Геркон: что это такое и как работает? Что такое герконы: область применения и особенности монтажа Геркон принцип действия.
Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.
Механические параметры герконов
К механическим параметрам относится магнитодвижущая сила срабатывания . Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп).
Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания . Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона. Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием.
Максимальное число срабатываний , или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.
Электрические параметры герконов
Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз.
Электрическая прочность геркона . Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.
Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax.
Емкость , измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами.
Способы управления герконами
Их можно разделить на две большие группы: управление постоянным магнитом и управление при помощи катушки с током. Эти способы показаны на рисунке 1.
Рисунок 1. Различные способы управления герконами
Управление герконом при помощи постоянного магнита
Наиболее прост и распространен способ управления с линейным перемещением магнита. Здесь вполне уместно вспомнить , где магнит укреплен на двери и заставляет срабатывать геркон, когда дверь закрыта.
Способ с угловым перемещением магнита используется намного реже, как правило, в тех случаях, когда другие способы применить по какой -либо причине невозможно.
Перекрытие магнитного поля шторкой использовалось в клавиатурах различных вычислительных устройств, вплоть до девяностых годов прошлого столетия, а может быть можно встретить где-нибудь и до сих пор.
Управление герконом при помощи катушки с постоянным током
Этот способ получил наибольшее распространение при создании герконовых реле . Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп.
Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.
П реимущества и недостатки герконов
Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах.
По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков МегаОм), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт.
Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000Гц, а скорость срабатывания и отпускания находится в пределах (0,5 - 2,0мс) И (0,2 - 1,0мс) соответственно.
Срок службы некоторых герконов доходит до 4 - 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.
Недостатки герконов
На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.
Борис Аладышкин
Геркон
Герконы и герконовое реле
Герко́н (сокращение от «гер метичный [магнитоуправляемый] кон такт») - электромеханическое устройство, представляющее собой пару ферромагнитных контактов, запаянных в герметичную стеклянную колбу. При поднесении к геркону постоянного магнита или включении электромагнита контакты замыкаются. Герконы используются как бесконтактные выключатели , датчики близости и т. д.
Геркон с электромагнитной катушкой составляет герконовое реле .
Существуют также герконы, размыкающие цепь при возникновении магнитного поля, и герконы с переключающей группой контактов.
Герконы различаются также по конструктивным особенностям. Они бывают сухими (с сухими контактами) и ртутными, в которых капля смачивает контактирующие поверхности, уменьшая их электрическое сопротивление и предотвращая вибрацию пластин в процессе работы.
- геркон - это элемент, механически замыкающий (или размыкающий) электрическую цепь при должном изменении напряженности магнитного поля;
- датчик Холла - это полупроводниковое устройство, через которое во время работы протекает электрический ток и возникает поперечная разность потенциалов, пропорциональная напряженности магнитного поля.
Параметры
- Магнитодвижущая сила срабатывания - значение напряженности магнитного поля , при котором происходит замыкание контактов геркона.
- Магнитодвижущая сила отпускания - значение напряженности магнитного поля, при котором происходит размыкание контактов геркона.
- Сопротивление изоляции - электрическое сопротивление зазора между сердечниками (в разомкнутом состоянии).
- Сопротивление контактного перехода - сопротивление контактной области, которая образуется при замыкании сердечников.
- Пробивное напряжение - напряжение, при котором происходит пробой геркона.
- Время срабатывания - время между моментом приложения управляющего магнитного поля, и моментом первого физического замыкания электрической цепи герконом.
- Время отпускания - время между моментом снятия приложенного к геркону магнитного поля, и моментом последнего физического размыкания электрической цепи герконом.
- Емкость - электрическая емкость между выводами геркона в разомкнутом состоянии.
- Максимальное число срабатываний - число срабатываний, при котором все основные параметры геркона остаются в допустимых пределах.
- Максимальная мощность - максимальная мощность, коммутируемая герконом.
- Коммутируемое напряжение
- Коммутируемый ток
Преимущества
- Контакты геркона находятся в вакууме или в инертном газе и слабо обгорают, даже если при замыкании или размыкании между контактами возникает искра.
