Ультразвуковой hc sr04 управление насосом. Как подключить ультразвуковой дальномер HC-SR04 к Arduino
Ардуино – уникальная система, представляющая собой пластилин в руках инженера, из которого он может слепить, что пожелает. Возможно это благодаря большому разнообразию датчиков и модулей разных направленностей. От простых чипов, измеряющих силу тока, до вещей вроде Arduino hc hc sr04.
Это специальный датчик, позволяющий, при помощи ультразвуковых волн, измерить расстояние до объекта, на который его направили. Несложно догадаться, что проще всего его применить для создания простого дальномера. Рассмотрим Arduino hc sr04 и какие нюансы в работе с ним стоит учитывать, прежде чем начать собирать проект.
1. Основы сборки дальномера на Ардуино с помощью датчика HC SR04
Если вы собираетесь собрать дальномер на Ардуино, то без HC SR04 просто не обойтись. Ведь именно этот модуль чаще всего применяют в подобных системах из-за его высокой востребованности, по причине простоты работы, доступности и низкой стоимости. При этом точность показаний остаётся на высоте, что очень важно в подобных системах. Из данного чипа можно собрать не только дальномер на Ардуино, но и полноценного робота, который будет чувствовать расстояние до объекта и обходить любое препятствие.
Однако сегодня мы рассмотрим именно вариант с дальномером на Аrduino, так как он идеально подойдёт для новичков в сфере, которые ещё не слишком хорошо разбираются в основах. Если же вы захотите затем модифицировать своё изобретение, то можно научить его моделировать полноценную трехмерную карту помещения, что будет удобно для тех, кто занимается дизайном и конструированием мебели или зданий. Но сначала стоит рассмотреть, как вообще работает данный прибор и какие основы сборки стоит усвоить, прежде чем создать лазерный дальномер на Ардуино своими руками.
Наш дальномер на Arduino будет основан на сонаре, применяемом в природе дельфинами, для измерения расстояния до объектов и спокойного обхождения препятствий. Делается это с помощью физических свойств ультразвуковых волн, которые способны отражаться, сталкиваясь с твердыми объектами, и возвращаться обратно к датчикам.
Далее в ход вступает программный код, который высчитывает, сколько времени прошло между посланием и возвратом волны, делит его на два и с помощью формул и скорости звука высчитывает усреднённое расстояние до объекта.
Почему усреднённое?
Дело в том, что любой ультразвуковой датчик все равно будет ошибаться на десятые доли метра, связано это с тем, что различные материалы, окружение и прочие переменные могут повлиять на скорость движения и отражения от поверхности звука. А в данном проекте мы берём идеальную систему, которая в реальном мире работать не может.
Можно постараться учесть все эти факторы, но каждую переменную вы все равно не запрограммируете, поэтому наша задача – получить данные, максимально приближённые к показаниям профессиональных приборов, ведь дальномер Ардуино всё ещё далёк от них по точности.
Есть и ещё один нюанс, который вам стоит заранее учесть, собирая ультразвуковой дальномер Arduino – не все поверхности подходят для измерения. Дело в том, что некоторые материалы способны поглощать звук или слишком сильно искажать его движение, подобно тому, как черная рубашка поглощает электромагнитную световую волну.
Соответственно, лучше всего применять прибор к гладким и плоским поверхностям, которые не будут нарушать движения УВ, что также ограничивает его функционал. Но благодаря низкому ценнику и удобству работы датчик всё ещё остается достаточно популярным.
2. Что будет в уроке?
Мы соберем дальномер, который будет работать по следующему принципу: при приближении объекта на расстояние менее 4 сантиметров - загорается красный светодиод, иначе горит зеленый.
Достаточно простой пример, в котором мы проверим точность измерения расстояния дальномером hc-sr04. Основа проверки точности станет простая линейка 🙂
3. Инструменты
Чтобы лишний раз не бегать в магазин прямо посреди процесса сборки системы, лучше заранее подготовить все инструменты, что могут вам пригодиться. Так, стоит побеспокоиться, чтобы под рукой были:
- Паяльник. Хорошим выбором станут приборы с регулируемой мощностью, их можно приспособить к любой ситуации.
- Проводники. Естественно, датчик необходимо будет подсоединять к МК, и для этого не всегда подходят стандартные пины.
