может иметь одно- или двухслойное покрытие, возможны варианты, когда вещество наносится с одной или с обеих сторон. Благодаря полимерному покрытию улучшаются эксплуатационные свойства стали:
- металл с полимерным покрытием может быть переработан в готовые изделия;
- покрытие распределяется по поверхности равномерно, поэтому и степень защиты равномерная;
- отсутствие пор служит залогом хорошего уровня защитных свойств;
- сталь отличается хорошей адгезией;
- металл может сохранять защитные и декоративные свойства больше 10 лет.
С экономической точки зрения с полимерным покрытием более выгодна: во-первых, она способствует высокой производительности и качеству, так как снижается себестоимость нанесения покрытий. Во-вторых, покупателю не нужно самому вкладывать средства в дополнительную обработку стали для защиты ее поверхности. Отметим, что антикоррозионные свойства оцинкованной стали, которая обработана полимерным покрытием, зависит от толщины слоя. Чтобы повысить срок эксплуатации стальных изделий, они дополнительно покрываются двумя слоями полимера, что делает защиту металла еще выше.
Особенности покрытия
Полимерное покрытие - это пленка, которая обладает целым комплексом уникальных эксплуатационных характеристик. Предварительно окрашенный прокат создается на основе нескольких типов полимеров. Любой материал, обработанный на основе такого метода - стальной лист или сетка с полимерным покрытием - отличается ударопрочностью, стойкостью к воздействию коррозии и высокой адгезией. Немаловажно и то, что порошковое окрашивание позволяет сделать поверхность металла любой с точки зрения цвета, в том числе и искусственно состаренной, например, под стиль антик.
Сегодня популярен такой способ окраски стального проката, как Coil Coating. Суть метода в том, что покрытие наносится на автоматизированной линии, то есть листы рулонного проката обрабатываются на линии, после чего на них валиковыми машинами наносится покрытие. Данная технология получила распространение благодаря тому, что нет потерь материалов, а сама линия более производительна, а потому и выгодна.
Как и при любых других отделочных работах, сначала требуется подготовить поверхность, после чего выполняется ее окраска. Данная технология позволяет вести качественную обработку стали, алюминия и белой жести. Таким образом, полимерное покрытие - это возможность улучшить эксплуатационные свойства металла, повысить его защитные свойства и обеспечить длительность эксплуатации.
Полиэфирные покрытия, армированные стекловолокном, требуют сухой, нейтрализованной (например, при помощи флюатиро-вания) бетонной основы. При 20 С они обнаруживают хорошую химическую стойкость в воде, разбавленных и среднеконцен-трированных растворах неорганических и органических кислот, растворах солей, имеющих кислую или щелочную реакцию, бен - N зине и минеральных маслах. С ростом температуры агрессивных сред химическая стойкость покрытий уменьшается.
Полиэфирные покрытия отличаются от всех других прозрачностью, твердостью, зеркальным блеском. Близки к ним поли-уретановые покрытия.
Полиэфирные покрытия, армированные стекловолокном, требуют сухой, нейтрализованной (например, при помощи флюатиро-вания) бетонной основы. При 20 С они обнаруживают хорошую химическую стойкость в воде, разбавленных и среднеконцен-трированных растворах йеорганических и органических кислот, растворах солей, имеющих кислую или щелочную реакцию, бензине и минеральных маслах. С ростом температуры агрессивных сред химическая стойкость покрытий уменьшается.
Полиэфирные покрытия имеют хорошую адгезию к древесине и бумаге; они отличаются блеском и прозрачностью, стойкостью к действию воды, спирта, жиров и низких температур.
Полиэфирные покрытия отличаются высокими механическими показателями, которые сохраняются при повышенных температурах. Полиэфирная пленка на основе лака ПЭ-943 обеспечивает хорошие электрические свойства. Так, ее удельное объемное сопротивление составляет 1 5 - 1015 - 5 3 - Ю15 Ом-см и не снижается после действия воды. Электрическая прочность в исходном состоянии равна 100 кВ / мм и мало изменяется при 200 С и после действия воды.
