Необычные эксперименты в космосе. Бумеранг вернулся! Материалы к уроку:будет ли гореть свеча в невесомости? Будет ли гореть свеча в открытом космосе

Главная / Канализация

Эксперимент FLEX, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.

Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.


Разница пламени на Земле (слева) и в условиях невесомости (справа) очевидна. Так или иначе, человечеству вновь придется осваивать огонь – на этот раз в космосе.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Многие физические процессы протекают иначе, чем на Земле, и горение не исключение. Пламя в невесомости ведет себя совершенно по-другому, приобретая сферическую форму. На фото - горение капельки этилена на воздухе в условиях микрогравитации . Этот снимок сделан во время эксперимента по изучению физики горения в специальной 30-метровой башне (2.2-Second Drop Tower) Исследовательского центра имени Джона Гленна (Glenn Research Center), созданной для воспроизведения условий микрогравитации при свободном падении . Многие эксперименты, которые затем были поставлены на космических аппаратах, проходили предварительное тестирование в этой башне, поэтому ее называют «воротами в космос» (“a gateway to space”).

Шарообразная форма пламени объясняется тем, что в условиях невесомости нет восходящего движения воздуха и не происходит конвекция теплых и холодных его слоев, которая на Земле «вытягивает» пламя в форму капли. Пламени для горения не хватает притока свежего воздуха, содержащего кислород, и оно получается меньше и не такое горячее. Привычный для нас на Земле желто-оранжевый цвет пламени вызван свечением частичек сажи, которые поднимаются вверх с горячим потоком воздуха. В невесомости же пламя приобретает голубой цвет, потому что сажи образуется мало (для этого нужна температура более 1000°С), да и та сажа, что есть, из-за более низкой температуры будет светиться только в инфракрасном диапазоне. На верхнем фото в пламени еще присутствует желто-оранжевый цвет, поскольку заснята ранняя стадия воспламенения, когда кислорода еще достаточно.

Исследования горения в условиях невесомости особенно важны для обеспечения безопасности космических аппаратов. Эксперименты по подавлению огня (Flame Extinguishment Experiment , FLEX) уже несколько лет проводят в специальном отсеке на борту МКС . Исследователи воспламеняют небольшие капли топлива (например, гептана и метанола) в контролируемой атмосфере. Маленький шарик топлива горит примерно 20 секунд, окруженный сферой огня диаметром 2,5–4 мм, после чего капля уменьшается пока либо не погаснет пламя, либо не кончится топливо. Самым неожиданным результатом оказалось то, что капля гептана после видимого сгорания перешла в так называемую «холодную фазу» - пламя стало настолько слабым, что его невозможно было увидеть. И всё же это было горение: огонь мог моментально вспыхнуть при взаимодействии с кислородом или топливом.

Как объясняют исследователи, при обычном горении температура пламени колеблется между 1227°С и 1727°С - при этой температуре в эксперименте и был видимый огонь. По мере сгорания топлива начиналось «холодное горение»: пламя остывало до 227–527°С и производило не сажу, углекислый газ и воду, а более токсичные материалы - формальдегид и монооксид углерода . В ходе эксперимента FLEX также подбирали наименее огнеопасную атмосферу на основе углекислого газа и гелия, что поможет в будущем снизить риск возгорания космических аппаратов.

О горении и пламени на Земле и в невесомости см. также:
Константин Богданов «Где собака зарыта?» - «5. Что такое огонь?» .

Янаш Банников

Почему вообще происходит горение? При нагревании органических веществ выше некоторой пороговой величины - температуры воспламенения - начинается их активная реакция с кислородом воздуха.

Основной состав атомов органических веществ представляют углерод (С) и водород (H). Углерод соединяясь с кислородом образует углекислый газ (CO2), водород - воду (H20). Реакция в свою очередь идет с выделением тепла, что обеспечивает ее продолжение. Таким образом, что бы горение в принципе происходило, нужно два условия:
1) что бы температура воспламенения была меньше температуры горения
2) обеспечить достаточный для продолжения реакции приток кислорода.

Почему пламя свечи направлено вверх? При горении нагреваемый пламенем воздух устремляется вверх (помним физику? Теплый воздух легче, поэтому он поднимается. Точнее, вытесняется более холодным, а значит более тяжелым.) На место, освобождаемое теплым воздухом притекает холодный, содержащий в себе больше кислорода. Очевидно, что если накрыть свечу, например, стеклянной банкой, то свеча достаточно быстро погаснет - как только весь кислород вступит в реакцию. Попутно, еще один интересный вопрос. Почему, хотя углекислый газ невидим, да и пары воды видимы только когда их много, но мы прекрасно видим пламя свечи? Видим мы разогретые частички несгоревшего вещества. Именно те, которые образуют копоть (сажу). Её мы увидим, если над пламенем подержим, например, ложку.