- Долговечность герконов. Считается, что если не бить геркон и не пропускать очень большие токи, то срок службы геркона бесконечен, (хотя в технических данных на герконы указаны ограничения, 10 8 -10 9 и больше срабатываний).
- Меньший размер по сравнению с классическим реле, рассчитанным на такой же ток.
- Отсутствие необходимости применения тугоплавких и драгоценных металлов для контактов.
- Герконы почти бесшумны.
- Высокое (относительно классических реле) быстродействие.
Недостатки
- Наличие дребезга при включении, что влечет за собой множественные срабатывания за небольшой промежуток времени.
- Дороговизна и больший вес по сравнению с открытыми контактами.
- Необходимость создания магнитного поля.
- Сложность монтажа.
- Хрупкость - герконы нельзя использовать в условиях сильных вибраций и ударных нагрузок.
- Ограниченная скорость срабатывания
- Иногда контакты «залипают» (остаются в замкнутом состоянии) - такой геркон подлежит замене.
Применение
- Клавиатуры - клавишных синтезаторов и компьютеров (в клавиатурах компьютеров практически не используется с середины 1990-х годов) (удачное использование всех достоинств геркона).
- Клавиатуры промышленных приборов, где требуется долговечность и взрывобезопасность.
- Датчики: охранные (датчик открытия двери), велокомпьютеров , верхней крышки ноутбука (открытие и закрытие) и т. п.
- Подводное оборудование: фонари для дайвинга, подводной охоты.
- Лифты: датчики позиционирования кабины
- Телерадиоаппаратура
- Электронные счётчики тока 1 фазные и 3х фазные (используемые в многоквартирных домах,в промышленности)
Основная тенденция - замена герконов твердотельными датчиками Холла .
- Особая область применения - устройства для передачи дискретных сигналов управления и защиты от перегрузок по току высоковольтных электро- и радиотехнических установок, таких как мощные лазеры, радары, радиопередающие устройства, электрофизические установки и др. виды аппаратуры, работающей под напряжениями 10 - 100 кВ. Специально для этих видов аппаратуры В. И. Гуревичем разработаны герконовые реле с высоковольтной изоляцией, так называемые "геркотроны" или "высоковольтные изолирующие интерфейсы", описанные в его книгах (см. ниже).
Герконы это один из элементов коммутации в электрических цепях, которые успешно применяются при определенных условиях. В некоторых случаях реле на герконах являются более эффективной альтернативой электромагнитным реле.
Область применения герконов
Контактные группы на герконах активно используют в электрических схемах охранной сигнализации. Группа контактов на герконах в одном корпусе может одновременно делать переключения в нескольких электрических цепях не связанных друг с другом. В сигнализации это применяют для включения звуковой, световой индикации сработки, для передачи сигналов на дежурный пульт управления.
На предприятиях с взрывоопасными примесями эффективно используют герконы для коммутации электрооборудования различного назначения, так как при замыкании и размыкании контактов нет искр выходящих за пределы герметичной стеклянной колбы корпуса. Для запуска мощных электродвигателей применяют герконы способные подключать цепи с нагрузкой до 45 кВт.
Кроме низковольтного оборудования, есть модели герконов которые используются для замыкания цепей с напряжением от 1000 В до 100 кВ, в релейной защите высоковольтных воздушных линиях для передачи электроэнергии. На таких элементах устанавливают дугогасящие конструкции и дэмпферные приспособления для гашения вибрационных колебаний контактов. Герконовые изделия для коммутации предоставляют возможность развития новых направлений в приборостроении, автоматических устройств управления и защиты в релейных системах.
Принцип работы герконов
Работа основана на использовании магнитных сил поля возникающих между ферромагнитными элементами в герконе. Эти силы могут деформировать и перемещать, феритовые пластины контактов, при этом они замыкаются или размыкаются. Магнитное поле для намагничивания ферромагнитных контактов в зоне размещения прибора создается двумя способами:
- Катушкой наматываемой на корпус, на которую подается постоянный ток;
Совет №1 величину магнитного потока можно регулировать самостоятельно, наматывая провод на корпус катушки до момента срабатывания контактов
- Внешним постоянным магнитом.