Полиэфирные покрытия отличаются хорошей адгезией к древесине, бумаге и некоторым другим материалам, блеском и прозрачностью, стойкостью к действию воды, спирта и бензина; они могут быть легко окрашены во все цвета.
Полиэфирные покрытия отличаются высокой механической прочностью, твердостью, блеском и стойкостью к действию воды, бензина, масла и разбавленных кислот.
Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и малоэластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.
Кинетика изменения внутренних напряжений при эксплуатации покрытий из ПЭ-219 на различных подложках. 1 - береза. 2 - ясень. 3 - красное дерево. 4 - древесностружечная плита.| Кинетика изменения внутренних напряжений при эксплуатации покрытий из ПЭ-219 на различных подложках, обработанных порозаполнителем. Для полиэфирных покрытий, сформированных на ясене, с запасом адгезионной прочности более 4, с уменьшением толщины покрытий с 1200 до 300 мкм долговечность возрастает более чем в 2 раза. При малой начальной величине внутренних напряжений в покрытиях и небольшом запасе адгезионной прочности долговечность покрытий с уменьшением толщины покрытий возрастает в меньшей степени. В покрытиях толщиной 400 - 500 мкм, сформированных на древесине, нарушение адгезионной прочности при эксплуатации в атмосферных условиях наблюдается при величине критических внутренних напряжений, в 5 - 10 раз меньшей, чем в процессе формирования.
У полиэфирных покрытий, сформированных на древесных породах, наиболее широко применяемых в промышленности, внутренние напряжения, измеренные поперек волокон, всегда значительно больше напряжений вдоль волокон.
Благодаря однослойному полиэфирному покрытию, нанесенному толщиной 1 25 - 1 5 мм на водопроводные асбоцементные трубы, обеспечивается их газонепроницаемость при давлении до 0 5 МПа, а при двухслойном покрытии - при давлении до 0 7 - 1 МПа. Оно имеет высокую механическую прочность, истираемость, стойкость к агрессивным средам, бензину, природным и сжиженным газам, но обладает недостаточной стойкостью к длительному воздействию слабоминерализованной воды. Поэтому в состав покрытия вводят специальные добавки, повышающие его водостойкость.
Эпоксидные или полиэфирные покрытия, армированные стекловолокном, получаются при наложении на бетонную основу нескольких слоев эпоксидных или полиэфирных смесей, между которыми закладывается внутренний слой, представляющий из себя маты или ткань из стекловолокна. Такие покрытия отличаются хорошим сцеплением с сухой поверхностью бетона, большой механической прочностью, хорошим сопротивлением истиранию и отсутствием поглощения жидкостей даже под большим давлением.
Эпрксидные или полиэфирные покрытия, армированные стекловолокном, получаются при наложении на бетонную основу нескольких слоев эпоксидных или полиэфирных смесей, между которыми закладывается внутренний слой, представляющий из себя маты или ткань из стекловолокна. Такие покрытия отличаются хорошим сцеплением с сухой поверхностью бетона, большой механической прочностью, хорошим сопротивлением истиранию и отсутствием поглощения жидкостей даже под большим давлением.
При формировании полиэфирных покрытий наибольшее число функциональных групп расходуется на первой стадии полимеризации на образование надмолекулярных структур, характер которых зависит от природы подложки, условий формирования и толщины покрытий. На этой стадии пленкообразования полимеризация протекает главным образом внутри надмолекулярных структур. Это приводит к возникновению индукционного периода в изменении теплофизических параметров, внутренних напряжений и других физико-механических свойств покрытий.
Облагораживание поверхности полиэфирных покрытий путем шлифования и полирования их поверхности широко применяется для улучшения декоративных свойств покрытий. Эти операции входят в технологический цикл получения полиэфирных покрытий, предусматривающий удаление всплывающих добавок парафина, недостаточно отвержденных слоев и придания блеска поверхности. Качество проведения этой операции обычно оценивается визуально.
Кинетика усадки полиэфирных пленок при 80 С и при последующем охлаждении до 20 С, армированных различными материалами. При армировании полиэфирных покрытий волокнистыми наполнителями - стеклянными холстами, представляющими собой - сетку из коротких перепутанных волокон; усадка при полимеризации не проявляется, а наблюдается некоторое увеличение размера образцов. В процессе охлаждения армированных пленок усадка нарастает до некоторого постоянного значения.