Теперь, наконец, возвращаемся к нашим баранам. То есть к вопросу о том, будет ли свеча гореть в невесомости. Очевидно, что вопрос возник исходя из тех рассуждений, что раз нет земного притяжения, то теплый воздух не будет вытесняться холодным, и с притоком кислорода начнуться проблемы. Однако, тут на помощь приходит тепловое движение. Разогретые молекулы углекислого газа и водяного пара движутся в несколько раз быстрее, чем молекулы кислорода, что может в принципе дать возможность свече гореть. Итак, резюмируя, заключаем. В принципе гореть свеча хоть и вяленько, но может.

Кстати, в свое время этот вопрос задал Альберт Эйнштейн, и сам же на него ответил отрицательно. Нет притока воздуха, нет и горения. Но опыт доказал иное.

http://evolutsia.com/content/view/3057/40/

Необычный эксперимент осуществлен в космосе. Японский космонавт Такао Дои,

находящийся на борту американского модуля МКС, запустил обычный бумеранг.

Специалисты хотели посмотреть, как поведет себя этот предмет, если его бросить в условиях невесомости.

К удивлению многих, в том числе, чемпиона мира по метанию бумерангов Ясухиро Тогай, бумеранг вернулся!

Еще один эксперимент в невесомости

Альберт Эйнштейн задолго до космических полетов задумался над любопытным вопросом: будет ли гореть свеча в кабине космического корабля? Эйнштейн считал, что "нет", так как из-за невесомости раскаленные газы не будут уходить из зоны пламени. Тем самым доступ кислорода к фитилю окажется прегражденным, и пламя погаснет

Современные экспериментаторы решили проверить утверждение Эйнштейна на опыте. В одной из лабораторий был поставлен следующий эксперимент. Горящую свечу, помещенную в закрытую стеклянную банку, сбрасывали с высоты около 70 м. Падающий предмет находился в состоянии невесомости, если не учитывать сопротивления воздуха. Однако свеча не гасла, менялась лишь форма языка пламени, он становился более шарообразным, а испускаемый им свет становился менее ярким.

Экспериментаторы объяснили продолжающееся в невесомости горение диффузией, благодаря которой кислород из окружающего пространства все же попадал в зону пламени. Ведь процесс диффузии не зависит от действия сил тяготения.

Однако условия горения в невесомости иные, чем на Земле. Это обстоятельство пришлось учитывать советским конструкторам, которые создавали специальный сварочный аппарат для проведения сварки в условиях невесомости.

Этот аппарат был испытан в 1969 г. на советском космическом корабле «Союз-8» и работал успешно.




Знаете ли вы?

Первые пуговицы

Как застегивали одежду давным-давно?
Для этого пользовались запонками, а чаще шнурками и тесемками.

Затем появились пуговицы, причем зачастую их пришивали гораздо больше, нежели делали петель. Дело в том, что пуговицы предназначались сначала только для людей богатых не только для застежки, но чаще для украшения одежды. Пуговицы делались из драгоценных камней и дорогих металлов.

Чем знатнее, богаче человек, тем больше пуговиц было на его одеждах. Многие выступали в то время против новых застежек, считая их непозволительной роскошью. Нередко так оно и было на самом деле. Например, король Франции Франциск Первый распорядился украсить свой черный бархатный камзол 13 600 золотыми пуговичками.

Многие из тех, кто смотрел культовый американский фильм «Звёздные войны», до сих пор помнят впечатляющие кадры со взрывами, языками пламени, летящими во все стороны горящими обломками… А может ли такая страшная сцена повториться в реальном космосе? В пространстве, полностью лишённом воздуха? Чтобы ответить на этот вопрос, попробуем разобраться для начала, как будет гореть обычная свечка на космической станции.

Что такое горение? Это химическая реакция окисления с выделением большого количества тепла и образованием раскалённых продуктов сгорания. Процесс горения может происходить только при наличии горючего вещества, кислорода и при условии, что продукты окисления будут отводиться из зоны горения.

