Резание и опиливание металла. Виды опиливания металла - опиливание металла
Опиливание
– это слесарная металлообработка , во время которой происходит снятие материала с поверхности детали с помощью напильника.
Напильник
– это инструмент, который служит для обработки металлов , состоит из многолезвийных режущих элементов, он обеспечивает высокую точность проделываемых работ, а также не значительную шероховатость обрабатываемой поверхности детали. Сама резка металла , проводится качественно и с малой погрешностью.
С помощью опиливание, детали придается нужный размер и форма, подгоняют деталь друг под друга и проводят множество других работ. Напильниками обрабатывают металлы различной формы: криволинейные поверхности, плоскости, пазы, отверстия различных форм, канавки, различного рода поверхности и т.д. Припуски во время опиливания оставляют небольшого размера - от 0.55 до 0.015 мм. А погрешность после проведенной работы может составляет от 0.1 до 0.05, а в определенных случаях еще меньше – до 0.005 мм., что обеспечивает качественную металлообработку /
Инструмент напильник – это брусок из стали определенной длины и профиля, у которого на поверхности стоит нарезка. Нарезка (насечка) формирует маленькие и острые зубья, которые определяют в сечении форму клина. Угол сечения напильника с сеченым зубом обычно равен 65-70 градусов, задний угол от 35 до 50 градусов, передний угол – 16 градусов.
Инструменты с одинарной нарезкой убирают с металла широкую стружку, по всей насечке. Они применяются при металлообработке мягких металлов.
Напильник с двойной нарезкой используются при опиливании чугуна, стали и других твердых металлов, из-за того, что перекрестная нарезка измельчает стружку, в связи с чем – облегчает работу.
Насечку рашпилем получают с помощью вдавливания металла специальными зубцами состоящими из трехгранника. Обработка металлов рашпилем производится только на мягких металлах и неметаллических материалах.
Также можно получить другую насечку с помощью фрезерования. У нее дугообразная форма и большие выемки между зубьями – это обеспечивает хорошее качество поверхностей и высокую производительность при металлообработке
Напильники производятся из стали У13А и У13, а еще из хромистой стали ШХ 15. Когда заканчивается насечка зубьев напильники термически обрабатываются. Ручки напильников изготавливаются из древесины (клен, береза и другие).
По своему назначению резки металла напильники делятся на следующие группы:
- Общего назначения.
- Надфили.
- Специального назначения.
- Машинные напильники.
- Рашпили.
По количеству насечек на 1 см. напильники разделяют на 6 разных номеров:
- Напильники с нарезкой от номер 0 до 1 (драчевые), применяются для более грубого опиливания, так как состоят из крупных зубьев. При обработке металлов погрешность составляет от 0.6- 0.3 мм.
- Напильники с нарезкой № 2-3, применяются для чистого опиливания деталей. Погрешность при металлообработке составляет 0.2-0.005 мм.
- Напильники с нарезкой номером 4-5, служат окончательным обрабатываемым процессом. Погрешности при этом процессе составляет 0.1- 0.004 мм.
Для обработки металлов небольших форм используются малогабаритные напильники - надфили. Обработка твердых и закаленных сталей производится специальными надфилями, а на стальных стержнях закрепляются зерна алмаза.
Улучшение производительности и условий труда при металлообработке опиливанием достигается путем использования механизированных (пневматических и электрических) напильников. Сменяемые угловые и прямые головки при помощи круглых фасонных инструментов способствуют опиливанию под разными углами и в труднодоступных местах.
Качество работы контролируется различного рода инструментами. Качество опиливаемой плоскости проверяется проверочной линейкой. Если плоскость должны быть опилена достаточно точно, ее подвергают проверке на проверочной плите. Если нужно опилить плоскость под определенным углом, ее проверяют с помощью угломера или угольника. Для контроля параллельности двух плоскостей используют штангенциркуль, где расстояние между плоскостями должно быть одинаковым.
Если контроль нужно провести по криволинейным поверхностям, его производят с помощью линий разметки и специальных шаблонов.
Опиливание служит для разрезания и обработки поверхности и значительно отличается от процесса плазменной резки металла , которая в свою очередь используется для полного разрезания изделия, а также для обработки его.
Слесарное опиливание
К атегория:
Опиливание металла
Слесарное опиливание
Опиливанием называют метод размерной обработки заготовок напильником. Опиливание предназначено для получения необходимой формы, размера, шероховатости и расположения поверхности. Опиливают такие поверхности заготовок, обработка которых на станках технически невозможна или экономически нецелесообразна (рабочие полости штампов, пресс-форм и т. п.). Опиливание применяют и для подгонки сопряженных поверхностей деталей на месте сборки изделия.
Виды опиливания. Опиливание бывает ручное и машинное. Опиливание с целью повысить качество поверхности иногда называют зачисткой.
Опиливание основано на разрушении поверхностного слоя материала заготовки режущими элементами инструмента (напильника), выполненными в виде клина. Каждый режущий клин срезает с заготовки слой материала и превращает его в стружку, которая размещается в стружечном пространстве.
