Режимы работы теплосети. Температурный график системы отопления
Температурный график определяет режим работы тепловых сетей, обеспечивая центральное регулирование отпуска тепла. По данным температурного графика определяется температура подающей и обратной воды в тепловых сетях, а также в абонентском вводе в зависимости от температуры наружного воздуха.
Применяемый в г. Москве график 150/70°С (см. графы 2 и 3 таблицы) позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производится по сниженным графикам.
Для домовых систем отопления потребителей применяется График качественного регулирования температуры воды в системах отопления при различных расчетных и текущих температурах наружного воздуха при расчетных перепадах температура воды в системе отопления 95-70 и 105-70°С (см. графы 5 и 6 таблицы).
Для сетей, работающих по температурным графикам 95-70°С и 105-70°С (графы 5 и 6 таблицы) температура воды в обратном трубопроводе систем отопления определяется по графе 7 таблицы.
Для потребителей, подключенных по независимой схеме присоединения температура воды в прямом трубопроводе определяется по графе 4 таблицы, а в обратном трубопроводе по графе 8 таблицы.
Температурный график регулирования тепловой нагрузки разрабатывается из условий суточной подачи тепловой энергии на отопление, обеспечивающей потребность зданий в тепловой энергии в зависимости от температуры наружного воздуха, чтобы обеспечить температуру в помещениях постоянной на уровне не менее 18 градусов, а также покрытие тепловой нагрузки горячего водоснабжения с обеспечением температуры ГВС в местах водоразбора не ниже + 60°С, в соответствии с требованиями СанПин 2.1.4.2496-09 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения».Температурный график регулирования тепловой нагрузки утверждается теплоснабжающей организацией.
Т наружного воздуха | Т1 | Т"3 | Т3 | Т4 | T"4 | ||
150-70 с надбавкой | 150-70 со срезкой на 130 | 120-70 | 105-70 | 95-70 | после системы отопления | ||
после отопительного бойлера | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
10 | 80 | 70 | 43 | 38 | 37 | 33 | 34 |
9 | 80 | 71 | 45 | 41 | 39 | 34 | 35 |
8 | 80 | 74 | 47 | 43 | 41 | 35 | 36 |
7 | 80 | 75 | 49 | 45 | 42 | 36 | 37 |
6 | 80 | 77 | 51 | 47 | 44 | 38 | 39 |
5 | 80 | 78 | 53 | 49 | 46 | 39 | 40 |
4 | 80 | 79 | 56 | 51 | 48 | 40 | 42 |
3 | 80 | 81 | 58 | 53 | 49 | 41 | 43 |
2 | 81 | 82 | 60 | 55 | 52 | 42 | 44 |
1 | 83 | 84 | 62 | 57 | 53 | 43 | 45 |
0 | 85 | 85 | 64 | 59 | 55 | 45 | 47 |
-1 | 88 | 86 | 67 | 61 | 57 | 46 | 48 |
-2 | 91 | 88 | 69 | 63 | 58 | 47 | 49 |
-3 | 93 | 89 | 71 | 65 | 60 | 48 | 50 |
-4 | 96 | 90 | 73 | 66 | 62 | 49 | 52 |
-5 | 98 | 92 | 75 | 68 | 64 | 50 | 54 |
-6 | 101 | 93 | 78 | 70 | 65 | 51 | 54 |
-7 | 103 | 95 | 80 | 72 | 67 | 52 | 56 |
-8 | 106 | 96 | 82 | 74 | 68 | 53 | 57 |
-9 | 108 | 97 | 84 | 76 | 70 | 54 | 58 |
-10 | 110 | 99 | 87 | 77 | 71 | 55 | 59 |
-11 | 113 | 100 | 89 | 79 | 73 | 56 | 60 |
-12 | 116 | 102 | 91 | 81 | 74 | 57 | 61 |
-13 | 118 | 103 | 93 | 83 | 76 | 58 | 62 |
-14 | 121 | 105 | 96 | 84 | 78 | 59 | 63 |
-15 | 123 | 107 | 98 | 86 | 79 | 60 | 64 |
-16 | 126 | 108 | 100 | 88 | 81 | 61 | 65 |
-17 | 128 | 112 | 102 | 90 | 82 | 62 | 67 |
-18 | 130 | 114 | 104 | 91 | 84 | 63 | 69 |
-19 | 132 | 116 | 107 | 93 | 85 | 64 | 70 |
-20 | 135 | 118 | 109 | 95 | 87 | 65 | 70 |
-21 | 137 | 121 | 111 | 96 | 88 | 66 | 72 |
-22 | 140 | 123 | 113 | 98 | 90 | 67 | 73 |
-23 | 142 | 125 | 115 | 100 | 91 | 68 | 74 |
-24 | 144 | 128 | 117 | 102 | 93 | 69 | 74 |
-25 | 146 | 130 | 119 | 103 | 94 | 69 | 75 |
-26 | 148 | 130 | 120 | 105 | 95 | 70 | 76 |
-28 | 150 | 130 | 120 | 105 | 95 | 70 | 76 |
Обозначения
Т 1 (п. 2, 3) - температура воды в магистральной тепловой сети от источника до ЦТП
Т 3 (п. 5, 6) - температура воды в разводящих сетях отопления к потребителю после ЦТП
Т " 3 (п. 4) - температура воды в разводящих сетях отопления к потребителю при независимой схеме присоединения с элеватором у потребителей
Т 4 (п. 7) - температура воды в обратном трубопроводе сети отопления от потребителя для сетей, работающих по температурным графикам п. 5, 6
Т" 4 (п 8) - температура воды после отопительного подогревателя в ЦТП при независимой схеме присоединения
Примечание:
1. Все графики работы источников и местных систем могут быть другими и определяются по решению проектной и энергоснеабжающей организации. Схема присоединения системы отопления выбирается при проектировании в соответствии с требованиями правилам.