Кинетика нарастания внутренних напряжений при формировании полиэфирных покрытий.| Зависимость внутренних напряжений (/ и прочности при разрыве (2 от содержани модифицированного ОДА (а и немодифицированного аэросила (б. При наполнении полиэфирных покрытий аэросилом, модифицированным окта-дециламином, скорость формирования практически не изменяется по сравнению с ненаполненными покрытиями. Это обусловлено экранированием поверхности аэросила группами NH модификатора. С увеличением содержания аэросила внутренние напряжения увеличиваются более чем в 2 раза, при этом прочность пленок на разрыв соответственно уменьшается, а адгезия покрытий к стеклу увеличивается. Эффект резкого понижения адгезии и внутренних напряжений при формировании полиэфирных покрытий наблюдается не только в присутствии модификатора на поверхности аэросила, но и при непосредственном формировании покрытий на поверхности подложки, модифицированной октадециламином. При полном модифицировании поверхности подложки адгезия снижается более чем на порядок, при этом соответственно наблюдается и резкое уменьшение внутренних напряжений. Обращает на себя внимание и тот факт, что понижение внутренних напряжений при непосредственном нанесении покрытий на модифицированную подложку значительно больше, чем при формировании покрытий на немодифицированной подложке в присутствии модифицированного аэросила.
При формировании полиэфирных покрытий наибольшее число групп расходуется на первой стадии на формирование надмолекулярных структур, характер которых зависит от природы подложки, условий формирования и толщины покрытий, и полимеризация идет главным образом внутри надмолекулярных структур. Это приводит к возникновению индукционного периода в изменении внутренних напряжений и теплофизиче-ских параметров при формировании покрытий. На второй стадии формирования происходит установление связей между этими структурами.
Структура полиэфирных блоков (а, г и покрытий (б, в, сформированных при 80 С, выявленная методом срезов. в, г - с кислородным травлением. Изучена микроструктура полиэфирных покрытий, полученных из 25 % - ных растворов олигоэфирмалеинатов в ацетоне. В таких оли-гомерных системах методом быстрого замораживания выявлены отдельные глобулярные ассоциаты. При воздействии электронного пучка в течение 5 мин в пленке практически не выявляется структура. При воздействии электронного пучка в течение 15 мин выявляется тонкая глобулярная структура, аналогичная структуре, обнаруженной методом срезов (см. рис. 3.11) в отвержденных покрытиях. При последующем облучении наблюдается агрегация структурных элементов с образованием более крупных надмолекулярных структур. Через 20 - 25 мин формирования наряду с глобулярными обнаруживаются полосатые структуры. Через 30 мин облучения наблюдается растрескивание пленки, при этом происходит смещение одного слоя покрытия относительно другого, что обусловлено различной структурой слоев по толщине пленки.
При снятии полиэфирного покрытия лучший эффект достигается при использовании смывки СМ-2 и Автосмывки, при снятии полиуретанового покрытия - смывок СМ-2 и БЭМ-2. Покрытия после разрушения удаляют шпателем, а затем остатки нитратцеллюлозного покрытия - растворителем 646, а остатки полиэфирного и полиуретанового покрытий - уайт-спиритом. Все эти смывки по эффективности удаления полиурета новых покрытий существенно уступают приведенному выше американскому составу [ пат.
Для отперждення полиэфирных покрытий применяют различные мономеры (стирол, метилметакрилат, хлорстирол и др.), которые сополимеризуются с полиэфирами, или реакци-онноспособные олигомеры, например олигоэфиракрилаты, применяемые в качестве растворителей полиэфиров.
Для полирования нитролаковых, нитроэмалевых, ал-кидных, полиэфирных покрытий используют полировочные пасты (Г 2 восковая, № 290, 291, 300), восковой полирующий состав № 3 и др.; шеллачные и другие смоляные лаковые покрытия полируют шеллачной политурой.