Рис. 1. Режущие элементы различных типов напильников: а - процесс опиливания, б, в; г - двойная, одинарная и точечная (рашпиль-ная) насечки соответственно; 1 - напильник, 2 - заготовка, 3 - вспомогательная насечка, 4 - основная насечка, 5 - режущая кромка; у - передний угол, а - задний угол, fi - угол заострения, 6 - угол резания
При опиливании напильник двигают вручную вперед (от себя) со скоростью Цр.х. рабочего хода и назад (на себя) со скоростью v0.x. обратного хода (рис. 1, а). Горизонтальную силу прикладывают как при рабочих, так и при холостых ходах, а вертикальную (двумя руками) - только при рабочих ходах. Чтобы напильник всегда был параллелен обрабатываемой поверхности, в начале рабочего хода на напильник сильнее нажимают левой рукой, а по мере его движения нажим левой рукой уменьшают, а правой - увеличивают.
Режущий инструмент для опиливания. Напильник представляет собой многолезвийный режущий инструмент, у которого зубья расположены на поверхностях стальных закаленных брусков, имеющих различные профиль поперечного сечения и длину. Напильник имеет рабочую часть и хвостовик. Оттянутую часть называют носком. На рабочей части различают узкую сторону, широкую сторону и ребро.
Зубья напильника получают насеканием, фрезерованием; шлифованием и другими технологическими методами. Наибольшее распространение получило насекание зубьев на насекальных станках специальными зубилами. Насеченные зубья более прочны.
Напильники изготовляют с различными по длине и форме режущими кромками. Короткую кромку в виде неправильного треугольника получают двойной насечкой, длинную (прямую или радиусную) кромку- одинарной насечкой. Короткую кромку получают также рашпильной (точечной) насечкой.
Слесарные напильники общего назначения обычно имеют двойную насечку - основную (под углом 65°) и вспомогательную (под углом 45°). Последняя делит основную насечку на многочисленные зубья, что позволяет при одинаковой затрате сил увеличить количество снимаемой стружки.
Рис. 2. Стержневой напильник (а) и борфреза (б): 1 - носок, 2 - рабочая часть, 3 - хвостовик, 4 - заплечик
Шаг основной и вспомогательной насечек делают разным. В результате этого каждый последующий зуб смещен относительно предыдущего в направлении, перпендикулярном оси напильника. Без такого смещения каждый последующий зуб следовал бы строго за предыдущим и на обрабатываемой поверхности образовывались бы канавки. Перекрытие зубьев обеспечивает низкую шероховатость обрабатываемой поверхности.
Величина стружечного пространства оказывает большое влияние на качество и производительность опиливания. Объем стружечного пространства определяется шагом насечки, т. е. числом основных насечек на длине 10 мм. Это число определяется номером насечки. Слесарные напильники общего назначения имеют шесть номеров насечек - от нуля (наибольший шаг) до 5 (наименьший шаг).
По форме поперечного сечения напильники общего назначения бывают: плоские, плоские остроносые, квадратные, трехгранные, круглые, полукруглые, ромбические и ножовочные. Напильники общего назначения изготовляют длиной 100; 125; 150; 200; 250; 300; 350 и 400 мм.
Напильники маленьких размеров называют надфилями. Выпускаемые надфили имеют десять номеров насечки: 00; 0; 1; 2; 3; 4; 5; 6; 7 и 8. Формы поперечного сечения надфилей такие же, как напильников общего назначения. Кроме того, выпускают надфили трехгранные односторонние, овальные и пазовые. Каждый тип надфиля выпускают трех типоразмеров. Общая длина соответственно 100; 120 и 160 мм; длина рабочей части соответственно 50; 60 и 80 мм.
Слесарные напильники общего назначения и надфили делают из сталей У12, У12А, У13 и У13А. Допускается изготовление напильников из сталей 13Х и ШХ15. Напильники закаливают до твердости 54 HRQ .
Напильники для труднообрабатываемых материалов изготовляют из сталей 14ХФ и 13Х, а также из быстрорежущей стали. Они отличаются от напильников общего назначения числом и углами наклона насечек. Их широкие поверхности имеют радиусную форму, благодаря чему в работе одновременно участвует меньшее число зубьев.
При машинном опиливании применяют стержневые напильники и борфрезы. Стержневой напильник в отличие от слесарного имеет хвостовик, с помощью которого он крепится в машине. При опиливании штампов и пресс-форм широко применяют концевые и насадные борфрезы (диаметром 3 - 32 мм) цилиндрической, угловой, дисковой и другой формы. Изготовляют борфрезы из быстрорежущей стали или из инструментальной стали У12А и закаливают до твердости 66 HRC s. Борфрезы делают с особо крупным, крупным, средним, мелким и особо мелким зубом.
Оборудование и приспособления для опиливания. Опиливание вручную обычно производят за слесарным верстаком. Заготовку устанавливают в слесарных тисках, оснащенных алюминиевыми или медными нагубниками и деревянными прокладками, предохраняющими обработанные поверхности от повреждений.
Обработку заготовки борфрезами выполняют с помощью электрической машины с гибким валом. Опиливание стержневыми напильниками осуществляют на стационарных опиловочных станках. Использование приспособлений типа копиров позволяет повысить производительность опиливания, так как при этом в процессе работы не надо контролировать отклонение формы и расположения обрабатываемых поверхностей.
Последовательность и приемы выполнения работ при опиливании. Поверхность заготовки очищают от грязи, масла и окалины. Твердую поверхностную корку отливок и поковок предварительно удаляют старым напильником или зубилом. Затем заготовку размечают.