Простейшая конструкция геркона
Виды герконовых реле
Большой спрос на использование герконов в самых различных отраслях с учетом условий производства порождает большое количество моделей изделия. Все герконовые реле можно разделить по виду контактов:
- С разомкнутыми контактами в исходном состоянии;
- С замкнутыми контактами в исходном состоянии;
- С комбинированными группами контактов, когда в одном корпусе находятся нормально замкнутые и разомкнутые герконы.
По виду конструкции герконовые реле разделяют на два вида:
- Сухие – с наполнением колбы инертным газом или с вакуумом внутри, это делается для увеличения устойчивости контактов к большим токовым нагрузкам;
- Мокрые – герконы в точках соприкосновения контактов имеют жидкий металл, ртуть при вибрации играет роль амортизатора, предотвращая размыкание.
Основные технические характеристики герконов
По причине большого разнообразия конструкций герконовых реле, с различными функциональными назначениями есть характеристики, которые актуальны только для конкретного вида. Рассмотрим основные, которые присущи для всех разновидностей герконовых реле:
- Уровень вибрации — при превышении заданного уровня стеклянные колбы герконов могут треснуть, контакты замкнуться или разомкнуться. Измеряется та величина количеством колебаний в секунду;
- Максимальное для контактов напряжение в коммутируемой электросети измеряется в вольтах и кВ, зависит от сечения и материала контактов, записывается как Uмах;
- Допустимая мощность , при которой контакты не теряют своих ферромагнитных свойств и способности выполнять свои функции. Мощность геркона определяют материал и сечениеконтактов, чем больше сечение тем больше допускается электрическая мощность сети, обозначается в технической документации как Рmax измеряется в Вт; кВт;
- Число коммутационных циклов – количество размыканий и замыканий до износа контактов, при котором они уже не могут выполнять своего функционального назначения. В некоторых технических источника это называется ресурс работы, обозначается как N мах, где N – количество срабатываний обычно исчисляется от 4-5 милиардов;
- Время отпускания – промежуток времени от момента обесточивания катушки до перехода контактов в исходное состояние 0,2 — 1мкс;
- Время реакции – время от момента подачи тока на катушку до замыкания или размыкания контактов 0,5 – 2 мкс;
- Емкость контактов – Ск, может быть только в разомкнутом состоянии контактов, зависит от промежутка между ними и геометрических размеров контактных пластин.
Последние два параметра в технической документации могут формулировать как скорость замыкания и размыкания контактов в миллисекундах, записываются как Тср и Тотп. Эти величины показывают быстродействие геркона, малогабаритные модели имеют более высокое быстродействие. Частота коммутационных циклов может достигать 1000 Гц.
- Напряжение пробоя – величина напряжения (десятки кВольт), при которой между ферритовыми контактами в разомкнутом состоянии пробивает электрическая дуга или искра. Это напряжение характеризует электрическую прочность геркона, которая во многом зависит от материалов, из которых сделаны контакты, покрытия и зазора между ними;
- Напряженность поля – величина, при которой происходит переключение контактов, иногда этот параметр называют магнитодвтжущая сила Vср – срабатывания. Под срабатыванием понимается замыкание контактов и Vотп. Отпускания, подразумевают размыкание контактов.
- Сопротивление контактного перехода – имеет два значения, измеряется в замкнутом состоянии Rк (контакта) очень малые величины. В разомкнутом состоянии Rиз(изоляции) – сопротивление изоляции в пределах десятков МОм.