Для поддержания комфортной температуры в доме в отопительный период необходимо контролировать температуру теплоносителя в трубах тепловых сетей. Работниками системы центрального теплоснабжения жилых помещений разрабатывается специальный температурный график , который зависит от погодных показателей, климатических особенностей региона. Температурный график может отличаться в разных населенных пунктах, также он может меняться при модернизации сетей отопления.
Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.
Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.
Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.
ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.
График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.
Как регулируется тепло в системе отопления
Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:
- Изменением расхода воды определенной постоянной температуры. Это количественный метод.
- Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.
Экономным и практичным является второй вариант , при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.
ВНИМАНИЕ! . Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.
При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.
Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.
Причины использования температурного графика
Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.
- Составление графика дает возможность подготовить отопление к понижению температуры на улице.
- Также это экономия энергоресурсов.
ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.
Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.
Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.
Особенности расчета внутренней температуры в разных помещениях
Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С , но существуют некоторые нюансы в этом вопросе.
- Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
- Оптимальный температурный показатель для ванной комнаты — 25˚С.
- Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
- Минимальная температура, допустимая в школах — 21˚С.
- В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С , но показатель не должен опускаться ниже цифры 16˚С.
Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.
На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.
ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.
Главным фактором, все же, является погода , вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.
Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.
Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.
Для чего потребителю нужно знать нормы подачи теплоносителя?
Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.
Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.
ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.
Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла , которые можно установить дома.
Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).
Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.
Полезное видео
Рассматривая тепловые нагрузки систем коммунального теплоснабжения (раздел Расчет режимов отопления), установлена их непосредственная индивидуальная связь-зависимость с параметрами окружающей природной среды - температурой и влажностью наружного воздуха, температурой воды в источниках водоснабжения, скоростью и направлением ветра, радиационным воздействием - солнечным сиянием.
Любое изменение их вызывает необходимость корректировки теплового потребления как на источнике теплоснабжения, так и непосредственно у потребителя, путем уменьшения или увеличения подачи теплоты, включения или выключения отдельных видов оборудования и приборов, установления рационального режима их работы с учетом тепловых потерь при транспортировании. Таким образом возникает необходимость управления процессами отпуска и потребления тепловой энергии, т.е. теплового регулирования ими.
Превалирующим параметром для большинства тепловых нагрузок является температура наружного воздуха, она определяет и температуру воды на источнике водоснабжения, и температуру строительных материалов и изделий, и параметры внутреннего климата жилых и общественных зданий и т.п. В балансовые уравнения нагрузок входит разность температур (t вн - t нар.среды), показывающая линейную зависимость их от текущей температуры наружного воздуха (уравнения прямых линий).