- Переходник под usb-порт. Если на вашем микроконтроллере нет встроенного порта, побеспокойтесь о том, чтобы его можно было подключить к ПК другим способом. Ведь вам необходимо будет подгружать дополнительные библиотеки и новую прошивку в ваш проект.
- Припой, канифоль и прочие мелочи, в том числе изолированное рабочее пространство.
- Сам чип и МК, а также, при необходимости, корпус будущего устройства. Наиболее опытные инженеры предпочитают распечатывать оболочку для своих проектов на 3Д принтере, однако, если вы живёте в крупном городе, не обязательно тратиться. Можете поискать компании, дающие в аренду принтеры.
Стоит понимать, что дальномер Arduino относится к приборам бесконтактного типа и способен обеспечивать точные измерения. Но всё же не стоит забывать, что профессиональные устройства используют совершенно другие технологии и проходят длительную калибровку под все материалы, а соответственно, в любом случае, окажутся лучше. Также у нашего проекта будет ограниченный диапазон измерения расстояний, от 0.03 до 4 метров, что подойдёт не во всех случаях.
Но, что хорошо, на работу устройства не оказывается никакого влияния со стороны ЭМ излучений и солнечной энергии. А в комплекте к датчику уже находятся нужные ресиверы и трансмиттеры, которые пригодятся, когда вы будете собирать ультразвуковой дальномер Ардуино.
Важно! В нашем уроке можно будет ничего не паять, т.к. мы будем использовать макетную плату и провода-перемычки. Но если вы захотите в итоге собрать законченное устройство - вам пригодится всё что мы указали выше.
4. Комплектующие
Так как мы решили пока ничего не паять - оптимальный набор деталей будет следующим:
- 1 - Arduino UNO R3 (или аналог)
- 1 - Ультразвуковой датчик расстояния HC-SR04
- 1 - красный светодиод
- 1 - зеленый светодиод
- 2 - резистор 560 Ом
- 1- макетная плата
- 8 - проводов-перемычек (папа-папа)
- 1 - линейка для измерения расстояния
5. Подключение датчика HC SR04
С подключением датчика не должно возникнуть никаких проблем. Достаточно с помощью проводников соединить пин на питание с источником или МК, а ввод и вывод, соответственно, присоединить непосредственно к МК. Воспользуйтесь схемой ниже для сборки схемы:
У самого сенсора SR04 следующие характеристики от которых вам стоит отталкиваться:
- Напряжение для питания – 5В.
- Работает в цепях с силой тока 15 мА.
- Если датчик не используется, то для поддержания его в пассивном состоянии всё ещё требуется до 2 мА.
- Угол обзора у модуля небольшой, всего 15 градусов.
- Разрешение сенсора – 3 десятых см.
- А вот угол для измерений составляет уже приятные 30 градусов.
Также на датчике имеются четыре вывода по стандарту 2.54 мм. В них входит контакт для питания с положительным напряжением +5В, пины для ввода и вывода сигнала и заземление.
В конечном варианте выглядеть устройство должно примерно таким образом:
6. Код
Код для нашего устройства ниже. Помните, что красный светодиод должен загораться при расстоянии менее 4 см.
/* Arduino HC-SR04 ультразвуковой датчик расстояния VCC подключается к 5v, GND к GND Echo к 13 пину на Arduino, Trig к 12 пину на Arduino Позитивная нога красного светодиода к 11 пину на Arduino Позитивная нога зеленого светодиода к 10 пину на Arduino */ #define trigPin 13 #define echoPin 12 #define led 11 #define led2 10 void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); pinMode(led, OUTPUT); pinMode(led2, OUTPUT); } void loop() { long duration, distance; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = (duration/2) / 29.1; if (distance < 4) { // На этом этапе происходит вкл/выкл светодиода digitalWrite(led,HIGH); // когда загорается красный, зеленый обязан выключится digitalWrite(led2,LOW); } else { digitalWrite(led,LOW); digitalWrite(led2,HIGH); } if (distance >= 200 || distance <= 0){ Serial.println("Out of range"); // Вне диапазона } else { Serial.print(distance); Serial.println(" cm"); // тут тоже можно указать " см" } delay(500); }
Единственное, о чем стоит помнить, – далеко не все функции и библиотеки написаны профессионалами. Многие из них создаются такими новичками, как и вы, соответственно, старайтесь просматривать код, прежде чем заключать, что датчик не работает или выдаёт неправильные данные.