При выборе напильника необходимо учитывать физико-механические свойства обрабатываемого материала, размеры, форму обрабатываемой поверхности и ее расположение относительно других поверхностей заготовки, величину припуска на обработку, требуемую точность и шероховатость поверхности.
Плоские и плоские остроносые напильники применяют для обработки плоских и выпуклых поверхностей, канавок. Квадратные и прямоугольные пазы и отверстия опиливают квадратными напильниками. Трехгранные напильники удобны при обработке острых углов в пазах, а также трехгранных и многогранных отверстий. Круглые и овальные отверстия, вогнутые поверхности опиливают круглыми напильниками; вогнутые и плоские - полукруглыми; узкие фасонные поверхности, прорези и канавки - ромбическими.
Длину напильника рекомендуется выбирать на 150- 200 мм больше длины опиливаемой поверхности. Для очень точной обработки небольших поверхностей и твердых материалов используют надфили. Грубое опиливание мягких материалов, пластмасс и дерева рационально проводить рашпилями.
Опиливание производят последовательно каждым типом напильника (начиная с наиболее грубого и кончая наиболее точным). Заготовку устанавливают в тисках так, чтобы разметочная риска была хорошо видна, а опиливаемая поверхность располагалась горизонтально.
Для повышения производительности и качества обработки применяют перекрестное опиливание: сначала всю поверхность опиливают косым штрихом слева направо; потом - прямым штрихом; затем - косым штрихом справа налево.
В результате неправильной эксплуатации напильники теряют режущие свойства. Если на рабочую часть напильника попало масло или частицы стружки забили его впадины, то он становится непригодным для работы. Засаленные напильники очищают твердым куском древесного угля. От стружки напильник очищают заостренной лопаточкой из мягкого железа (или латуни) и стальной жесткой щеткой. Очистку ведут в направлении верхней насечки. Перед опиливанием алюминиевых сплавов напильник следует натереть стеарином в целях уменьшения его засаливания.
При опиливании контролируют шероховатость, форму, размеры и расположение поверхности. Шероховатость, как правило, контролируют по эталонным образцам. Отклонение от плоскостности (наиболее распространенный вид брака при опиливании) контролируют поверочной линейкой (на просвет). Взаимное расположение поверхностей контролируют угольниками, шаблонами и угломерами; линейные размеры проверяют штангенциркулями.
Опиливание металла
Опиливание – это операция по удалению с поверхности заготовки слоя материала при помощи режущего инструмента – напильника, целью которой является придание заготовке заданных
формы и размеров, а также обеспечение заданной шероховатости поверхности.
В большинстве случаев опиливание производят после рубки и резания металла ножовкой. Опиливание производят, чтобы получить определенную форму, точные размеры, гладкую прямолинейную или криволинейную поверхность, чтобы подогнать детали одна к другой, а
также для образования наружных и внутренних углов, обработки отверстий, снятия фасок.
Припуск на опиливание обычно составляет 1…2мм.
Небольшие детали опиливают в тисках, концы труб – в прижиме, а крупные детали – на месте заготовки и сборки. 37
Различают черновое и чистовое опиливание. Обработка напильником позволяет получить точность обработки деталей до 0,05мм.
Основными рабочими инструментами, применяемыми при опиливании, являются напильники, рашпили и надфили.
Напильники представляют собой стальные закаленные бруски, на рабочих
поверхностях, которых нанесено большое количество насечек или нарезок, образующих
режущие зубья напильника. Эти зубья обеспечивают срезание с поверхности заготовки
небольшого слоя металла в виде стружки.
Насечки на поверхности напильника образуют зубья, при чем меньше насечек на единицу длины напильника, тем крупнее зубья. По виду насечек различают напильники с одинарной, двойной (перекрестной) и рашпильной насечками.
Напильники с одинарной насечкой срезают металл широкой стружкой, равной всей длине
зуба, что требует приложения больших усилий. Такие напильники применяются для обработки
цветных металлов, их сплавов и неметаллических материалов.
Напильники с двойной насечкой под углом 25º имеют основную насечку (более глубокую) и
нанесенную поверх нее вспомогательную (более мелкую), которая обеспечивает дробление стружки
по длине, что снижает усилия, прикладываемые к напильнику при работе. Зубья напильника
располагаются друг за другом по прямой, составляющей с осью напильника угол 5º. Такое
расположение зубьев на напильнике обеспечивает частичное перекрытие следов от зубьев на
обработанной поверхности, что уменьшает ее шероховатость.
Напильники с рашпильной насечкой (рашпили) под углом 45º имеют зубья, которые
образуются выдавливанием металла из поверхности заготовки напильника при помощи специального
насекательного зубила. Каждый зуб рашпильной насечки смещен относительно расположенного
впереди зуба на половину шага. Рашпили применяют для опиливания мягких материалов (баббит,
свинец, дерево, каучук, резина, некоторые виды пластмасс).
Круглые напильники могут иметь спиральную одинарную насечку с углом наклона насечки 20º.
Напильниками с одинарной насечкой срезают широкую стружку, а с двойной насечкой – мелкую. Напильники различаются по числу насечек на 1см длины бруска по номерам.
Драчевые напильники (с крупной насечкой № 0 и1) – предназначены для грубой предварительной обработки, можно снять слой толщины 0,5 – 1мм с погрешностью не более 0,2 – 5мм.