Для улучшения свойств полиэфирных покрытий применяют добавки различного назначения: для придания тиксотропных свойств-аэросил и эфиры целлюлозы, для улучшения розлива-силиконовые жидкости, для пластификации - ре - зиловьге олигомеры и др. Для повышения стабильности при хранении к полуфабрикатному лаку добавляют также ингибитор полимеризации-гидрохинон. Полуфабрикатные лаки поставляют в комплекте с раствором инициатора, который вводится перед употреблением.
При исследовании твердости полиэфирных покрытий установлено , что их твердость достигает предельного значения задолго до окончания процесса формирования покрытий вследствие большей скорости удаления растворителя и протекания окислительных процессов в поверхностном слое. В противоположность этому при формировании покрытий на основе ненасыщенных олигоэфиров, процесс полимеризации которых ингибируется кислородом воздуха, возможно более медленное нарастание твердости поверхностных слоев по сравнению с твердостью покрытия в целом. Кроме того, метод измерения твердости не позволяет контролировать начальную стадию процесса.
При увеличении толщины полиэфирных покрытий происходит линейное нарастание внутренних напряжений как в подложке на границе с пленкой, так и в покрытиях на деревянных подложках.
К операциям облагораживания полиэфирных покрытий также предъявляются некоторые специфические требования. Полиэфирное покрытие, представляющее собой нерастворимый в органических растворителях трехмерный полимер, не может подвергаться разравниванию, поэтому шлифование полиэфирных покрытий должно производиться только тонкими шкурками.
Для скоростного облагораживания нитроцеллюлозных и полиэфирных покрытий УралВНИИАШем разработана и внедрена в производство шлифовальная шкурка улучшенного качества на бумажной основе из карбида кремния зернистостью 6 - 4 особого гранулометрического состава; связка - мездровый клей. Оптимальный гранулометрический состав узко классифицированных по зернистости шлифовальных порошков, полученных в результате дополнительной виброклассификации абразивного материала, дает возможность снизить удельный расход шкурки и повысить производительность.
Пленки, нанесенные на стекловолокнистые, хлопковые, найло-новые, полиэфирные покрытия или на нетканые материалы из синтетических волокон. Такие структуры несут на себе или сухое, или частично липкое связующее. При контакте со склеиваемым материалом часть связующего остается на нем.
Испытания на тйердость для полиэфирных покрытий проводят в помещении при температуре воздуха 15 - 30 С, для нитроцеллюлозных - 18 - 25 С.
Наиболее эффективный метод нанесения полиэфирного покрытия на сухую внутреннюю поверхность труб - центробежный метод, при котором полимерный состав, заливаемый вовнутрь трубы, распределяется равномерным слоем на поверхности в процессе вращения трубы со скоростью 450 - 500 об / мин в течение 1 - 2 мин и при этом уплотняется. Создана заводская установка для нанесения полиэфирного покрытия труб этим методом. Перед нанесением покрытия трубы очищают металлическими щетками, а затем продувают сжатым воздухом при давлении 0 6 МПа. Отверждение покрытия после нанесения осуществляется на стеллажах при комнатной температуре.
Так, на примере парафинсодержащих полиэфирных покрытий, отверждаемых стиролом, установлено [ 18, с.
Монолитные эпоксидные, полиуретановые и полиэфирные полиуретановые и полиэфирные покрытия полов.
Зависимость логарифма длительной адгезионной прочности полиэфирных покрытий из лака ПЭ-219 на древесине от величины внутренних напряжений является линейной. Покрытия из этого лака, имеющие запас адгезионной прочности (А: авн 2) не отслаиваются при испытании их в атмосферных условиях в течение 2 лет и более. Аналогичное влияние природы подложки на долговечность покрытий обнаруживается и при других условиях эксплуатации. Так, при испытании ускоренными методами было установлено, что долговечность покрытий, сформированных на красном дереве и березе, на порядок ниже долговечности покрытий на ясене и древесностружечной плите.
Был изучен процесс формирования полиэфирных покрытий на деревянных подложках из-за все более возрастающего применения полиэфирных покрытий в различных отраслях промышленности для отделки древесины и отсутствия критериев, позволяющих выбрать и оценить оптимальные технологические условия их получения. Показано, что процесс формирования покрытий на древесине имеет ряд своих специфических особенностей.