Но значительно лучше будет изучить основы программирования и С++, чтобы в дальнейшем самостоятельно писать многие вещи самому.
7. Запуск и настройка
При первом запуске устройства происходит следующее:
- Подается импульс на вход Trig.
- В самом датчике сигнал преобразуется в 8 импульсов, у которых частота достигает 40 кГц, их он, соответственно, и посылает вперёд.
- Доходя до препятствия, импульсы отражаются и возвращаются на приемник, происходят моментальные расчеты в МК, и вся информация подаётся на устройство вывода. В нашем случае – это консоль ПК, но в будущем мы сделаем урок, где данные будут выводиться на LED-экранчик.
При первом запуске мы используем линейку, которая позволит сравнить точность измерений. Запустив устройство, проверьте данные, которые будут выведены в консоли.
Датчик пользуется большой популярностью и всё больше людей пишут свои решения для работы с ним.
Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.
1. Принцип действия
На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно. Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле: s = v*t где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с. Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера. Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить. Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер. Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном. Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.2. Ультразвуковой дальномер HC-SR04
В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см. Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Версия, которая работает хорошо выглядит так:А вот версия, которая может давать сбои:
3. Подключение HC-SR04
Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:HC-SR04 | GND | VCC | Trig | Echo |
Arduino Uno | GND | +5V | 3 | 2 |
4. Программа
Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo , перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo . Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем. int echoPin = 2; int trigPin = 3; void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); } void loop() { int duration, cm; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); cm = duration / 58; Serial.print(cm); Serial.println(" cm"); delay(100); } Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука: s = duration * v = duration * 340 м/с Переводим скорость звука из м/с в см/мкс: s = duration * 0.034 м/мкс Для удобства преобразуем десятичную дробь в обыкновенную: s = duration * 1/29 = duration / 29 А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2: s = duration / 58 Теперь мы знаем откуда взялось число 58 в программе! Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.
Задания
Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.- Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
- Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.
Заключение
Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.В данное статье рассмотрим принцип работы ультразвукового дальномера HC-SR04.
Принцип работы ультразвукового дальномера основан на испускании ультразвука и его отражения от впереди находящихся предметов. Исходя из времени возвращения звука, по простой формуле, можно рассчитать расстояние до объекта. Дальномер HC-SR04 является самым дешевым дальномером для хоббийного использования. При малой цене обладает хорошими характеристиками, способен измерять расстояние в диапазоне от 2 до 450см.
Используемые компоненты (купить в Китае):
Принцип работы датчика можно условно разделить на 4 этапа:
1. Подаем импульс продолжительностью 10 мкс, на вывод Trig.
2. Внутри дальномера входной импульс преобразуется в 8 импульсов частотой 40 КГц и посылается вперед через "T глазик"
3. Дойдя до препятствия, посланные импульсы отражаются и принимаются "R глазиком". Получаем выходной сигнал на выводе Echo.
4. Непосредственно на стороне контроллера переводим полученный сигнал в расстояние по формуле:
ширина импульса (мкс) / 58= дистанция (см)
ширина импульса (мкс) / 148= дистанция (дюйм)
Подключение к Arduino
Модуль оборудован четырех-пиновым разъемом стандарта 2.54мм
VCC : "+" питания
TRIG (T) : вывод входного сигнала
ECHO (R) : вывод выходного сигнала (Длина сигнала зависит от расстояния объекта до датчика)
GND : "-" питания
Подключив датчик к Arduino остается только залить скетч для работы. В приведенном ниже скетче информация о расстоянии будет отсылаться в порт компьютера, а также при дистанции менее 30 сантиметров зажигать светодиод подключенный к 13 пину.