Личные напильники (с более мелкой насечкой № 2) – предназначены для чистовой (отделочной) обработки, можно снять слой толщиной 0,1 – 0,3мм с погрешностью обработки не более 0,02мм.
Бархатные напильники (с очень мелкой насечкой № 3, 4, 5) – служат для окончательной точной отделки и подгонки поверхностей изделия с погрешностью не более 0,01 – 0,005мм.
Напильники состоят: 1- ручка
* нос – конец насеченной части напильника; 2-насечка
* тело – рабочая насеченная часть; 3-носок
* пятка – насеченная часть тела напильника; 4-стержень
* хвостовик – часть напильника, на которую надевают деревянную ручку с круглой формы с
утолщением в середине.
Ручки изготавливают из древесины твердых пород: березы, клена, бука. Чтобы ручка не раскололась при насадке на напильник при работе, на конец ее надевают стальное кольцо.
Напильники изготавливают длиной от 100 до 400мм. Размер напильника следует выбирать соответственно величине обрабатываемой поверхности. Напильник должен быть на 150мм длиннее опиливаемой поверхности. Надфили изготавливают длиной 100мм.
Длина напильника зависит от вида обработки и размеров обрабатываемой поверхности и должна составлять:
* 100…160мм – для опиливания тонких пластин;
* 160…250мм – для опиливания поверхностей с длиной обработки до 50мм;
250…315мм – для опиливания поверхностей с длиной обработки до 100мм;
315…400мм – для опиливания поверхностей с длиной обработки более 100мм;
* 100…200мм – для распиливания отверстий в деталях толщиной до 10мм;
* 315…400мм – для чернового опиливания;
* 100…160мм – при доводке (надфили).
В зависимости от вида обрабатываемых поверхностей изделий и характера работ применяют напильники различной формы:
плоские напильники – для опиливания плоских и выпуклых широких наружных поверхностей и распиливания прямоугольных отверстий;
квадратные напильники – для распиливания квадратных и прямоугольных проемов, прямоугольных пазов и узких плоских наружных поверхностей;
трехгранные напильники - для распиливания отверстий и пазов с углами более 60º;
круглые напильники – для распиливания круглых и овальных отверстий, а также вогнутых поверхностей малого радиуса закругления, которые не могут быть обработаны полукруглым напильником;
полукруглые напильники – для опиливания вогнутых поверхностей большого радиуса закругления и галтелей;
ромбические напильники – для опиливания зубьев зубчатых колес, звездочек, для распиливания профильных пазов и поверхностей, расположенных под острыми углами;
ножовочные напильники – для опиливания внутренних углов менее 10º, а также клиновидных канавок, узких пазов, зубьев зубчатых колес, плоских поверхностей и отделки углов в трехгранных, прямоугольных и квадратных отверстиях.
Рашпили по форме поперечного сечения могут быть плоские
тупоконечные, плоские остроконечные, круглые и полукруглые.
Рашпили изготавливают с мелкой и крупной насечкой.
Надфили – специальные напильники применяют для обработки мелких деталей, имеющие малую длину (80, 120 или 160мм) и различную форму поперечного сечения. Надфили имеют также двойную насечку: основную под углом 25º и вспомогательную – под углом 45º.
Квадратный надфиль круглый надфиль
Ромбический надфиль трапецеидальный надфиль
гальтельный надфиль
Опиливанием называется способ резания, при котором осуществляется снятие слоя материала с поверхности заготовки с помощью напильника.
Напильник - это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).
Опиливанием придают детали требуемую форму и размеры, производят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.
Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка
Рис.1 . Напильники:
а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;
6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;
г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.
Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.
Насечка может быть одинарной (простой), двойной (перекрестной), рашпильной (точечной) или дуговой (рис. 1, б - д ).
Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.
Напильники с двойной насечкой применяют при опиливании стали, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.
Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.
Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.
Изготовляются напильники из стали У13 или У13 А. После насечки зубьев напильники подвергают термической обработке,
Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.
По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машинные напильники.
Рис. 2. Формы сечений напильников:
а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;
ж - ромбический; з - ножовочные.
Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизированных (электрических и пневматических) напильников.
В условиях учебных мастерских возможно применение механизированных ручных опиловочных машинок, которые широко используются на производстве.
Универсальная шлифовальная машина (см. рис. 4, г ), работающая от асинхронного электродвигателя 1, имеет шпиндель, к которому крепится гибкий вал 2 с державкой 3 для закрепления рабочего инструмента, и сменные прямые и угловые головки, позволяющие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.
Опиливание металла
При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность должна выступать над уровнем губок тисков на 8-10 мм. Чтобы предохранить заготовку от вмятин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опиливании металла аналогична рабочей позе при разрезании металла ножовкой.
Правой рукой берут за ручку напильника так, чтобы она упиралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).
Ладонь левой руки накладывают несколько поперек напильника на расстоянии 20-30 мм от его носка (рис. 3, б).
Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.
Рис. 3. Хватка напильника и балансировка им в процессе опиливания:
а - хватка правой рукой; б - хватка левой рукой; в - силы нажима в начале движения;
г - силы нажима в конце движения.
В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вначале нажима правой рукой на ручку с одновременным уменьшением более сильного вначале нажима левой рукой на носок напильника (рис. 3, в, г).
Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.
Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.
Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдерживать размеры детали и взаимное расположение ее поверхностей.
Если степень шероховатости поверхностей на чертеже не указана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опиливание заканчивают личным напильником.
В практике ручной обработки металлов встречаются следующие виды опиливания: опиливание плоскостей сопряженных, параллельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.
В случае опиливания параллельных плоских поверхностей проверку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.
При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании положение напильника неустойчивое и легко «завалить» края поверхности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Продольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.
Для создания лучших условий и повышения производительности труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсальные наметки, наметки-рамки, специальные кондукторы и другие.
Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой поверхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.
Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рамки, после чего окончательно закрепляют винты.
Рис. 4. Опиливание поверхностей:
а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей;г - опиливание с помощью универсальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).
Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснется верхней плоскости рамки. Поскольку эта плоскость рамки обработана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи линейки.
При обработке плоскостей, расположенных под углом 90°, сначала опиливают плоскость, принимаемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают плоским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, прижимая к ней, перемещают до соприкосновения с проверяемой поверхностью. Отсутствие просвета указывает, что перпендикулярность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.
Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильниками, внутренние - ромбическими, трехгранными и другими. Контроль обработки ведется угломерами или специальными шаблонами.
При обработке криволинейных поверхностей, кроме обычных приемов опиливания, применяются и специальные.
Выпуклые криволинейные поверхности можно обрабатывать, используя прием раскачивания напильника (рис. 4, б ). При перемещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напильника противоположные.
Вогнутые криволинейные поверхности в зависимости от радиуса их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно периодически перезажимают с тем, чтобы обрабатываемый участок располагался под напильником.
Распиливанием называется обработка отверстий (пройм) различной формы и размеров при помощи напильников. По применяемому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.
Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатываются плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, ножовочными и другими напильниками. Проймы криволинейной формы обрабатывают круглыми и полукруглыми напильниками.
Распиливание обычно выполняют в тисках. В крупных деталях проймы распиливают на месте установки этих деталей.
Подготовка к распиливанию начинается с разметки проймы. Затем удаляется излишний металл из ее внутренней полости.
При больших размерах проймы и наибольшей толщине заготовки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полотно, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.
Припасовкой называется взаимная пригонка двух деталей, сопрягающихся без зазора. Припасовывают как замкнутые, так и полузамкнутые контуры. Припасовка характеризуется большой точностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.
Припасовка применяется как окончательная операция при обработке деталей шарнирных соединений и чаще всего при изготовлении различных шаблонов. Выполняется припасовка напильниками с мелкой или очень мелкой насечкой.
Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.
Возможные виды брака при опиливании металла и их причины:
Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, неправильности измерения или неточности измерительного инструмента;
Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;
Вмятины и другие повреждения поверхности заготовки в результате неправильного ее зажима в тисках.
Дефекты конструкции ВС. К дефектам конструкции ВС можно отнести всеразлиные сколы, микро трещины, коррозионные поражения и т.д. Дефекты обнаруживаются с помощью методов неразрушающего контроля.
Обрабоотка резанием. Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки . Осуществляется путём снятия стружкирежущим инструментом (резцом, фрезой и пр.)
Обработка склеиванием.
Клеевые композиции при ремонте применяются для восстановления деталей с трещинами и пробоинами (блоки цилиндров, картеры агрегатов, корпусы узлов, емкости, фильтры и др.) для склеивания поврежденных деталей взамен клепки при ремонте тормозных для выравнивания поверхности кабин и оперения перед покраской как защитные покрытия длявосстановления размеров и геометрической формы изношенных деталей, устранения задиров и царапин в трущихся поверхностях для изготовления ремонтных деталей из штампованных заготовок и неметаллических материалов для обеспечения прочности и герметичности неподвижных сопряжений.
Технологические процессы восстановления деталей клеевыми композициямиотличаются простотой выполнения операций и не требуют сложного оборудования. Применение клеев допускает соединение однородных и неоднородных материалов, что осуществить другими способами весьма сложно. При склеивании детали не подвергаются тепловым и силовым нагрузкам, поэтому этим способом можно восстанавливать детали сложной формы и любых размеров.
Обработка сваркой. Сварка в ремонтном производстве находит очень широкое применение. Многие дефекты и повреждения устраняются сваркой, в том числе различные трещины, отколы, пробоины, срыв или износ резьбы и т. п. Сваркой называется процесс соединения металлических частей в одно неразъемное целое при помощи нагрева металла в местах соединения. При ремонте автомобильных деталей нагрев металла осуществляют газовым пламенем или электрической дугой. Так как детали изготавливаются из различных металлов (сталь, серый и ковкий чугун, цветные металлы и сплавы), то применяют соответствующий способ сварки. При горячей сварке деталь медленно нагревают до температуры 600-650°С в специальных печах или горнах. Чем больше содержание углерода в чугуне, тем медленнее должна быть скорость нагрева. Предварительный нагрев осуществляют при сварке и заварке трещин в ответственных деталях и деталях сложной конфигурации. После подогрева деталь помещают в термоизоляционный кожух со специальными задвижками или закрывают листовым асбестом, оставляя открытым только место сварки.
