Как выработать электричество из картошки. Батарейка из картошки и других овощей
Наверняка многие из курса физики помнят или слышали, что из обыкновенного картофеля, и не только из него, можно добыть немного электричества.
Что для этого необходимо, и возможно ли таким способом зажечь маломощный фонарик, светодиодные часы питающиеся от круглых батареек 1-2Вольт или заставить работать радиоприемник? И да и нет, давайте разбираться подробнее.
Откуда в картошке электричество?
Чтобы понять, что напряжение из картошки это не выдумка, а вполне реальная вещь, достаточно воткнуть в одну единственную картофелину острые щупы от мультиметра и вы тут же увидите на экране несколько милливольт.
Если немного усложнить конструкцию, например с одной стороны в клубень вставить медный электрод или бронзовую монетку, а с другой стороны что-нибудь алюминиевое или оцинкованное, то уровень напряжения существенным образом вырастет.
Сок картофеля содержит в себе растворенные соли и кислоты, которые являются по сути естественным электролитом.
Кстати, с одинаковым успехом можно использовать для этого лимоны, апельсины, яблоки. Таким образом, все эти продукты могут питать не только людей, но и электроприборы.
Внутри таких фруктов и овощей, из-за окисления, с погруженного анода (оцинкованный контакт) будут утекать электроны. А притягиваться они будут к другому контакту — медному.
При этом не путайте, электричество здесь образуется не прямо из картошки. Оно хорошо вырабатывается именно благодаря химическим процессам между тремя элементами:
- цинк
- медь
- кислота
И именно цинковый контакт здесь служит как расходка. Все электроны утекают с него. При определенных условиях даже земляная почва может дать электричество. Главное условие - ее кислотность.
Втыкаете в землю условно два палки (естественно из цинка и меди) и замеряете напряжение. Иногда разность потенциалов доходит до 0,2В. При влажной почве результат улучшается.
Это так называемая земляная батарея.
Сборка батарейки из картошки
Итак, вот что необходимо для сборки более или менее емкостной батарейки:
Несколько штук, так как от одной толку будет мало.
Чем больше сечением, тем лучше.
Гвозди как раз таки и будут играть основную роль в выработке электричества для фонарика.
- оцинкованные - это минусовой контакт (анод)
- обмедненные - это плюс (катод)
Если применить вместо оцинкованных простые гвозди, то вы потеряете в напряжении до 40-50%. Но как вариант, работать все равно будет.
То же самое относится и к применению алюминиевой проволоки вместо гвоздей. При этом, увеличение расстояния между электродами в одной картофелине особой роли не играет.
Берете медные провода (моно жилу) сечением 1,5-2,5мм2, длиной 10-15см. Зачищаете их от изоляции и приматываете к гвоздику.
Лучше всего конечно припаять, тогда и потери напряжения будут гораздо меньше.
Один медный гвоздь с одной стороны провода, а оцинкованный с другой.
При этом в каждый клубень втыкаются разные гвозди, от разных пар проводов. То есть в каждую картошку у вас должен быть воткнут одни цинковый контакт и один медный.
Соединяются разные клубни между собой, только через гвозди из различных материалов - медь+цинк - медь+цинк и т.д.
Замеры напряжения
Допустим у вас три картохи, и вы соединили их между собой вышеописанным образом. Чтобы узнать какое же напряжение получилось, воспользуйтесь мультиметром.
Переключаете его в режим измерения ПОСТОЯННОГО напряжения и подключаете измерительные щупы к проводникам крайних картофелин, т.е. к начальному плюсовому контакту (медь) и конечному минусовому (цинк).
Даже на трех картофелинах среднего размера можно получить почти 1,5 Вольта.
Если же по максимуму уменьшить все переходные сопротивления, а для этого:
- в контактах применить пайку
то всего 4 картошки способны выдать до 12 вольт!
Если ваш дешевый фонарик запитывается от трех пальчиковых батареек, то для успешного его свечения вам понадобится порядка 5 вольт. То есть, картошек при использовании обычных проводов нужно минимум в три раза больше.
Для этого кстати, не обязательно искать дополнительные клубни, достаточно ножом разрезать существующие на несколько частей. После чего проделать с проводками и гвоздиками всю ту же самую процедуру.
В каждый разрезанный клубень последовательно вставить один оцинкованный и один медный гвоздик. В итоге вполне реально получить постоянное напряжение более чем 5,5В.