Таблица: ХАРАКТЕРИСТИКИ ГЕРКОНОВ НА ЗАМЫКАНИЕ КОНТАКТОВ
Модель геркона | KЭM-1 | KЭM-6 | MK36701 | MKA-27101 |
Вид модификации геркона | стандарт | стандарт | промежуточные | промежуточные |
сила магнитного поля, А | 54…110,1 | 37…50 | 51…80 | 31…60 |
Интервал времени срабатывания, мс | 3 | 2 | 2 | 1,5 |
31 | 11 | 20 | 11 | |
221 | 151 | 101 | 111 | |
Величина тока коммутации, А | 1,1 | 0,26 | 0,36 | 0,36 |
Напряжение пробоя, В | 501 | 501 | — | 501 |
Сопротивление контактов замкнутого геркона, Ом | 0,09 | 0,11 | 0,071 | 0,121 |
частота замыканий, Гц | 101 | 21 | 50 | 100 |
Рабочая температура, °С | -61…+123 | -61…+125 | -61…+100 | -61…+100 |
Допустимый диапазон частот вибрации, Гц | 1…601 | 1…50 | 1…600 | 1…601 |
Длина и Ø баллона, мм | 50/80 | 36/63,5 | 36/63,5 | 27/45,6 |
Параметры переключающих и измерительных герконов
Марки герконов | МКС-27102 | КЭМ-3 | МКС-15101 | МКА-52181 | МКА-27801 |
сила магнитного потока, А | 51…74 | 31…100 | 31…45 | 81 | 31…100 |
1,51 | 1,51 | 1,51 | 2.1 | 2.1 | |
Допустимая мощность коммутации, Вт | 31 | 31 | 0,36.1 | 1,49 | 1 |
Допустимое напряжение коммутации, В | 151 | 125 | 35 | 35 | 301 |
Допустимый ток коммутации, А | 1.1 | 1.1 | 0,011 | 0,11 | 0,011 |
Сопротивление замкнутых контактов, Ом | 0,151 | 0,31 | 0,151 | 0,081 | 0,11 |
частота замыканий и размыканий, Гц | 51 | 101 | 100,1 | 100,1 | 50.1 |
Интервалы рабочей температуры, °С | -61… + 125 | -61… + 125 | -61… + 125 | -61… + 85 | -61… + 85 |
Диапазон сачтоы вибрации, Гц | 1…2000.1 | 1…2000.1 | 1…2000,1 | 1…601 | 5…601 |
Длина и Ø баллона, мм | 27/67 | 18/54 | 15/50 | 53/79,5 | 28/52,3 |
герконы с большой мощностью
Марка геркона | MKA-52141 | MKA-52142 | MKA-52202 |
Модификация геркона | высоковольтный | высоковольтный | мощный |
Сила магнитного потока переключения, А | 100…200,1 | 300.1 | 180…300.1 |
Временной интервал переключения, мс | 3,1 | 3,1 | 8,1 |
Допустимая мощность коммутации, Вт | 51 | 51 | 251 |
Допустимое напряжение коммутации, В | 5000.1 | 10000.1 | 380.1 |
Допустимый ток коммутации, А | 3,1 | 3,1 | 4,1 |
Напряжение пробоя, В | 10000.1 | 15000.1 | 800.1 |
Сопротивление между замкнутыми контактами, Ом | 0,1 | 0,1 | 0,3 |
Диапазон рабочих температур, °С | -40…+85 | -60…+100 | -45…+60 |
Допустимые частоты вибрационные нагрузки, Гц | 1…600 | 1…60 | 1…10 |
Длина колбы и Ø мм | 53/5,4/80 | 52/5,5/90 | 52/7,0/0 |
Особенности управления контактами геркона
Можно выделить два способа управления, каждый из которых имеет свои конструктивные особенности:
Управления по средствам магнитного поля от постоянного магнита.
Геркон устанавливается неподвижно, магнит перемещается в пространстве относительно геркона, при приближении на расстояние когда сила магнитного поля достаточная для переключения контактов происходит срабатывание. Аналогично при удалении магнита от геркона, поле ослабеет, и контакты геркона возвращаются в исходное состояние.
Классическим примером такого варианта является применение геркона в системах охранной сигнализации, когда геркон устанавливается на дверную коробку, а магнит на двери, можно наоборот.