пример программного кода:
#define Trig 9 #define Echo 8 #define ledPin 13 void setup //инициируем как выход pinMode (Echo, INPUT ); //инициируем как вход pinMode (ledPin, OUTPUT ); Serial .begin (9600); /* задаем скорость общения. В нашем случае с компьютером */ } unsigned int impulseTime=0; unsigned int distance_sm=0; void loop () { digitalWrite (Trig, HIGH ); /* Подаем импульс на вход trig дальномера */ delayMicroseconds (10); // равный 10 микросекундам digitalWrite (Trig, LOW ); // Отключаем impulseTime=pulseIn (Echo, HIGH ); // Замеряем длину импульса distance_sm=impulseTime/58; Serial .println (distance_sm); // Выводим на порт if (distance_sm<30) // Если расстояние менее 30 сантиметром { digitalWrite (ledPin, HIGH ); // Светодиод горит } else { digitalWrite (ledPin, LOW ); // иначе не горит } delay (100); /* ждем 0.1 секунды, Следующий импульс может быть излучён, только после исчезновения эха от предыдущего. Это время называется периодом цикла (cycle period). Рекомендованный период между импульсами должен быть не менее 50 мс. */ }Дополнительный пример работы:
Взаимодействие дальномера и сервопривода. Дистанция, измеряемая дальномером преобразуется в угол поворота сервопривода
Пример программного кода
//Тестировалось на Arduino IDE 1.0.1
#include
Для измерения расстояния до объектов, можно воспользоваться ультразвуковым дальномером HC-SR04, который работает по принципу локатора, как у летучих мышей. С помощью подобного датчика можно конструировать различных роботов, которые будут объезжать препятствия, собирать схемы автоматического включения освещения либо другой нагрузки, собирать ультразвуковую охранную систему. Дальномер HC-SR04 представляем из себя готовый модуль, который можно подключать к различным микроконтроллерам, свои примеры буду проводить совместно с китайским аналогом Arduino UNO.
На лицевой стороне датчика находятся два сенсора, передающий (T) и принимающий (R). Передающий сенсор генерирует звуковые импульсы с частотой 40 кГц. Достигнув препятствия, импульс отражается и улавливает принимающим сенсором. С достаточно высокой точностью можно определить расстоянию до объекта, которое может составлять от 2 см до 4 м. На работу датчиков не влияет солнечный свет и цвет объекта.
На обратной стороне датчика находится электроника. Микросхема MAX3232 - управляет передающим сенсором. Операционный усилитель LM324 усиливает сигнал, полученный с принимающего сенсора.
Для подключения к микроконтроллеру, используется 4 пина:
Vcc
– подключается к пину 5V Arduino.
Trig
– цифровой вход, на него подаётся логическая единица, длительностью 10 мкс. Затем датчик передаёт 8 циклов ультразвукового сигнала на частоте 40 кГц. Когда будет получен отраженный сигнал, будет рассчитано расстояние до объекта.
Echo
– цифровой выход. На него будет подана логическая единица, после завершения расчётов. Время подачи логической единицы, пропорционально измеренному расстоянию.
Trig и Echo подключаются к цифровым выводам Arduino, к каким именно, задаётся в скетче.
Gnd
– соединяется с соответствующим пином платы Arduino.
Схема подключения HC-SR04 к Arduino, на примере китайского аналога Uno.
Запишем в Ардуино скетч №1 , который будет изменять расстояние до объекта. В примерах, пин «Trig » подключен ко 2 пину Uno, а пин «Echo » на 3 пин.
int TrigPin = 2;//пин Trig подключаем ко 2-му пину Arduino. int EchoPin = 3;//пин Echo подключаем ко 3-му пину Arduino. void setup() { |
Строка «duration = duration/29/2; » вычисляет расстояние в «см », если нужно производить расчёты в дюймах, строка должна выглядеть так: «duration = duration/74/2; ».
Результат выполнения скетча будет отображаться в окне монитора последовательного порта.
Скетч №2 включает встроенный на плате Uno светодиод, если расстояние до объекта менее 50 см. Светодиод висит на 13 пине.
int TrigPin = 2; int EchoPin = 3; int LedPin = 13; void setup() { |
Если вместо светодиода, подключить лампу накаливания, как это описано в статье « », у нас получится простая система автоматического освещения. Разместив подобную конструкцию в каком то помещении, при попадании посетителя в зону действия дальномера, в помещении автоматически включится свет. Ток покоя дальномера составляет менее 2 мА.
В скетче №3 заменим светодиод на пьезоэлемент (пищалка, зуммер), которая будет издавать звук, если расстояние до объекта менее 50 см. Таким образом у нас получается простой звуковой радар или звуковая сигнализация.
Подобные «пищалки» применяются в компьютерах для оповещения BIOS, а так же в детских игрушках со звуком.