А можно ли теоретически из одной единственной картошки, получить 5 вольт и при этом добиться того, чтобы вся сборка по размеру была не больше пальчиковой батарейки? Можно и очень легко.
Отрезаете маленькие кусочки сердцевины с картошки, и прокладываете их между плоскими электродами, например монетками из разного металла (бронза, цинк, алюминий).
В итоге у вас должно получится что-то наподобие сэндвича. Даже один кусочек такой сборки способен давать до 0,5В!
А если собрать их несколько штук вместе, то требуемое значение до 5В легко получится на выходе.
Сила тока
Казалось бы все, цель достигнута, и осталось только найти способ подключить проводки к контактам питания фонарика или светодиодов.
Однако проделав такую процедуру и собрав не слабую конструкцию из нескольких картох, вы будете очень сильно разочарованы итоговым результатом.
Маломощные светодиоды конечно будут светиться, как-никак напряжение вы все-таки получили. Однако уровень яркости их свечения будет катастрофически тусклым. Почему так происходит?
Потому что, к сожалению, такой гальванический элемент дает ничтожно низкий ток. Он будет настольно малым, что даже не все мультиметры способны его замерить.
Кто-то подумает, раз не хватает тока, нужно добавить еще побольше картошки и все получится. Вот видео эксперимент с использованием 400-х! картофелин и подключением от них светодиодной лампочки аж на 110Вольт.
Безусловно, существенное увеличение клубней позволит поднять рабочее напряжение.
При последовательном соединении десятков и сотен картошек, увеличится напряжение, но не будет самого главного - достаточной емкости для увеличения силы тока.
Да и конструкция вся эта не будет рационально пригодной.
Практичный способ с варенной картошкой
Но все-таки, есть ли простой способ, как повысить мощность такой батарейки и уменьшить габариты? Да, есть.
Например, если для этой цели использовать не сырую, а варенную картошку, то мощность такого источника электричества увеличивается в несколько раз!
Чтобы собрать удобную компактную конструкцию, воспользуйтесь корпусом от старой батарейки формата С (R14) или D(R20).
Удаляете все содержимое внутри (естественно, кроме графитового стержня).
Вместо начинки все пространство заполняете варенной картошкой.
После чего собираете конструкцию батарейки в обратном порядке.
Цинковая часть корпуса старой батарейки, здесь играет существенную роль.
Общая площадь внутренних стенок получается гораздо большей, чем просто воткнутые гвоздики в сырую картоху.
Отсюда и большая мощность и КПД.
Один такой источник питания будет легко выдавать почти 1,5 вольта, также как и маленькая пальчиковая батарейка.
Но самое главное для нас это не вольты, а миллиамперы. Так вот, такая "вареная" модернизация, способна обеспечить ток до 80мА.
Такими батарейками можно запитать приемник или электронные светодиодные часы.
Причем вся сборка проработает уже не секунды, а несколько минут (до десяти). Больше батареек и картохи, больше автономного времени работы.
Не каждому знаком такой факт, что если два электрода различных металлов воткнуть в любой овощ или фрукт, то между соком и металлами начнутся химические реакции, в результате которых появится разность потенциалов на электродах, то есть напряжение. Поэтому даже в походе или экспедиции, вдали от цивилизации, можно получить электричество, соорудив источник тока из обыкновенной картошки, гвоздей и медной проволоки , чтобы подзарядить аккумуляторы взятых с собой различных электронных устройств.
Делается такая мини-электростанция несложно - гвоздь и проволока зачищается так, чтобы на них не оставались грязь, окислы или изоляция (в том числе и лак на медной проволоке). Затем картофелина протыкается полученными электродами таким образом, чтобы исключить соприкосновение их друг с другом. Электричество из одной картошки, гвоздя и одной проволочины получается около 0,4 В, что конечно очень мало. Для повышения напряжения нужно собрать ещё две такие «батарейки» и последовательно их соединить. Таким образом значение напряжения увеличивается примерно до 1,3 В, а это уже можно использовать.
В связи с тем, что проходящие внутри картофельных «батареек» химические процессы медленные, то и получаемый от них ток будет весьма мал и незначителен, однако подсоединив конденсатор к выходам системы можно сделать небольшой запас. Чем емкость конденсатора больше, тем большим количеством электроэнергии он сможет запастись от картошечных батареек (при подключении электролитического конденсатора необходимо соблюдать полярность - в случае получения электричества из картошки плюс находится на медном электроде, минус на железном гвозде). Для получения большего напряжения готовится больше таких «батареек» и подключение их последовательное, если же требуется ток большей силы - подключение параллельное.