Значительное влияние на физико-механические свойства армированных полиэфирных покрытий оказывает структура стеклянного холста, характер переплетения и толщина волокон, а также природа их поверхности. Для покрытий, армированных более жестким холстом ХЖК, обработанным парафиновой эмульсией, внутренние напряжения значительно меньше по сравнению с внутренними напряжениями в неармированных наполненных покрытиях. В табл. 6.4 приведены данные о влиянии наполнителей на механические свойства полиэфирных покрытий, армированных стеклянным холстом ВВ.
Влияние наполнителей на механические свойства полиэфиров. Это объясняется тем, что адгезия полиэфирных покрытий к цементу и древесине значительно больше, чем к кварцевому песку. Следовательно, внутренние напряжения в наполненных покрытиях повышаются с увеличением прочности взаимодействия между связующим и частицами наполнителя.
Влияние минеральных наполнителей на механические и адгезионные свойства полиэфирных покрытий, армированных стеклянным холстом ХЖК. Широкое применение для улучшения эксплуатационных свойств полиэфирных покрытий находят холсты, которые в отличие от лент и тканей характеризуются беспорядочным расположением волокон.
Фланцевые соединения аспирационных воздуховодов участков шлифования полиэфирных покрытий следует оборудовать специальными токопроводящими перемычками, обеспечивающими надежный электрический контакт. В помещениях окрасочных цехов необходимо предусматривать установку автоматических газоанализаторов, предупреждающих о возникновении в воздухе взрывоопасных концентраций растворителей.
Кинетика нарастания прочности на сдвиг 0Т (1, внутренних напряжений Овн (2, прочности на разрыв сгр (3 и модуля упругости Е (4 при формировании покрытий из олигоэфирмалеинатов при 20 (а и 80 С (б.
Напряжения, возникающие в процессе отверждения полиэфирных покрытий, составляют небольшую величину. Резкое нарастание внутренних напряжений наблюдается при охлаждении покрытий, подвергнутых термическому отверждению.
Зависимость долговечности покрытий из ПЭ-220 от природы под.| Зависимость долговечности покрытий из ПЭ-220 от внутренних на. Была изучена временная зависимость адгезионной прочности полиэфирных покрытий на основе ненасыщенных полиэфиров, отвержденных стиролом и триэтиленгликолевым диэфиром метакриловй кислоты и сформированных на различных подложках, а также алкидных покрытий. Временная зависимость адгезионной прочности покрытий из олигоэфирмалеинатов от величины внутренних напряжений получена при формировании покрытий при 18 С. Величина предельных критических напряжений, вызывающих самопроизвольное отслаивание покрытий, определялась путем прогрева образцов в течение 10 ч при80 С через различные промежутки времени.
Поточно-механизированные и автоматические линии по облагораживанию лакокрасочных полиэфирных покрытий (наиболее современные) имеют проходные станки для шлифования кромок, один или два проходных станка для шлифования пласти с взаимоперекрещивающимися шлифовальными лентами, многобарабанные (шесть или восемь) полировальные станки, соединенные между собой транспортными средствами. Производительность линий определяется скоростью подачи и обычно находится в диапазоне 3 - 12 м / мин.
Схема терморадиационной сушильной камеры с обогревом источников инфракрасных лучей горячими газами.| Схемы камер фотохимического отв ерждения покрытий источниками низкого (а и высокого (б давления. Преимущества этого способа в том, что полиэфирные покрытия сначала полимеризуются медленно, на поверхность выплывает парафин. По такому принципу работает фотохимическая сушильная камера СФХ-2М, которая состоит из металлического каркаса, пластинчатого конвейера и светильников.