Пример монтажа герконовых датчиков на двери
А – контакты находятся в разомкнутом состоянии;
Б – контакты замыкаются сигнализация срабатывает:
Совет №2 Рекомендуется в этом случае использовать датчики цилиндрической формы в пластиковом корпусе. Они незаметно устанавливаются в просверленные отверстия в коробке и двери. Для маскировки сверху можно наклееить эластичные заглушки соответствующего цвета.
В зависимости от условий эксплуатации и функционального назначения, конструктивные решения могут быть разные:
- Магнит может вращаться вокруг оси, меняя полярности тем самым переключать контакты геркона.
- Между герконом и магнитом может перемещаться экранирующая магнитная шторка, для шунтирования поля;
- Подвижным может быть любой элемент, несколько, элементов или все, шторка, магнит и геркон, все определяют условия конкретного объекта.
Управление герконом по средствам катушки, через которую пропускается постоянный ток
Такой способ получил широкое применение в конструкциях герконовых реле с небольшим количеством групп контактов. В полый сердечник корпуса, на который намотана обмотка, помещают один или несколько герконов.
Примером такого использования являются токовые датчики защиты в электросетях питающих оборудование. Катушки наматываются достаточно толстым проводом, чтобы выдерживать токовые нагрузки, используемые на производственном процессе. При превышении тока магнитное поле отключает контакты геркона, оборудование обесточивается. Настройка осуществляется перемещением по резьбовому соединению геркона внутри катушки вдоль оси.
Достоинства герконовых переключателей
- В отличие от обычных реле с электромагнитными катушками и сердечником в герконовых нет механических элементов, привода рычага для перемещения контактов и стального сердечника в катушке. За счет этого конструкция получается меньших габаритов.
- Многие показатели герконовых реле в сотни раз выше, чем обычных реле, сопротивление изоляции, пробивное напряжение, соответственно электрическая прочность.
- Очевидно, что обычные реле не могут сравниться с герконами по быстродействию. Частота коммутации контактов на герконах 1000Гц;
- Ресурс работы герконов исчисляется в миллиардах циклах переключений;
Недостатки
Не смотря, на все совершенства, имеются и недостатки:
- Не большая мощность;
- Не большое количество контактов в одной колбе;
- В сухих вариантах может быть механическое дребезжание контактами;
- Хрупкий корпус стеклянного баллона;
- В неэкранированном корпусе может быть влияние сторонних магнитных полей.
Краткая история создания герконов
Коммутационные устройства или просто контакты очень широко применяются в различной электрической и радиотехнической аппаратуре. С целью улучшения эксплуатационных свойств, прежде всего срока службы и надежности соединения и были разработаны магнитоуправляемые герметизированные контакты получившие название герконы .
Первые образцы таких контактов появились еще в 30 - е годы прошлого столетия, а первый магнитоуправляемый контакт был изобретен еще в 1922 году в Петербурге профессором В. Коваленковым, за что ему было выдано авторское свидетельство СССР №466. Конструкция такого контакта показано на рисунке 1.
Устроен такой контакт следующим образом. К сердечнику 3 из магнитомягкого материала через изолирующие прокладки 5 прикреплены контакты 1 и 2, выполненные также из магнитомягкого материала. При пропускании тока через катушку 4 в сердечнике 3 возникает магнитное поле и намагничивает контакты 1 и 2, которые замыкаются. Размыкание контактов происходит при прекращении тока через катушку.
Рисунок 1. Магнитоуправляемый контакт профессора В. Коваленкова
По сути это был самый первый магнитоуправляемый контакт, только без герметизирующей оболочки. В герметизирующую оболочку подобный контакт был впервые помещен американским инженером W.B. Ellwood лишь в 1936 году. В семидесятых годах прошлого столетия герконы достигли своего максимального развития, и нашли широкое применение в различных устройствах электронной техники.
В настоящее время герконы используются менее интенсивно, поскольку их «вытеснили» . Но в некоторых случаях герконы остались вне конкуренции, что обусловлено простотой применения, гальванической развязкой от источника питания, свойствами «сухого контакта», поэтому герконы до сих пор применяются в различных схемах и устройствах.
