Умягчение воды: выбор метода. Удаление накипи

Главная / Крыша

Высокий уровень жесткости провоцирует образование накипи, ухудшает эффективность моющих средств. В таких неблагоприятных условиях возрастает риск повреждения функциональных компонентов отопительного оборудования, иной техники. Увеличиваются эксплуатационные расходы, затраты на выполнение санитарно-гигиенических правил.

Современные производители предлагают разные способы умягчения воды и соответствующие комплекты оборудования. Выбрать оптимальный вариант будет не сложно после ознакомления с данной публикацией. Здесь есть полезные данные, которые помогут недорого и быстро реализовать проект.

Основные определения

Общий уровень жесткости определяется, как сумма постоянной и временной компоненты. Как правило, первая часть имеет небольшое практическое значение, поэтому ее можно исключить из обзора. Вторая определяется концентрацией катионов магния и кальция. Эти химические вещества при нагреве преобразуются в нерастворимый осадок – накипь.

Именно они засоряют технические протоки, что сопровождается ухудшением производительности котлов. Такие образования отличаются пористостью, низкой теплопроводностью. При накоплении на поверхности ТЭНа этот слой блокирует нормальный отвод тепла. Если не применить эффективный способ умягчения жесткой воды, стиральная машина или другая техника с нагревательным элементом будет выведена из строя из-за накипи.

На практике решают вопросы уменьшения уровня жесткости, либо полное устранение вредных явлений. Второй вариант лучше! Он предполагает надежную защиту дорогих изделий, эффективную профилактику с предотвращением аварийных ситуаций.

Способ 1: Нагрев

Принцип действия этих способов умягчения воды понятен из общего определения. Каждый человек знает, что при кипячении (нагреве) на стенках чайника активно формируется слой накипи. После завершения процедуры жесткость будет снижена.

Теоретическая простота способа является единственным преимуществом. Детальное изучение вопроса позволяет выявить следующие недостатки:

  • длительность процесса;
  • небольшое количество жидкости, которое можно обработать в бытовых условиях;
  • значительные затраты на электроэнергию, газ, другие виды топлива.

Следует не забывать, что на финишном этапе приходится удалять прочную накипь. Это – трудоемкие рабочие операции, которые способны испортить рабочую емкость.

Способ 2: Обработка электромагнитным полем

Из приведенных описаний можно сделать промежуточный вывод. Для удаления вредных соединений с применением химических средств, ионным обменом, кипячением и мембранной фильтрацией приходится решать сложные инженерные задачи. Об этом будет написано ниже. Соответствующим образом увеличиваются затраты. Полифосфатные соединения действуют эффективнее. Они стоят недорого, но надежно блокируют негативный процесс. Метод можно признать идеальным, если бы не загрязнение жидкости.

В технологии электромагнитной обработки нет перечисленных недостатков. Воздействие сильным полем изменяет форму частиц накипи. Созданные игольчатые выступы не позволяют им соединятся в крупные фракции. Этим блокируется процесс образования накипи.

Чтобы получить поле оптимальной мощности и конфигурации применяют высокочастотный генератор электромагнитных колебаний. Он работает по специальному алгоритму, который не вызывает эффект «привыкания». Снижение положительного воздействия наблюдается при работе с постоянными магнитами.

В ходе изучения актуальных предложений рынка следует обратить внимание на современные качественные модели устройств электромагнитной обработки воды:

  • выполняют свои функции с минимальным потреблением электроэнергии (5-20 Вт/час).
  • Катушку создают из нескольких витков провода. Прибор включают в сеть. Дополнительная настройка не нужна.
  • Дальность действия достигает 2 км, чего достаточно для защиты объекта в целом.
  • Долговечность устройств превышает 20 лет.

В любом случае надо выбирать производителя, который обладает солидным опытом в профильной области деятельности!

Химические способы умягчения воды

Хорошо известная профильным специалистам методика – добавление в раствор гашеной извести. Химические реакции связывают молекулы кальция и магния с последующим образованием нерастворимого осадка. По мере накопления на дне рабочего резервуара его удаляют. Мелкие взвешенные частицы задерживают через фосфатный способ. Аналогичную технологию применяют для снижения некарбонатной составляющей с помощью соды.

Главным недостатком этого и других способов данной категории является загрязнение жидкости химикатами. Чтобы такая обработка была безопасной, приходится точно соблюдать оптимальные дозировки, тщательно контролировать все важные этапы. Качественное воспроизведение технологии в домашних условиях не представляется возможным без чрезмерных трудностей и затрат. Ее используют на муниципальных и коллективных станциях водоподготовки профессиональной категории.