Кинетика нарастания и релаксации внутренних напряжений при формировании покрытий на поверхности стекла при 80 С, модифицированного различными соединениями (. Величина адгезии и внутренних напряжений при формировании полиэфирных покрытий на поверхности подложки, модифицированной соединениями третьего класса, зависит от природы заместителей в фенильном кольце. С ростом электроотрицательности заместителя в ряду (C2H5) 2N, H, СН3О и увеличением расстояния между активными центрами внутренние напряжения понижаются больше, чем адгезия. Для выяснения причины этого явления была исследована структура поверхности подложки и покрытий в пограничном слое.
Влияние ПАВ на физико-механические свойства ненасыщенных полиэфиров.| Структура покрытий из исходного полиэфира (а и полиэфира, модифицированного 4 % ОДА (б. Об этом свидетельствуют данные о возникновении для полиэфирных покрытий, модифицированных ПАВ, полосы поглощения в области 3500 см 1, характерной для водородных связей. В процессе отверждения интенсивность этой полосы возрастает. Уменьшение межмолекулярного взаимодействия и упорядочение структуры молекул ненасыщенного полиэфира при оптимальном содержании ПАВ приводит к изменению морфологии надмолекулярных структур, возникающих в процессе полимеризации. На рис. 3.8 приведены реплики с поверхности полиэфирных покрытий, немодифицированных и модифицированных ПАВ, снятые на электронном микроскопе. Образцы предварительно подвергали кислородному травлению. Как видно из рисунка, в покрытиях из немодифицированной смолы возникает сетка из надмолекулярных структур глобулярного типа. При введении 1 % ОДА наблюдается структура в виде глобулированных пачек с микропористостью в центре. При увеличении концентрации ОДА до 2 % обнаруживается неполное разворачивание глобул, а при концентрации 3 - 4 % для покрытий характерна полосатая структура. Последующее увеличение ПАВ до 6 % приводит к формированию крупных структур полосатого типа.
При этом теплофизические свойства с изменением толщины полиэфирных покрытий изменяются антибатно внутренним напряжениям (рис. 2 - 2), в то время как теплофизические свойства свободных пленок не зависят от их толщины.
В Советском Союзе разработан фотохимический способ отверждения полиэфирных покрытий. Однако недостаток его заключается в том, что в отверждаемые системы необходимо дополнительно вводить фотосенсибилизаторы, время отверждения покрытий относительно велико - до 5 мин; метод неприемлем для пигментированных систем.
При введении немодифицированного аэросила внутренние напряжения в полиэфирных покрытиях возрастают более чем в 2 раза, при этом прочность пленок при разрыве соответственно уменьшается, а адгезионная прочность к стеклу увеличивается. При неполном модифицировании поверхности аэросила октадециламином резкое понижение внутренних напряжений и адгезионной прочности наблюдается только при большой степени наполнения, в то время как при полном заполнении поверхности аэросила модификатором эти же параметры понижаются в 3 - 4 раза.
Значительное влияние на величину внутренних напряжений в полиэфирных покрытиях оказывает порода древесины. Были получены данные о зависимости внутренних напряжений от толщины полиэфирных покрытий, сформированных на поверхности образцов, фанерованных древесиной различных пород.
Кинетические данные об изменении внутренних напряжений в полиэфирных покрытиях на подложках из древесины различных пород в процессе старения в атмосферных условиях показывают, что эта зависимость является немонотонной. Наибольшая релаксация внутренних напряжений наблюдается в наиболее влажные месяцы эксплуатации покрытий и связана, вероятно, с пластифицирующим действием влаги. При последующей эксплуатации покрытий внутренние напряжения возрастают, не достигая своей первоначальной величины. Резко выраженное необратимое изменение внутренних напряжений в процессе эксплуатации отмечено для покрытий, сформированных на красном дереве и обусловлено локальным отслаиванием их в местах концентрации внутренних напряжений.
Кинетические данные об изменении внутренних напряжений в полиэфирных покрытиях из лака ПЭ-219 на подложках из дерева, обработанных порозаполнителем КФ-1, в процессе старения в атмосферных условиях показали, что необратимое уменьшение внутренних напряжений в этом случае составляет 75 - 85 % и обусловлено, вероятно, локальным разрушением адгезионных связей. Было изучено также влияние на внутренние напряжения и адгезионные свойства полиэфирных покрытий различных композиций, модифицирующих поверхность древесины.