Если построить график отопительной тепловой нагрузки в зависимости от t нар.среды, то он будет выглядеть прямой наклонной линией, аналогичные виды примут и графики вентиляционных нагрузок и графики зависимости нагрузки горячего водоснабжения от температуры исходной воды (рис. 1).
Рисунок 1. Графики изменения тепловых нагрузок отопления, вентиляции и горячего водоснабжения жилого дома в зависимости от t нар.возд.
В практической работе проектантов и эксплуатационников принято строить такие графики зависимости тепловых нагрузок Q (функцию) от определяющего параметра t нар.возд (аргумента) в координатах «t нар.возд - Q», где Q = ƒ(t нар.возд). При этом учитывают их в определенном температурном диапазоне, например, в интервале начала отопительного периода и максимальной отопительной нагрузки, называемой «расчетной», t н.расч.
За расчетную температуру t н.о для проектирования отопления в каждой местности принимается средняя температура наружного воздуха, равная средней температуре наиболее холодных пятидневок, взятых из восьми наиболее холодных зим за 50-летний период наблюдений. Такие значения t н.о определены для многих городов страны, они приведены в СНиП по строительной климатологии, по ним составлены карты климатологического районирования.
Были определены и введены в практику также расчетные температуры для проектирования вентиляции t н.в; продолжительность отопительного периода n, сут; средняя наружная температура отопительного периода; средняя самого холодного месяца, а также средняя самого жаркого месяца.
Для установления суммарных нагрузок строят графики суммарных тепловых нагрузок (см. рис. 1), они необходимы для выполнения технологических, технико-экономических подсчетов и исследований.
В планово-экономической работе предприятий (для определения расходов топлива, разработки режимов использования оборудования, графиков ремонтов и т.п.) получили применение графики расхода теплоты по месяцам года (рис. 2), графики продолжительности сезонной нагрузки (рис. 3), а также интегральные графики суммарных нагрузок (рис. 4).
Рисунок 2.
Рисунок 3.
Рисунок 4.
С помощью графиков продолжительности и интегральных графиков суммарной нагрузки города/района легко устанавливают экономичные режимы работы теплофикационного оборудования, определяют необходимые параметры теплоносителя на ТЭЦ и РТС, выполняют другие технологические и планово-экономические расчеты и исследования. Например, установление режима работы и оперативно-диспетчерское планирование конкретной системы ЦТС производится на основании трех графиков нагрузки: суточного, годового и графика изменения тепловой нагрузки по продолжительности.
Регулирование тепловых процессов производят с помощью температурных графиков отпуска теплоты. Эти графики (или таблицы) устанавливают связь текущих температур воды в системах отопления t 1 и t 2 и в тепловых сетях в зависимости от температуры наружного воздуха. Такая зависимость устанавливается из уравнения баланса теплоты нагревательного прибора при расчетных и любых других температурных условиях:
где Q и G- расходы теплоты, Вт · ч, и теплоносителя, кг/ч, при текущей и расчетной температуре наружного воздуха; ∆t = t 1 - t 2 - температурный перепад в местных нагревательных приборах при текущей и расчетной (∆t p) наружной температуре, в град; t 1 и t 2 - температура подаваемой и обратной воды в местных нагревательных приборах, град; = (t 1 + t 2)/2 - Т n - температурный напор нагревательного прибора, град; ∆T = Т в - Т н - температурный перепад воздуха внутри (T в) и снаружи помещения (Т н) при текущей и расчетной температуре (∆T p), град; k - коэффициент теплопередачи нагревательного прибора, Вт/(м 2 · ч · град); F - поверхность нагревательных приборов, м 2 .
После ряда преобразований уравнения (1) получим следующие выражения для t 1 и t 2:
Рисунок 5. График температуры воды в подающих и обратных магистралях тепловой сети при качественном регулировании отопительной нагрузки при Т п.р. = +18 °С
ПРИМЕР 1. Исходные условия: Система водяного отопления с расчетными параметрами Т н.р = -25 °С, Т п.р = +20 °С, t 1з = 95 °С, t 2р = 70°С.
Требуется: Определить температуры подающей и обратной воды для системы отопления при наружных температурах Т н = +8 °С, -3,2 °С и температуре помещения Т п = +20 °С.
Решение: Находим для Т н = +8 °С:
По формулам (2); (3) получим:
Для T н = -3,2 °С аналогично:
По полученным точкам строим температурный график (см. линии 1 и τ" 2 на рис. 5).