В тех случаях, когда требуется высокая надежность и долговечность коммутирующего элемента герконы просто незаменимы. Как составная часть герконы входят в конструкции различных датчиков, электромагнитных реле, особенно слаботочных, а также позиционных переключателей и некоторых других устройств.
Разновидности герконов
Так же, как и обычные контакты, герконы могут быть замыкающие (1 нормально - разомкнутый контакт), переключающие (1 переключающий контакт) и работающие на размыкание (1 нормально - замкнутый контакт). Это деление по функциональным признакам.
По признакам конструктивно - технологическим герконы делятся на две большие группы: с сухими контактами и с контактами ртутными. Первая разновидность так и называется сухими герконами, а вторая ртутными герконами. Собственно, в работе сухих герконов, по сравнению с обычными контактами, ничего особенного нет.
В ртутных герконах внутри герметичного стеклянного корпуса кроме контактов находится еще капелька ртути. Назначение этой ртутной капельки - смачивание контактов во время срабатывания для улучшения качества контакта за счет уменьшения переходного сопротивления, а кроме того для избавления от дребезга контактов.
Дребезгом называется вибрация контактов при замыкании и размыкании, что при однократном срабатывании приводит к многократной коммутации передаваемого сигнала, а кроме того к значительному увеличению времени срабатывания.
Представьте себе, что такой дребезг будет присутствовать во время переключения входного сигнала! В случае, когда такой дребезжащий контакт работает совместно с цифровыми микросхемами, приходится принимать меры по подавлению дребезга в виде RC - цепочек или .
Различные контакты, в том числе и герконовые, применяются и в , но в них дребезг контактов подавляется программным способом. Это также снижает быстродействие системы в целом.
Конструкция герконов
Конструкция различных типов герконов представлена на рисунке 2.
Рисунок 2 . Конструкция герконов
Все герконы представляют собой герметичный стеклянный баллон , внутри которого находится контактная группа . Контакты представляют собой магнитные сердечники, вваренные в торцы баллона. Наружные концы сердечников предназначены для подключения к внешней электрической цепи.
Наибольшее распространение получил геркон с контактной группой, работающей на замыкание или, как показано на рисунке «разомкнутый». Каждый контакт - сердечник выполнен из ферромагнитной упругой проволоки, которая расплющена до прямоугольной формы. Для изготовления сердечников применяется пермаллоевая проволока диаметром 0,5 - 1,3 мм в зависимости от мощности геркона и, соответственно, его габаритов.
Непосредственно контактирующие поверхности покрыты благородным металлом, золотом, палладием, родием, серебром и сплавами на их основе. Такое покрытие не только уменьшает , но и способствует повышению коррозионной стойкости контактной поверхности.
Внутренне пространство баллона заполнено инертным газом (водородом, аргоном, азотом или их смесью) или просто вакуумировано, также способствует уменьшению коррозии контактов и повышению их надежности. При изготовлении сердечники располагают таким образом, чтобы между ними оставался зазор, кстати, определенного размера.
Рис. 3. Геркон
Принцип работы геркона
Для того, чтобы вызвать срабатывание контактной группы, необходимо вокруг геркона создать магнитное поле достаточной напряженности. При этом абсолютно не важно, как это поле будет создано, либо просто постоянным магнитом, либо электромагнитом. Силовые линии внешнего магнитного поля намагничивают внутренние контакты - сердечники геркона, в результате чего они преодолевают силы упругости, притягиваются и замыкают электрическую цепь.
В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся. Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов.
Несколько по-иному действует геркон, работающий на размыкание. Его магнитная система устроена так, что при воздействии магнитного поля контакты - сердечники намагничиваются одноименно, поэтому отталкиваются друг от друга, размыкая электрическую цепь.
У переключающего геркона один из трех контактов, как правило, нормально - замкнутый выполняется из металла немагнитного, а оба нормально - разомкнутых контакта из ферромагнитного, как было сказано чуть выше. Поэтому при воздействии на геркон магнитного поля нормально разомкнутые контакты просто замыкаются, а немагнитный нормально - замкнутый, оставаясь на своем первоначальном месте, размыкается.