Схема подключения простая, чёрный провод зуммера подключаем к пину GND ардуино, красный к любому свободному цифровому пину, с функцией ШИМ (3,5,6,9,10,11,13). В примере это пин 5. Подключать пьезоизлучатель будем с помощью функции analogWrite() . С этой функцией нельзя изменять тональность звука, звук будет постоянно на частоте около 980 Гц.
int TrigPin = 2; int EchoPin = 3; int BeepPin = 5; void setup() { |
Если расстояние до объекта будет менее 50 см, зуммер издаст звук.
В скетче №4 мы так же будем использовать зуммер, но только с функцией tone() , которая будет позволять менять тональность звука, при разных ситуациях.
int TrigPin = 2; int EchoPin = 3; int BeepPin = 5; void setup() { |
В строке " tone(BeepPin, 500) ;" параметром "500 " задаётся частота звука - 500 Гц. Этот параметр можно выставлять от 31 Гц и до пределов, которыми ограничены параметры пьезоизлучателя и человеческого слуха. Данный скетч будет повторять эксперимент скетча №3, только с использованием функции tone(), которая будет устанавливать частоту звука.
В скетче №5 попробуем изменять тональность звука. При расстоянии более 50 см, будет издаваться звук, частотою 1000Гц. Если расстояние до объекта будет менее 50 см, звук изменит частоту на 500Гц.
int TrigPin = 2; int EchoPin = 3; int BeepPin = 5; void setup() { |
Используя функцию tone() нужно обратить внимание на то, что она мешает использовать ШИМ на пинах 3 и 11 Ардуино, (на платформу Mega это не распространяется). Допустим, в моих примерах функция tone() вызывается на 5 пине, но она может мешать работе ШИМ на выводах 3 и 11, это нужно учитывать при построении дальнейших своих устройств. Ещё один момент, с функцией tone() нельзя одновременно использовать более одного пьезоизлучателя. Для того что бы включить звук на втором пьезоизлучателе, первый обязательно нужно отключить функцией noTone() .
В процессе данных экспериментах выяснил, что более точное определение расстояния производится с расстоянием до 2 м. Так же, дальномер до исследуемого объекта нужно располагать под прямым углом, поскольку эффективный угол наблюдения порядка 15°.
Ультразвуковые датчики расстояния Ардуино очень востребованы в робототехнических проектах из-за своей относительной простоты, достаточной точности и доступности. Они могут быть использованы как приборы, помогающие объезжать препятствия, получать размеры предметов, моделировать карту помещения и сигнализировать о приближении или удалении объектов. Одним из распространенных вариантов такого устройства является датчик расстояния, в конструкцию которого входит ультразвуковой дальномер HC SR04. В этой статье мы познакомимся с принципом действия датчика расстояния, рассмотрим несколько вариантов подключения к платам Arduino, схему взаимодействия и примеры скетчей.
Способность ультразвукового датчика определять расстояние до объекта основано на принципе сонара – посылая пучок ультразвука, и получая его отражение с задержкой, устройство определяет наличие объектов и расстояние до них. Ультразвуковые сигналы, генерируемые приемником, отражаясь от препятствия, возвращаются к нему через определенный промежуток времени. Именно этот временной интервал становится характеристикой помогающей определить расстояние до объекта.
Внимание! Так как в основу принципа действия положен ультразвук, то такой датчик не подходит для определения расстояния до звукопоглощающих объектов. Оптимальными для измерения являются предметы с ровной гладкой поверхностью.
Описание датчика HC SR04
Датчик расстояния Ардуино является прибором бесконтактного типа, и обеспечивает высокоточное измерение и стабильность. Диапазон дальности его измерения составляет от 2 до 400 см. На его работу не оказывает существенного воздействия электромагнитные излучения и солнечная энергия. В комплект модуля с HC SR04 arduino также входят ресивер и трансмиттер.
Ультразвуковой дальномер HC SR04 имеет такие технические параметры:
- Питающее напряжение 5В;
- Рабочий параметр силы т ока – 15 мА;
- Сила тока в пассивном состоянии < 2 мА;
- Обзорный угол – 15°;
- Сенсорное разрешение – 0,3 см;
- Измерительный угол – 30°;
- Ширина импульса – 10 -6 с.
Датчик оснащен четырьмя выводами (стандарт 2, 54 мм):
- Контакт питания положительного типа – +5В;
- Trig (Т) – выход сигнала входа;
- Echo (R) – вывод сигнала выхода;
- GND – вывод «Земля».