Здесь приведены значения температур воды в подающих и обратных линиях тепловой сети τ 1 и τ 2 для разных климатических районов при качественном регулировании отопительной нагрузки, для расчетного перепада температур в местной системе ∆t p = 95 - 70 = 25 °С, Т п.р = +18 °С; p = (95 + 70)/2 - 18 = 64,5 °С.
В связи с тем, что к тепловым сетям ЦТС присоединяются разнородные тепловые потребители: системы отопления и вентиляции (сезонные, однородные нагрузки), системы горячего водоснабжения (круглогодичные нагрузки), технологические установки, температурные режимы тепловых сетей должны удовлетворять запросам и учитывать особенности теплового потребления каждого из них. Поэтому графики температур, которые строятся по превалирующей тепловой нагрузке (в городах - отопительно-вентиляционной), должны учитывать требования систем горячего водоснабжения. Необходимость подогрева водопроводной воды до уровня 55-60 °С. До такого уровня нагрева вторичного теплоносителя первичная сетевая вода должна иметь свою температуру не ниже 70 °С, поэтому на температурном отопительном графике возникает так называемая весенне-летняя срезка или «излом» температуры подающей линии на уровне 70 °С.
В свою очередь, поддержание такой температуры в подающей линии теплосети в теплые периоды года приводит к нежелательному явлению - перетопу зданий, что вызывает дискомфорт у населения и, как следствие этого, потерю теплоты через открытые форточки и фрамуги окон. Устранить перетопы можно, регулируя пропусками подачу теплоты в системы отопления (отключая системы ЦО на некоторое время). Так возникает комбинированное регулирование нагрузок (рис. 6).
Рисунок 6.
Продолжительность работы системы отопления n, ч, при регулировании пропусками определяется из выражения:
где Q - подача теплоты в прибор, Вт, за время z, ч; G - подача горячей воды в прибор, кг/ч; с - теплоемкость воды, Вт/(кг·град); t 1 и t 2 - температура подаваемой и обратной воды в нагревательном приборе, град; Т п - температура окружающей обогреваемой среды, °С; F - поверхность нагрева теплоприемника, м 2 ; k - коэффициент теплопередачи теплоприемника Вт/(м 2 · ч · град); z - время, ч.
Для парового приемника имеем:
Здесь, кроме обозначений, принятых выше:
D - расход пара, кг/ч; Т - температура насыщения пара °С; ∆i - теплоиспользование пара, кДж/кг.
В водяных системах ЦТС на количество поступающей теплоты Q можно воздействовать разными путями - изменением температуры входящей воды t 1 (качественное регулирование), расходом воды G (количественное регулирование), временем подачи теплоты z (прерывистое регулирование), изменением поверхности нагрева теплообменника F (применяется редко).
В отечественном теплоснабжении наибольшее применение получил способ центрального качественного регулирования тепловой нагрузки, при котором изменяется температура поступающей сетевой воды и остается неизменным ее расход. Этот метод позволяет работать с малым давлением пара в водоподогревателях ТЭЦ и дает при теплофикации значительную экономию топлива. Он легко осуществляется и сильно упрощает групповую и индивидуальную регулировку местных систем.
Количественное регулирование получило широкое применение в зарубежной практике теплоснабжения, у нас оно нашло частичное использование при групповом и местном регулировании систем и отдельных приборов. В последние годы получил распространение комбинированный метод качественно-количественного регулирования (см. рис. 6).
Регулирование временем натопа (или как его еще называют регулирование пропусками) получило ограниченное применение при центральном регулировании водяных сетей в теплый период отопительного сезона (когда сетевые насосы остановлены), так как при этом горячее водоснабжение и работа систем вентиляции прекращаются. При групповом и местном регулировании этот способ позволяет получать существенную экономию теплоты без указанных ограничений.
В паровых системах прерывистое групповое и местное регулирование являются основным методом регулирования паровых установок теплоснабжения.
Центральное и групповое регулирование производится в соответствии с режимными графиками, устанавливающими режим температуры и расхода воды в тепловых сетях и на абонентских вводах и позволяющими контролировать правильность эксплуатации и распределения теплоты между потребителями.
Для правильного регулирования большое значение имеет гидравлическая устойчивость местной системы. Под ней понимают способность отдельных теплоприемников системы сохранять установленный для них расход теплоносителя при изменении расхода другим теплообменником системы.