В принципе, работать в качестве электролита между электродами из меди и цинка способны многие плоды. Профессором Иерусалимского университета и его коллегами разработана технология, позволяющая создавать эффективные дешевые аккумуляторы из... обычной картошки. Картофель выбран израильтянами исходя из того, что это самый дешевый и практичный вариант: распространен повсеместно, прекрасно хранится без холодильника, мушек не привлекает. В лаборатории Рабиновича обнаружено, что если восемь минут поварить картофель, то его электрическая сила увеличится, и батарея получается мощнее, по сравнению с электричеством из сырой картошки, в десять раз.
В результате экспериментов выяснилось, что кусочек недоваренной картофелины, помещенный между пластинами меди и цинка, способен обеспечивать энергией электрическую светодиодную энергосберегающую лампочку (LED лампочку) в течение 40 дней. По утверждению ученых, такая необычная картофельная энергетическая установка обойдется в десять раз дешевле стандартной батареи «АА», вдобавок, картофель экологически безопасен, его можно вполне использовать как удобрение, после окончания срока службы как элемента питания в процессе получения электричества из картошки. К тому же расчеты показывают, что «картофельное» освещение по сравнению с газовым в шесть раз дешевле, а с традиционным электрическим - в двадцать раз.
В походных условиях такой природный источник питания, как картошка, электричества много не даст, но подзарядить батарею мобильного телефона, аккумулятор фотоаппарата, других устройств, потребляющих небольшой ток, вполне позволит. Процесс зарядки аккумуляторов картошечной батарейкой весьма длительный, однако в походе можно оставить на ночь данную систему, а утром получить подзаряженную батарею.
Получение электричества с помощью овощей - задача не такая сложная, как кажется. Узнать практически, как получить электричество из картошки можно у себя на кухне. Понадобится всего несколько картофелин, кусочек провода, несколько гвоздей, шайб, монет, чтобы с их помощью собрать действующий гальванический элемент или даже батарею. С помощью такой батареи можно не только запитать маломощную нагрузку вроде часов, радиоприёмника, но даже зарядить телефон или зажечь бытовую лампу освещения.
Использование сырого картофеля
Получить электричество из картошки возможно даже в домашних условиях. Чтобы убедиться в этом, достаточно воткнуть в картофелину два металлических щупа вольтметра. Прибор покажет наличие напряжения на уровне нескольких милливольт.
Конечно же, от такого источника вряд ли удастся запитать какой-либо электроприбор, слишком мала мощность. Если вместо щупов из одинакового металла применить цинковый катод и медный анод, его напряжение существенно возрастёт.
Чем больше площадь электродов, тем эффективнее работает ячейка. Цинк можно добыть из отработанной батарейки, разрезав металлический цинковый стакан гальванического элемента. Вариант попроще: воспользоваться обычным оцинкованным гвоздём, винтом или шурупом из строительного магазина. Анод изготавливается из отрезка медного провода, жилы кабеля или медного крепежа из того же строительного магазина. Медно-цинковая овощная ячейка даст уже около 0,5-0,7В. По сути, в результате получается настоящий гальванический элемент.
Не имеет значения, целая будет картофелина или нет. Крупный корнеплод, разрезанный на части будет работать так же, как и целый.
Пластинчатый элемент
Ещё один эффективный способ получения картофельного электричества состоит в помещении плоского кусочка сырого корнеплода между пластинками меди, цинка, а также их сплавов. В качестве пластин можно использовать различные медные монеты, а отрицательный электрод сделать из плоской оцинкованной шайбы подходящего диаметра. Такой элемент получается компактным, из него проще составить батарею.
Картофельная батарея
Одна медно-цинковая картофельная ячейка позволит получить максимум около 0,9 В и очень малый ток. Для того, чтобы повысить максимальную мощность, нужно соединить несколько элементов последовательно, параллельно или применить комбинированную схему.
Последовательное соединение
Этим способом пользуются для увеличения напряжения батареи. При такой схеме полюса соединяются таким образом, что положительный полюс одной ячейки соединяется с отрицательным полюсом следующего. Крайние отводы станут плюсом и минусом батареи. ЭДС всех элементов складывается, при этом ток, протекающий в цепи будет равен току одного элемента. Общее суммарное напряжение равно сумме ЭДС всех соединённых элементов.