Где купить модуль SR04 для Ардуино
Датчик расстояния – достаточно распространенный компонент и его без труда можно найти в интернет-магазинах. Самые дешевые варианты (от 40-60 рублей за штуку), традиционно на всем известном сайте.
Модуль датчика расстояния HC-SR04 для Ардуино | Еще один вариант ультразвукового сенсора HC-SR04 у надежного поставщика |
Датчики расстояния SR05 Ultrasonic HC-SR05 (улучшенные характеристики) | Модуль HC-SR05 HY-SRF05 для UNO R3 MEGA2560 DUE от надежного поставщика |
Схема взаимодействия с Arduino
Для получения данных, необходимо выполнить такую последовательность действий:
- Подать на выход Trig импульс длительностью 10 микросек;
- В ультразвуковом дальномере hc sr04 подключенном к arduino произойдет преобразование сигнала в 8 импульсов с частотой 40 кГц, которые через излучатель будут посланы вперед;
- Когда импульсы дойдут до препятствия, они отразятся от него и будут приняты приемником R, что обеспечит наличие входного сигнала на выходе Echo;
- На стороне контроллера полученный сигнал при помощи формул следует перевести в расстояние.
При делении ширины импульса на 58.2, получим данные в сантиметрах, при делении на 148 – в дюймах.
Подключение HC SR04 к Arduino
Выполнить подключение ультразвукового датчика расстояния к плате Arduino достаточно просто. Схема подключения показана на рисунке.
Контакт земли подключаем к выводу GND на плате Arduino, выход питания соединяем с 5V. Выходы Trig и Echo подсоединяем к arduino на цифровые пины. Вариант подключения с помощью макетной платы:
Библиотека для работы с HC SR04
Для облегчения работы с датчиком расстояния HC SR04 на arduino можно использовать библиотеку NewPing. Она не имеет проблем с пинговыми доступами и добавляет некоторые новые функции.
К особенностям библиотеки можно отнести:
- Возможность работы с различными ультразвуковыми датчиками;
- Может работать с датчиком расстояния всего через один пин;
- Отсутствие отставания на 1 секунду при отсутствии пинга эха;
- Для простой коррекции ошибок есть встроенный цифровой фильтр;
- Максимально точный расчет расстояния.
Скачать бибилотеку NewPing можно
Точность измерения расстояния датчиком HC SR04
Точность датчика зависит от нескольких факторов:
- температуры и влажности воздуха;
- расстояния до объекта;
- расположения относительно датчика (согласно диаграммы излучения);
- качества исполнения элементов модуля датчика.
В основу принципа действия любого ультразвукового датчика заложено явление отражения акустических волн, распространяющихся в воздухе. Но как известно из курса физики, скорость распространения звука в воздухе зависит от свойств этого самого воздуха (в первую очередь от температуры). Датчик же, испуская волны и замеряя время до их возврата, не догадывается, в какой именно среде они будут распространяться и берет для расчетов некоторую среднюю величину. В реальных условиях из-за фактора температуры воздуха HC-SR04 может ошибаться от 1 до 3-5 см.
Фактор расстояния до объекта важен, т.к. растет вероятность отражения от соседних предметов, к тому же и сам сигнал затухает с расстоянием.
Также для повышения точности надо правильно направить датчик: сделать так, чтобы предмет был в рамках конуса диаграммы направленности. Проще говоря, “глазки” HC-SR04 должны смотреть прямо на предмет.
Для уменьшения ошибок и погрешности измерений обычно выполняются следующие действия:
- усредняются значения (несколько раз замеряем, убираем всплески, потом находим среднее);
- с помощью датчиков (например, ) определяется температура и вносятся поправочные коэффициенты;
- датчик устанавливается на серводвигатель, с помощью которого мы “поворачиваем голову”, перемещая диаграмму направленности влево или вправо.
Примеры использования датчика расстояния
Давайте рассмотрим пример простого проекта с платой Arduino Uno и датчиком расстояния HC SR04. В скетче мы будем получать значение расстояния до предметов и выводить их в монитор порта в среде Arduino IDE. Вы сможете легко изменить скетч и схему подключения, чтобы датчик сигнализировал о приближении или отдалении предмета.
Подключение датчика к ардуино
При написании скетча использовалась следующий вариант распиновки подключения датчика:
- VCC: +5V
- Trig – 12 пин
- Echo – 11 пин
- Земля (GND) – Земля (GND)
Пример скетча
Начнем работу с датчиком сразу с относительного сложного варианта – без использования внешних библиотек.