Примечание. Нормально - разомкнутый контакт , это который разомкнут при отсутствии управляющего воздействия, в данном случае магнитного поля. Соответственно нормально - замкнутый контакт замкнут при отсутствии магнитного поля.
Конечно, магнитное поле присутствует всегда, например магнитное поле Земли. И нельзя, вроде бы, сказать про отсутствие магнитного поля совсем. Но магнитное поле Земли для срабатывания геркона недостаточно, поэтому им можно пренебречь и сказать об отсутствии магнитного поля, в данном случае внешнего.
Продолжение читайте в следующей статье.
Продолжение статьи:
Борис Аладышкин
Их конструкция имеет ряд серьезных недостатков. Среди них в первую очередь следует отметить ненадежность контактной системы, а также трущиеся металлические детали, при износе которых снижается общая работоспособность прибора. В результате, были созданы герметические магнитоуправляемые контакты - геркон овое реле, принцип действия которого позволил избавиться от минусов, присущим электромагнитным устройствам.
Характеристики геркон овых реле
Г еркон это устройство состоящее из двух контактов, изготовленных из ферромагнитного сплава. Они размещены в специальной колбе, позволяющей осуществлять контроль за их работой. В случае приближения к контактам постоянного магнита, происходит замыкание с образованием непрерывной цепи. В связи с этим геркон овое реле известны как концевые выключатели.
Все геркон ы маркируются в соответствии с областью применения. Например, обозначение КЭМ относится к коммутации электрических механизмов, буква «А» означает возможность работы в любом климате, буква «В» предполагает работу устройства только в помещениях. МКА является магнитным коммутатором для любых климатических условий.
Сопротивление стандартно переключающего путевого геркон а составляет примерно 0,2 Ом. У геркон а, работающего на размыкание этот показатель составляет как минимум 1 кОм. Эти показатели позволяют существенно ускорить переключение цепей. Магнитные выключатели этого типа применяются для силовых цепей напряжения и обладают улучшенными показателями. Размыкающие магнитные геркон овые переключатели применяются во многих схемах, в основном для компьютерных или охранных систем, контрольных датчиков и многих других устройств.
Принцип действия геркон ового реле
В работе нормально замкнутого геркон а используется принцип взаимодействия сил, возникающих между магнитными телами. В электромагнитном поле появляются и передаются импульсы, начинают двигаться электроны, вызывающие перемещение и деформацию токопроводящих контактов.
Изменение положения и состояния магнитного концевика в конкретном устройстве или в цепи, приводит к размыканию контактов. Дальнейшей изменение их положения происходит под действием других подвижных элементов - кнопок, концевых пружин, дисков и т.д. Таким образом, происходит поочередное включение и выключение контактов.
Данный принцип работы стал основой функционирования промежуточного геркон ового реле, действующего на замыкание. Его конструкция состоит из двух сердечников и герметичного прочного стеклянного баллона, наполненного газом или газовой смесью. Сам баллон находится под постоянным действием электрического тока. Газы препятствуют окислению металлических сердечников.
При подключении к такому геркон у постоянного тока, происходит образование мощного вокруг сердечников. Наличие специальных зазоров значительно облегчает прохождение этого поля между частями реле. Далее наступает возникновение автономного магнитного потока, движущегося в заданном направлении. Соединение сердечников значительно ускоряется за счет их покрытия драгоценными металлами с более низким сопротивлением, чем у обычного материала.
Постоянный магнитный поток обеспечивается особенностями конструкции геркон ового реле. Однородность и целостность деталей создается за счет литья и штамповки, а для соединения их между собой используются сварочные процессы. Поэтому катушка реле намагничивается в минимальной степени. По такой схеме работает геркон овое реле, принцип действия которого достаточно простой. В случае прекращения подачи постоянного тока, произойдет размыкание контактов, а магнитный поток исчезнет.