Впрочем, одна «химическая» методика стала популярной именно в быту. Исследователи обнаружили, что полифосфатные соединения образуют оболочки вокруг мельчайших нерастворимых фракций. Они препятствуют объединению в крупные частицы, присоединению к стенкам труб и внешним поверхностям нагревательных приборов.

Этим полезным свойством пользуются производители фосфатных стиральных порошков. Также применяют специализированные проточные емкости, в которые помещают полифосфатные соли. Устройства монтируют на входном патрубке перед котлами и стиральными машинами. Способ не подходит для приготовления питьевой воды.

Фильтрация

Нужный эффект можно получить, если уменьшить размеры ячеек до величины молекул. Такие микроскопические протоки создают в мембранах обратного осмоса. Они способны пропускать только чистую воду. Загрязненная жидкость скапливается перед преградой, удаляется в дренаж.

Задача решена? Не следует делать поспешные выводы. Методика фильтрации действительно хороша, но только для обработки 180-220 литров/сутки. Такова производительность серийных с разумной стоимостью. Этого количества не хватит для однократного приема душа, удовлетворения других бытовых потребностей.

Чтобы увеличить производительность несколько мембран устанавливают параллельно. Для функционирования комплекта приходится поднимать давление специальной насосной станцией. Подобное оборудование для фильтрации воды стоит дорого, занимает много места.

Умягчение воды ионообменным способом

Снижают первичные и эксплуатационные расходы с помощью техники этой категории. Применяют особую засыпку, которая задерживает ионы кальция и магния. Одновременно происходит заполнение жидкости безвредными соединениями натрия.

Преимущества приведены в следующем списке:

  • Кроме солоноватого привкуса не меняются в худшую сторону исходные характеристики воды.
  • После обработки определенного количества жидкости полезные функции засыпки восстанавливают промывкой и регенерацией.
  • Эти процедуры выполняются неоднократно в автоматическом режиме, без тщательного контроля и вмешательства со стороны пользователя.
  • При соблюдении правил эксплуатации засыпка из смол сохраняет работоспособность более шести лет.

Необходимо подчеркнуть доступность регенерационной смеси. Это – недорогой раствор обычной поваренной соли (хорошей очистки).

Как и ранее, приведем нюансы, которые заслуживают упоминания для полноценного анализа умягчения воды ионообменным способом:

  • Ионообменный способ умягчения воды прерывает снабжение объекта при регенерации (длительность более часа). Чтобы устранить такой недостаток устанавливают параллельно две функциональные емкости.
  • Комплект с высокой производительностью для семьи из 2-3 человек занимает несколько кв. метров площади.
  • Работа издает сильный шум в процессе промывки, поэтому нужна эффективная звуковая изоляция помещения.
  • Каждое существенное изменение уровня жесткости необходимо корректировать ручной настройкой.
  • Хорошо оснащенный набор с блоком автоматики и несколькими рабочими баками стоит дорого.

Ультразвуковое воздействие

Обработку колебаниями соответствующего диапазона частот применяют для снижения уровня жесткости. Одновременно разрушается слой старой накипи, что пригодится для очистки труб без агрессивных химических соединений.

Ультразвук с профессиональными предосторожностями применяют для очистки и защиты промышленного оборудования. Крупные элементы этих конструкций и резьбовые соединения обладают лучшей устойчивостью к сильным вибрационным воздействиям.

Какие способы умягчения воды подходят для разных объектов недвижимости?

Оптимальную методику выбирают с учетом реальных условий будущей эксплуатации. Опытные специалисты советуют создавать общий проект с механическими и другими фильтрами для точного согласования всех функциональных компонентов.

В городской квартире можно рассчитывать на поддержание приемлемого качества жесткой воды. Соответствующие обязательства указаны в договоре со снабжающей организацией. Однако в домашних условиях не исключены аварии на магистральных трассах, броски давления. Для защиты от этих негативных воздействий на входе устанавливают фосфатный или механический фильтр с регулятором напора и контрольными манометрами. Надо подчеркнуть преимущества электромагнитного преобразователя с учетом особенностей объектов данной категории:

  • компактность;
  • небольшой вес;
  • отсутствие шумов;
  • симпатичный внешний вид.

Для автономного загородного водоснабжения расчетливые собственники предпочитают пользоваться артезианской скважиной. Такой источник обеспечивает высокую степень очистки природной фильтрацией. Но на большой глубине увеличивается концентрация примесей, вымытых из горных пород. Среди них – соединения солей в достаточно большой концентрации.