Обработка пайкой. Пайкой называется процесс получения неразъемного соединения или герметичного соединения при помощи присадочных материалов - припоев.При пайке основной металл детали не плавится. Надежность соединения обеспечивается за счет диффузии припоя в металл и зависит от правильного подбора флюса и припоя, тщательности очистки поверхности и наличия минимального зазора в стыке соединенных деталей. В зависимости от температуры плавления припои делятся на мягкие и твердые: мягкие припоиимеют температуру плавления до 300 °С, а твердые – 800 °С и выше.
Бортовой аварийный регистратор - это устройство, используемое в авиации для записи основных параметров полёта, показателей систем самолёта, переговоров экипажа и т. д. для выяснения причин лётных происшествий. Бортовой самописец собирает такие данные как:
o параметры техники: давление топлива, давление в гидросистемах, обороты двигателей, температура и т. д.;
o действия экипажа: степень отклонения органов управления, уборка и выпуск взлётно-посадочной механизации, нажатия на кнопки;
o навигационные данные: скорость и высота полёта, курс, прохождение приводных маяков и прочее.
Запись информации производится либо на магнитные носители (металлическая проволока или магнитная лента), либо - в современных регистраторах - на твердотельные накопители (флэш-память). Затем эту информацию можно считать и расшифровать в виде последовательных записей с указанием их времени.
Контрольно-измерительная и проверочная аппаратура. К инструментам и приборам для точных измерений относятся штангенциркули одно– или двухсторонние, эталонные и угловые плитки, микрометры для наружных измерений, нутромеры микрометрические, глубиномеры микрометрические, индикаторы, профилометры, проекторы, измерительные микроскопы, измерительные машины, а также разного вида пневматические и электрические приборы и вспомогательные устройства.
Измерительные индикаторы предназначены для сравнительных измерений путем определения отклонений от заданного размера. В сочетании с соответствующими приспособлениями индикаторы могут применяться для непосредственных измерений.
Измерительные индикаторы, являющиеся механическими стрелочными приборами, широко применяются для измерения диаметров, длин, для проверки геометрической формы, соосности, овальности, прямолинейности, плоскостности и т. д. Кроме того, индикаторы часто используются как составная часть приборов и приспособлений для автоматического контроля и сортировки. Цена деления шкалы индикатора обычно 0,01 мм, в ряде случаев – 0,002 мм. Разновидностью измерительных индикаторов являются миниметры и микрокаторы.
Измерительные приспособления предназначены для измерения изделий больших размеров.
Измерительные проекторы – это приборы, относящиеся к группе оптических, основанные на использовании метода бесконтактных измерений, т. е. измерений размеров не самого предмета, а его изображения, воспроизведенного на экране в многократном увеличении.
Измерительные микроскопы, как и проекторы, относятся к группе оптических приборов, в которых используется бесконтактный метод измерений. Они отличаются от проекторов тем, что наблюдение и измерение выполняются не на изображении предмета, спроектированном на экране, а на увеличенном изображении предмета, наблюдаемом в окуляре микроскопа. Измерительный микроскоп служит для измерения длин, углов и профилей разнообразных изделий (резьб, зубьев, шестерен и т. д.).
Обслуживание топливных фильтров. Основными работами технического обслуживания системы питания топливом являются: промывка фильтров грубой очистки; смена фильтрующих элементов тонкой очистки; проверка работоспособности топливоподкачивающего насоса; проверка и регулировка топливного насоса высокого давления на начало, величину и равномерность подачи топлива в цилиндры двигателя; установка угла опережения впрыска топлива; проверка и регулировка форсунок. Причем проверка топливоподкачивающего насоса и загрязненности топливных фильтрующих элементов должна быть систематической и проводиться инструментальными методами (например, приспособлением КИ-13943 ГосНИТИ).
Уход за топливными фильтрами заключается в промывке фильтра грубой очистки и смене фильтрующих элементов в фильтрах тонкой очистки.
Для промывки фильтра грубой очистки необходимо слить из него топливо и произвести его разборку. Сетка фильтрующего элемента и внутренняя полость стакана промываются бензином или дизельным топливом и продуваются сжатым воздухом.
Перед заменой старых фильтрующих элементов на новые топливо из фильтров тонкой очистки сливается и его стаканы промываются бензином или дизельным топливом и продуваются сжатым воздухом.
После сборки фильтров грубой и тонкой очистки необходимо убедиться в отсутствии подсоса воздуха через фильтры при работающем двигателе. Подсос воздуха и подтекание топлива устраняются подтягиванием болтов крепления стаканов к корпусам.
Фильтр тонкой очистки промывают на ультразвуковой установке в водном растворе или креолине. Качество промывки фильтров на ультразвуковой установке проверяется с помощью прибора ПКФ (рис.1.)
Рисунок 1.
Рис.1. Контроль качества промывки фильтров прибором ПКФ:
1 - сигнальная кнопка; 2- ручка; 3, 8, 10 - уплотнительные кольца; 4 - корпус; 5 - поплавок; 6- переходник; 7 - фланец; 9 - проверяемый фильтр; 11 - заглушка; 12 - секундомер). Для этого на прибор устанавливают переходник, соответствующий проверяемому фильтру, и фильтр с одной заглушкой устанавливают на переходник. В емкость заливают масло АМГ-10, подогретое до температуры 18-23 °С так, чтобы уровень масла был на 50...60 мм выше верхнего края проверяемого фильтра. Фильтр опускают на короткое время в масло АМГ-10, после чего дают возможность стечь маслу. Подготовляют секундомер, заглушают отверстие на рукоятке прибора, и прибор с фильтром опускают в емкость с маслом АМГ-10. Открывают отверстие на рукоятке прибора и включают секундомер. В момент совпадения сигнальной кнопки с уровнем верхнего торца рукоятки прибора секундомер выключают и определяют время заполнения фильтра маслом, которое должно быть не более 5 с. Если это время окажется более 5 с, то фильтр промывают повторно на ультразвуковой установке или его заменяют.