Две последовательно соединённых картофелины или пластинчатых элемента дадут уже 1,5 В, сравнимые с привычной пальчиковой батарейкой.
С последними дело обстоит очень просто, поскольку такая батарейка получается путём укладки слоями по схеме: плюс-медь-картофель-цинк-медь-картофель-цинк-минус.
Параллельное соединение
При такой схеме соединения токи всех элементов складываются. Все положительные полюса объединяются и образуют «плюс», все отрицательные полюса образуют «минус». Суммарный ток будет равен сумме токов всех объединённых в параллельную схему ячеек, а напряжение равно среднему напряжению отдельных частей.
Комбинированная схема
Заключается в комбинировании последовательной и параллельной схемы соединения для увеличения максимального тока и напряжения батареи.
Таким образом, применяя схему последовательно-параллельного соединения, можно получить вполне работоспособную батарею, например, способную электричеством из картошки зарядить аккумулятор телефона в экстренной ситуации.
При большом количестве задействованных овощей можно даже зажечь бытовую лампу освещения.
Интересное видео о получении электричества из картофеля:
Вареный картофель
Обеспечивает ещё более высокие энергетические показатели. При варке клубней органические вещества в них разрушаются, что способствует снижению электрического сопротивления «электролита». Батарея, собранная из пластинчатых элементов на основе вареного овоща отличается большей мощностью, чем аналогичная из сырого.
Физико-химическое обоснование
Сам по себе картофель, или другой овощ, не содержит каких-либо запасов электричества. И это не та энергия, которую наш организм извлекает при употреблении овощей в пищу. Возникновение электричества происходит вследствие химической реакции окисления-восстановления на электродах гальванической ячейки. В ходе реакции происходит обмен электронами между анодом и катодом с протеканием электрического тока в среде электролита. Электролитом в данном случае является слабый раствор кислот и солей, содержащийся в соке клубня. Цинк или другой металл, окисляясь в среде электролита, освобождает электроны, которые восстанавливаясь на втором, медном электроде образуют электрический ток. При такой реакции цинковый электрод постепенно расходуется. А сам картофель является всего лишь контейнером, способный длительное время сохранять сочность (электролит).
Безусловно, опыты по получению электричества из картошки интересны прежде всего с познавательной точки зрения и для практического применения мало пригодны.
Фонарик из картошки: видео
В условиях БП (Большой Пи**ец, этим термином обозначается какой-то глобальный катаклизм — стихийное бедствие, мировая война, техногенная катастрофа планетарного масштаба — прим.ред. ) пропадут и станут недоступными много благ цивилизации, мир откатится к примитивному веку, в лучшем случае, начала 19-го века. Электричество, как тонкая по природе энергия, гарантированно станет экзотикой — потому что не станет обычных источников. Сами-то потребители еще сколько-то поживут. А вот запасать электричество в консервы невозможно, такова его природа.
Да, будут в основном электромеханические генераторы на мышечной силе, на течении воды, использующие поток ветра. А будут — в меньшей степени — электрохимические генераторы. В меньшей — потому что для их создания потребуются более глубокие, чем может продемонстрировать среднестатистический выживальщик человек, познания в химии.
Электрохимический источник тока
Электромеханические генераторы — тема отдельной статьи, сегодня поговорим об электрохимических источниках тока. Все они устроены просто — нужно два металла, один из которых электроположительный, а другой, соответственно, электроотрицательный. Иначе говоря, один растворяется, а другой производит электроны. Металлы не должны соприкасаться, а электроды из этих металлов находятся в электролите, чтобы между ними протекал ионный ток. От электродов можно запитать электрическую цепь. Вот источник и готов.
Понятно, что электрохимический источник тока имеет очень невысокий потенциал — половина вольта или меньше. Он прямо зависит от разницы потенциалов металлов, из которых сделаны электроды. Удобных пар металлов не так много, их потенциалы хорошо известны. Поэтому электрохимические ячейки объединяют в батареи, соединяя последовательно.
И повторю напоследок — основным ограничением электрохимического источника тока является отдаваемая мощность, которая зависит в первую очередь от:
- площади электродов в жидкости;
- исчерпания состава самой жидкости;
- внутреннего сопротивления источника (картошка как таковая не может проводить много тока).