Гидравлическая устойчивость определяется отношением гидравлического сопротивления теплоприемника к гидравлическому сопротивлению распределительной сети: чем больше это отношение, тем выше и гидравлическая устойчивость системы.
Для повышения гидравлической устойчивости системы необходимо стремиться к повышению гидравлического сопротивления теплоприемников и понижению сопротивления тепловых сетей.
Системы с низкой гидравлической устойчивостью невозможно точно отрегулировать и трудно эксплуатировать, поэтому часто гидравлическую устойчивость приходиться повышать путем установки искусственных гидравлических сопротивлений перед теплоприемниками (проводить дросселирование-шайбирование систем), этому способствует также уменьшение сечений регулирующих органов, правильный подбор конусов в элеваторах, последовательное, а не параллельное, включение теплоприемников одного агрегата (подогревателей ГВС и др.).
В централизованных системах теплоснабжения (особенно в Теплосетях АО-энерго) сложилась определенная система разделения труда и ответственности персонала в процессе теплового регулирования. Так персонал станции отвечает за выполнение заявочного суточного графика по температуре подающей линии и за поддержание заданных напоров на коллекторах станции (в паровых системах — за соблюдение графика по давлению и температуре пара на выходе со станции).
Персонал района тепловых сетей, в оперативном подчинении которого находится дежурный персонал абонентов, контролирует и отвечает за параметры сетевого хозяйства - расходы теплоносителя в сети, температуру воды в обратных линиях, величину подпитки (в закрытых системах ЦТ), возврат конденсата на станцию.
Температурный график тепловых сетей дает возможность поставщикам теплопередающих компаний устанавливать режим соответствия температуры передаваемого и возвратного теплоносителя среднесуточным температурным показателям окружающего воздуха.
Иначе говоря, в отопительный период для каждого населенного пункта РФ разрабатывается температурный график теплоснабжения (в небольших поселениях - температурный график котельной), который обязывает тепловые станции разного уровня обеспечивать технологические условия поставки теплоносителя (горячей воды) потребителям.
Регулирование температурного графика подачи теплоносителя может осуществляться несколькими способами: количественным (изменение расхода подаваемого в сеть теплоносителя); качественным (регулировка температуры подводящих потоков); временным (дискретная подача горячей воды в сеть). Методики расчета и построения температурного графика предполагают специфические подходы при рассмотрении тепловых сетей по назначению.
Температурный график отопления - нормальный температурный график контуров отопительных сетевых трубопроводов, работающих исключительно на отопительную нагрузку и регулируемых централизованно.
Повышенный температурный график - рассчитывается для замкнутой схемы теплоснабжения, обеспечивающей потребности системы отопления и горячего водоснабжения подключенных объектов. В случае открытой системы (потери теплоносителя при водопотреблении) принято говорить о скорректированном температурном графике системы отопления.
Расчет графика температурного режима отопительных систем по методологии достаточно сложен. Для примера можем порекомендовать методическую разработку «Роскоммунэнерго», получившую согласование Госстроя РФ 10.03.2004 №СК-1638/12. Исходные данные для построения температурного графика конкретной теплогенерирующей станции: температуры наружного воздуха Tнв ; воздуха в здании Tвн ; теплоносителя в подающем (T 1 ) и обратном (T 2 ) трубопроводах; на входе в отопительную систему здания (T 3 ). Значения относительного расхода теплоносителя коэффициенты гидравлической устойчивости системы при расчете нормируются.
Расчеты системы отопления можно провести для любого температурного графика, например, для общепринятых графиков крупных теплопередающих организаций (150/70, 130/70, 115/70) и местных (домовых) тепловых пунктов (105/70, 95/70). Числитель графика показывает максимальную температуру воды на входе в систему, знаменатель - на выходе.
Результаты расчета температурного графика тепловой сети сводятся в таблицу, задающую температурные режимы в узловых точках трубопровода в зависимости от Tнв , например такую.
Последовательный расчет температурных показателей теплоносителя при уменьшении дискретности Tнв позволяет построить температурный график тепловой сети, на основании которого по среднесуточной температуре окружающего воздуха и выбранному эксплуатационному графику можно делать минимальный и максимальный температурный срез и определять текущие параметры теплоносителя в системе.