Проверка на герметичность. Проверка производится следующим образом: вначале необходимо включить компрессор и наблюдать за повышением давления в кабине по ртутному манометру. Скорость нарастания давления должна быть не более 0,3-0,4 мм рт. ст. При достижении в кабине избыточного напора 0,1 кгс/см2 необходимо произвести внешний осмотр фюзеляжа и выявить места утечки воздуха, поддерживая это давление. Затем медленно (не более 0,3- 0,4 мм рт. ст.) довести избыточный набор,в кабине до 0,3 кгс/см2, после чего выключить подачу воздуха от компрессора; замерить время падения.избыточного давления с 0,3 до 0,1 кгс/см2. Фюзеляж считается герметичным, если время падения избыточного напора с 0,3 до 0,1 кгс/см2 не менее 10 мин. При проверке герметичности (при повышении и снижении давления) следует осмотреть места возможной утечки. В случае если время падения давления менее 10 мин, необходимо обязательно проверить контуры люков, входной двери, остекление кабин, места стыковки обшивки герметического отсека (по всему фюзеляжу) и отсек носового колеса. Дополнительными местами утечки могут быть гермовыводы электрожгутов, труб, ШДГ и антенн. Устранение выявленных дефектов следует производить после стравливания.избыточного давления до нуля. Места с явными утечкам, и воздуха подлежат обязательной заделке, даже если время падения давления укладывается,в норму.
Турбовинтово́й дви́гатель - тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина - высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.
Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит компрессор, другая (через понижающий редуктор) - винт. Такая конструкция имеет ряд премуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).
В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Вместе с тем, турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели.
ПМД-70
Назначение.
Порошковый дефектоскоп ПМД-70 представляет собой универсальное многофункциональное устройство, осуществляющее магнитопорошковый и магнитолюминисцентный методы неразрущающего контроля металлических изделий и сварных соединений. Прибор предназначен для выявления различных дефектов как на поверхности детали, так и в верхнем слое ферромагнитного материала.
ПМД-70 применяется для проведения дефектоскопических исследований на производствах, изготавливающих, обслуживающих и эксплуатирующих металлические конструкции и изделия, соединенные между собой сварочными операциями. Дефектоскоп эффективен и в полевых условиях, при работе на открытом воздухе и при испытаниях в лабораториях.
Принцип действия.
Порошковый дефектоскоп имеет несколько разновидностей, отличающихся видом намагничивающих устройств: электромагниты, кабели, контактные группы, и их питанием: от сети переменного или постоянного тока. С помощью этих устройств и импульсного блока прибор наводит электромагнитное поле в контролируемом объекте, которое намагничивают отдельные участки изделия продольным или циркулярным полем. Далее на изделие наносится магнитная суспензия или порошок, который является своего родом индикатором намагниченности. По измеренной величине магнитной индукции определяется наличие и глубина повреждения. С помощью нанесения данного индикатора составляется визуальная картина дефекта. Размагничивание материала изделия происходит при помощи триггеров, работающих в динамическом режиме, и осуществляющих реверсивное течение тока через намагничивающие устройства.
Вывод
В результате прохождения слесарно-механической практики я:
Ознакомился с техникой безопасности, охраной труда при работе с инструментами, оборудование и приспособлениями для выполнения слесарно-механических работ;
Приобрел навыки практической работы в качестве исполнителя ведения слесарно-механической работы;
Закрепил теоретические знания,полученные при изучении специальных дисциплин;
Ознакомился со слесарно-механическими оборудованиями, инструментами и научился пользововаться ими;
Ознакомился с приборами и методами обнаружения дефектов.
Хотелось бы подробно рассмотреть, изучить детали ВС и поучаствовать в техническом обслуживании. Надеюсь заполнить эти пробелы в следующей производственной практике.
Цеулёв Н.Е.
Министерство образования и науки Республики Казахстан
АО «Академия Гражданской Авиации»
Авиационный факультет
Кафедра №10 «Авиационная техника и летная эксплаутация»
Назначение, применение, последовательность вы-полнения операций. Опиливанием называется обработка поверх-ности изделия режущим инструментом - напильником, при помощи которого с обрабатываемого изделия снимается слой металла. Опиливание производится после операций рубки или резки для отделки поверхности обрабатываемого изделия и придания ему более точных размеров. В опытном или единич-ном производстве опиливание применяется также для пригон-ки деталей при сборке.
При выполнении сантехнических работ основными вида-ми опиловочных работ являются: опиливание наружных пло-ских и криволинейных поверхностей; опиливание наружных и внутренних углов, а также сложных или фасонных поверхно-стей; опиливание углублений и отверстий, пазов и выступов, пригонка их друг к другу.