Поэтому можно смело брать пластины металлов размером с тетрадь, совать их в трехлитровую банку с соленой водой, и получать источник повзрослее.
В нашей семье сейчас электрический бум. Наш папа собирает дневные ходовые огни для автомобиля, мы с Владиком делаем опыты со статическим электричеством . Макар играет своими любимыми игрушками, многие из которых, приводятся в движение с помощью батареек. И нас заинтересовал вопрос о том, как сделать батарейку своими руками . Поискав информацию на просторах сети, узнали, что можно сделать батарейку из картошки . На одном овоще решили не останавливаться, а провели исследования еще на яблоке, огурце, лимоне, луке и помидоре.
Для изготовления батарейки из овощей и фруктов нам понадобятся:
- овощи, фрукты,
- цинковые гвозди,
- медные гвозди или отрезки медной проволоки,
- провода с зажимами,
- светодиод,
- мультиметр.
- На примере картофеля рассмотрим как и что следует делать. В картофель необходимо воткнуть гвоздь и медный гвоздь. Я не нашла медных гвоздей, поэтому сделали отрезки из толстой медной проволоки.
- Далее следует зажимами-крокодильчиками присоединить провода к гвоздям. Свободные концы провода присоединяются к устройству изменения (в нашем случае — это мультиметр), которое и показывает напряжение, возникающее на концах проводника.
Данные измерений сгруппируем. Итак, подопытные овощи и фрукты дают следующее напряжение (В):
- яблоко — 0,968,
- помидор — 0,867,
- огурец — 0,829,
- лук — 0,832,
- лимон — 0,815,
- картошка — 0,874.
В группе наших овощей (фруктов) лидером по полученному напряжению стало яблоко, а в отстающих оказался лимон.
Конечно, мы создавали такие конструкции не просто, что бы измерить напряжение. Наша цель — сделать батарейку, то есть источник энергии, способный заставить наш светодиод сиять.
От папы мы получили светодиод, но не знали какое напряжение необходимо для того, что бы он стал светить. Стали экспериментировать с каждым овощем и фруктом. Пришли к выводу, что они являются очень слабыми источниками энергии. Но это можно немного исправить.
Чтобы все-таки получить свет, мы собрали ожерелье из помидоров, гвоздей и проводов.
Как сделать батарейку из овощей
Для этого в каждый из помидоров был вставлен гвоздь, к которому одним концом прикреплялся отрезок тонкой медной проволоки. Другой конец проволоки втыкался в овощ. Получилось последовательное соединение, которое мы назвали ожерельем. Цепочка из шести помидоров дала напряжение 2,68 В. Этого было достаточно, чтобы засветился маленький светодиод.
Муж в нас не очень верил, но мы это сделали! Конечно сразу же возникли идеи создать такую цепочку, что бы привести к свечению настоящую лампочку! Думаю, что для этого нам понадобится около 400 овощей (фруктов), дешевле будет использовать картошку. Уверена, что к этой идее обязательно вернемся, когда поедем к дедушке с бабушкой (там есть, где разгуляться нашей фантазии).
Вокруг столько интересного, стоит остановиться на миг, присмотреться и попробовать сделать! Не всегда получается как задумали или как написано в книге, но нельзя опускать руки! Пробовать так или по другому, но обязательно пробовать и хотеть.
Я стала учить этому старшего сына. Раньше при малейшей неудаче он опускал руки, а теперь идет к результату даже в необычных ситуациях. Однажды пытался обуть босоножки на шерстяные носки (уж не знаю с какой целью). Я сказала, что у него не получится, на что в ответ получила: «Если очень захотеть, то обязательно получится».
К проведению опытов со статическим электричеством можно и нужно привлечь папу, дядю или дедушку. Мужская помощь будет вполне кстати. И эти опыты будут интересны всем и мальчишкам и девчонкам. Вы ведь уже убедились, что наука — это весело. Если согласны, то держите от меня в ПОДАРОК порцию идей для проведения опытов в вашей домашней лаборатории. Я люблю воду и дарю вам замечательный сборник опытов с водой. Давайте делать веселую науку вместе. Присылайте фотографии из вашей лаборатории и пишите в комментариях о том, что вам больше всего понравилось. До скорой встречи, друзья. И помните, наука — это весело!
Удачных экспериментов! Наука – это весело!