Посмотрим, как устроена свечка и что именно в ней горит. Свечка - скрученный из хлопчатобумажных нитей фитиль, залитый воском, парафином или стеарином. Многие думают, что горит сам фитиль, но это не так. Горит как раз вещество вокруг фитиля, точнее, его пары. Фитиль же нужен для того, чтобы расплавившийся от тепла пламени воск (парафин, стеа-рин) поднимался по его капиллярам в зону горения.

Чтобы проверить это, можно провести небольшой эксперимент. Задуйте свечку и тут же поднесите горящую спичку в точку выше фитиля сантиметра на два-три, туда, где поднимаются вверх пары воска. От спички они вспыхнут, после чего огонь опустится на фитиль и свечка загорится снова (подробнее см. ).

Итак, горючее вещество есть. Кислорода в воздухе тоже вполне достаточно. А как быть с отводом продуктов сгорания? На земле с этим проблем нет. Воздух, нагретый теплом пламени свечи, становится менее плотным, чем окружающий его холодный, и поднимается вверх вместе с продуктами сгорания (они образуют язычок пламени). Если же продукты сгорания, а это углекислый газ CO 2 и пары воды, останутся в зоне реакции, горение быстро прекратится. Убедиться в этом легко: поставьте горящую свечку в высокий стакан - она погаснет.

А теперь подумаем, что же произойдёт со свечкой на космической станции, где все предметы находятся в состоянии невесомости. Разница в плотности горячего и холодного воздуха уже не будет вызывать естественную конвекцию, и через непродолжительное время в зоне горения не останется кислорода. Зато образуется избыток окиси углерода (угарного газа) CO. Однако ещё несколько минут свеча будет гореть, а пламя приобретёт форму шара, окружающего фитиль.

Не менее интересно узнать, какого цвета будет пламя свечи на космической станции. На земле в нём преобладает жёлтый оттенок, обусловленный свечением раскалённых частиц сажи. Обычно огонь горит при температуре 1227-1721 о С. В невесомости же было замечено, что по мере исчерпания горючего вещества начинается «холодное» горение при температуре 227-527 о С. В этих условиях смесь предельных углеводородов в составе воска выделяет водород Н 2 , который придаёт пламени голубоватый оттенок.

А зажигал ли кто-нибудь настоящие свечи в космосе? Оказывается, зажигали - на орбите. Впервые это было сделано в 1992 году в экспериментальном модуле космического корабля «Spece Shattle», затем в космическом корабле NASA «Колумбия», в 1996 году опыт повторили на станции «Мир». Конечно, этой работой занимались не из простого любопытства, а для того, чтобы понять, к каким последствиям может привести пожар на борту станции и как с ним бороться.

С октября 2008-го по май 2012 года подобные эксперименты проводились по проекту NASA на Международной космической станции. На этот раз космонавты исследовали горючие вещества в изолированной камере при разных давлениях и разном содержании кислорода. Тогда и было установлено «холодное» горение при низких температурах.

Напомним, что продукты сгорания на земле - это, как правило, углекислый газ и пары воды. В невесомости же, в условиях горения при низких температурах, выделяются высокотоксичные вещества, в основном угарный газ и формальдегид.

Исследователи продолжают изучать горение в невесомости. Возможно, результаты этих экспериментов лягут в основу разработки новых технологий, ведь почти всё, что делается для космоса, через некоторое время находит применение на земле.

Теперь мы понимаем, что режиссёр Джордж Лукас, снявший «Звёздные войны», всё-таки сильно ошибся, изображая апокалиптический взрыв космической станции. На самом деле взорвавшаяся станция будет выглядеть как короткая яркая вспышка. После неё останется огромный голубоватый шар, который очень быстро погаснет. А если вдруг на станции что-то загорится по-настоящему, нужно без промедления автоматически отключить искусственную циркуляцию воздуха. И тогда пожар не случится.

Воск - непрозрачная, жирная на ощупь, твёрдая масса, которая плавится при нагревании. Состоит из сложных эфиров жирных кислот растительного и животного происхождения.

Парафин - воскоподобная смесь насыщенных углеводородов.

Стеарин - воскоподобная смесь стеариновой и пальмитиновой кислот с примесью других насыщенных и ненасыщенных жирных кислот.

Естественная конвекция - процесс теплопередачи, обусловленный циркуляцией воздушных масс при их неравномерном нагревании в поле тяготения. Когда нижние слои нагреваются, они становятся легче и поднимаются, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

© 2020 reabuilding.ru -- Портал о правильном строительстве