Опиливание подразделяется на предварительное черновое и окончательное (чистовое и отделочное), выполняемое раз-личными напильниками. Напильник подбирают в зависимо-сти от заданной точности обработки и припуска, оставляемого на опиливание.
Инструменты и приспособления для опиливания. Напильники представляют собой режущие инструменты в виде стальных за-каленных брусков различного профиля с насеченными на ра-бочих поверхностях зубьями, которыми срезаются тонкие слои металла в виде стружки. Напильники бывают с различной дли-ной насеченной части. Насечку напильников выполняют оди-нарной (простой) и двойной (перекрестной). Напильники с одинарной насечкой, нанесенной под углом 70-80° к ребру на-пильника, срезают металл широкой стружкой, равной всей длине зуба, поэтому работа ими требует больших усилий. Такими напильниками опиливают мягкие металлы (медь, бронзу, латунь, баббит, алюминий). В напильниках с двойной насечкой одна насечка называется основной или нижней, а другая - верхней. Перекрестная насечка раздробляет стружку, что об-легчает работу слесаря. У напильников с перекрестной насеч-кой нижняя насечка обычно выполняется под углом 55°, а верхняя - под углом 70°. Шаг, т.е. расстояние между двумя со-седними зубьями, у нижней насечки больше, чем у верхней. В результате зубья располагаются друг за другом по прямой, со-ставляющей угол с осью напильника, и при движении напиль-ника следы зубьев частично перекрывают друг друга. Благода-ря этому на обрабатываемой поверхности не остается глубоких канавок, и она получается чистой и гладкой.
Зубья насекают на насекальных станках специальным зу-билом или получают фрезерованием, шлифованием, протяги-ванием. Каждый способ дает свой профиль зуба. Установлены следующие углы зубьев напильника:
- для напильников с насеченными зубьями угол резания δ = 106°, задний угол α = 36°, угол заострения β = 70°, передний угол γ отрицательный - до 16°;
- для напильников с фрезерованными и шлифованными зубья-ми δ = 80-88°, α = 20-25°, β = 60-63°, γ = 2-10°.
Напильники делятся на обыкновенные, специальные, рашпили и надфили.
К обыкновенным относятся напильники плоские (тупоно-сые и остроносые), квадратные, трехгранные, полукруглые и круглые.
К специальным напильникам относятся: ножовочные, ром-бические (мечевидные), плоские с овальными ребрами, оваль-ные, а также напильники-брусовки и др.; в виде круглых дис-ков с насечками, нанесенными по окружности и на боковых сторонах.
Рашпили - напильники с особым видом насечки - рашпильной. Подразделяются они на плоские тупоносые, плоские остроносые, полукруглые, круглые.
Надфили (мелкие напильники) делятся на плоские тупоно-сые, плоские остроносые, трехгранные, квадратные, полукруг-лые, круглые, овальные, ромбические, ножовочные.
По числу насечек, приходящихся на 1 см длины, напильни-ки делятся на шесть классов:
- 1-й класс - напильники драчовые (крупная насечка), при-меняемые для грубого чернового опиливания;
- 2-й класс - на-пильники личные (мелкая насечка), применяемые для чисто-вой обработки поверхностей;
- 3-й, 4-й, 5-й и 6-й классы - на-пильники бархатные с мелкой и очень мелкой насечкой, применяемые для пригонки деталей.
Опиливание открытых и закрытых плоских поверхностей под прямым, острым и тупым углами. При опиливании изделие зажи-мают в тисках так, чтобы обрабатываемая поверхность высту-пала над губками тисковна высоту 5-10 мм. Зажим производят между нагубниками. При опиливании надо стоять перед тиска-ми слева или справа (смотря по надобности), повернувшись на 45° к оси тисков. Левую ногу выдвигают вперед в направлении движения напильника, правую ногу отставляют от левой на 20-30 см так, чтобы середина ее ступни находилась против пятки левой ноги. Напильник берут в правую руку за рукоятку, упирая ее головкой в ладонь; большой палец кладут на ручку вдоль, остальными пальцами поддерживают ручку снизу.
Положив напильник на обрабатываемый предмет, накла-дывают левую руку ладонью поперек напильника на расстоя-нии 20-30 мм от его конца. При этом пальцы должны быть по-лусогнуты, а не поджаты, чтобы их не поранить об острые края обрабатываемого изделия. Локоть левой руки приподнимают. Правая рука от локтя до кисти должна составлять с напильни-ком прямую линию. Напильник двигают обеими руками впе-ред (от себя) и назад (на себя) плавно на всю его длину. При движении напильника вперед на него нажимают руками, но не одинаково. По мере его продвижения вперед усиливают нажим правой руки и ослабляют нажим левой. При движении напиль-ника назад на него не нажимают. Рекомендуется делать от 40 до 60 двойных движений напильника в минуту.
При опиливании плоскостей напильник перемещают не только вперед, но и вправо или влево, чтобы спиливать равно-мерный слой металла со всей плоскости. Качество опиливания зависит от умения регулировать силу нажима на напильник, которое достигается только в процессе практических работ по опиливанию. При нажиме на напильник с постоянной силой в начале рабочего хода происходит его отклонение рукояткой вниз, а в конце рабочего хода - передним концом вниз. При та-кой работе края обрабатываемой поверхности будут находить-ся на разной высоте.