В данном скетче мы выполняем такую последовательность действий:
- Коротким импульсом (2-5 микросекунды) переводим датчик расстояния в режим эхолокации, при котором в окружающее пространство высылаются ультразвуковые волны с частотой 40 КГц.
- Ждем, пока датчик проанализирует отраженные сигналы и по задержке определит расстояние.
- Получаем значение расстояния. Для этого ждем, пока HC SR04 выдаст на входе ECHO импульс, пропорциональный расстоянию. Мы определяем длительность импульса с помощью функции pulseIn, которая вернет нам время, прошедшее до изменения уровня сигнала (в нашем случае, до появления обратного фронта импульса).
- Получив время, мы переводим его в расстояние в сантиметрах путем деления значения на константу (для датчика SR04 это 29.1 для сигнала «туда», столько же для сигнала «обратно», что в сумме даст 58.2).
Если датчик расстояния не выполняет считывание сигнала, то преобразование выходного сигнала никогда не примет значения короткого импульса – LOW. Так как у некоторых датчиков время задержки варьируется в зависимости от производителя, рекомендуется при использовании указанных скетчей выставлять его значение вручную (мы это делаем в начале цикла).
Если расстояние составляет более 3 метров, при котором HC SR04 начинает плохо работать, время задержки лучше выставлять более 20 мс, т.е. 25 или 30 мс.
#define PIN_TRIG 12 #define PIN_ECHO 11 long duration, cm; void setup() { // Инициализируем взаимодействие по последовательному порту Serial.begin (9600); //Определяем вводы и выводы pinMode(PIN_TRIG, OUTPUT); pinMode(PIN_ECHO, INPUT); } void loop() { // Сначала генерируем короткий импульс длительностью 2-5 микросекунд. digitalWrite(PIN_TRIG, LOW); delayMicroseconds(5); digitalWrite(PIN_TRIG, HIGH); // Выставив высокий уровень сигнала, ждем около 10 микросекунд. В этот момент датчик будет посылать сигналы с частотой 40 КГц. delayMicroseconds(10); digitalWrite(PIN_TRIG, LOW); // Время задержки акустического сигнала на эхолокаторе. duration = pulseIn(PIN_ECHO, HIGH); // Теперь осталось преобразовать время в расстояние cm = (duration / 2) / 29.1; Serial.print("Расстояние до объекта: "); Serial.print(cm); Serial.println(" см."); // Задержка между измерениями для корректной работы скеча delay(250); }
Скетч с использованием библиотеки NewPing
Теперь давайте рассмотрим вариант скетча с использованием библиотеки NewPing. Код существенно упростится, т.к. все описанные ранее действия спрятаны внутри библиотеки. Все, что нам нужно сделать – создать объект класса NewPing, указав пины, с помощью которых мы подключаем датчик расстояния и использовать методы объекта. В нашем примере для получения расстояния в сантиметрах нужно использовать ping_cm().
#include
Пример подключения ультразвукового дальномера HC SR04 с одним пином
Подключение HC-SR04 к Arduino может быть выполнено посредством использования одного пина. Такой вариант пригодится, если вы работаете с большим проектом и вам не хватает свободных пинов. Для подключения вам нужно просто установить между контактами TRIGи ECHO резистор номиналом 2.2K и подключить к ардуино контакт TRIG.
#include
Краткие выводы
Ультразвуковые датчики расстояния достаточно универсальны и точны, что позволяет их использовать для большинства любительских проектов. В статье рассмотрен крайне популярный датчик HC SR04, который легко подключается к плате ардуино (для этого следует сразу предусмотреть два свободных пина, но есть вариант подключения и с одним пином). Для работы с датчиком существуют несколько бесплатных библиотек (в статье рассмотрена лишь одна из них, NewPing), но можно обойтись и без них – алгоритм взаимодействия с внутренним контроллером датчика достаточно прост, мы показали его в этой статье.
Исходя из собственного опыта, можно утверждать, что датчик HC-SR04 показывает точность в пределах одного сантиметра на расстояниях от 10 см до 2 м. На более коротких и дальних дистанциях возможно появление сильных помех, что сильно зависит от окружающих предметов и способа использования. Но в большинстве случаев HC-SR04 отлично справлялся со своей работой.