В частном доме проще найти свободное место для технологического оборудования. Здесь можно устанавливать комплекты для умягчения воды ионообменным способом. В помещение проводят необходимые инженерные сети. Надо не забывать о хорошей изоляции. Необходимо поддерживать установленный производителем температурный режим. Следует удалить хлорные и другие химические соединения, способные повредить действующую засыпку.

На своем участке — выкопали колодец или пробурили скважину для хозяйственно-бытовых нужд дома.

И столкнулись с такой проблемой:

  • белые следы на сантехнике,
  • накипь в чайнике,
  • ощущение сухости кожи,
  • жесткие волосы после мытья
  • на электронагревательных приборах образуется известковая корка
Данный анализ воды я взял с форума forumhouse из ветки https://www.forumhouse.ru/threads/251194/

Анализ воды, который Вы сделали в химической лаборатории показал: очень жесткая вода! >25мг/л.экв и/или высокая общая минерализация воды, сухой остаток более 1500мг/л .

Фирмы предлагают Вам дорогущие методы очистки ионообменными смолами без гарантии… Вы получаете примерно такие такие письма в ответ на свой запрос об очистке воды:

«Здравствуйте.
в связи с многократным превышением ПДК по жесткости, а так же по солесодержанию и сульфатам, Комплекс водоподготовки с монтажом обойдется от 300 тыс. рублей, в противном случае гарантию на качество очищенной воды не даем . Если Вы готовы на такие расходы- пришлем предложение.»

Для удаления солей жесткости можно умягчать воду с помощью , либо синтетического , но во-первых, максимальное количество солей жесткости,с которыми можно справиться умягчителем не более 15 мг/л экв., во-вторых общую минерализацию воды снизить умягчителем не получится, ведь умягчение — это не удаление, а замещение одних ионов на другие.

Стоимость умягчителя для стандартного удаления солей жесткости начинается от 23 000р с хорошей . Для подбора умягчителя присылайте анализ на почту [email protected] — я предложу Вам подходящий вариант.

Что делать, если умягчитель бесполезен, а система обратного осмоса на весь дом слишком дорогая (>2000$)? С такой водой жить тяжело, потому что она оставляет бело-рыжие наросты на сантехнике, которые невозможно вывести, очень быстро засоряется солями жесткости боилер, нагревательная спираль стиралки и посудомойки, а что творится в чайнике — лучше не смотреть!!!

Особая проблема с такой водой встает перед фермерами, садоводами, разводчиками рыбы, ведь такая вода непригодна для кормления скота и полива растений, подпитки пруда. А воды этой нужно очень много.

В случае высокой общей минерализации воды умягчитель не поможет и остается только два способа:

  • дорогой обратный осмос,
  • дешевый, но требующий регулярного приложения рук процесс химической очистки воды от солей жесткости — известково-содовым методом.

Заключается известково-содовый метод в растворении небольшого количества реагента в накопительной емкости с водой, выпадает осадок, воду забираем на очистку, осадок сливаем в дренаж.

Известково-содовый метод умягчения воды:

В емкость общим объемом, скажем, 1 куб набираем воду.

Рассказать друзьям

Умягчить воду - значит удалить из нее кальций и магний. Об­щая жесткость воды, подаваемой водопроводами для хозяйствен­но-питьевых нужд, не должна превышать 7 мг-экв/дм3, а в особых случаях, по согласованию с органами санитарно-эпидемиологичес­кой службы, не более 10 мг-экв/дм3. Норма жесткости питатель­ной воды парогенераторов может достигать 0,05 мг-экв/дм3. В за­висимости от качества исходной воды и требуемого эффекта сни­жения жесткости применяют реагентный, термохимический, ионитовый методы умягчения или различные комбинации их.

Реагентное умягчение. Реагентные методы основаны на способ­ности катионов Са2+ и Mg2+ образовывать нерастворимые и мало­растворимые соединения при обработке воды реагентами. В ка­честве реагентов наиболее часто используются известь и сода.

Декарбонизация воды только известкованием применяется в тех случаях, когда требуется одновременное снижение жесткости и щелочности воды.

Известь совместно с содой применяют для умягчения воды, в которой кальций и магний содержатся в сочетании с анионами сильных кислот.

Теоретический предел умягчения воды определяется раствори­мостью карбоната кальция и гидроксида магния. Растворимость карбоната кальция в монорастворе при температуре 0°С равна 0,15 мг-экв/дм3, а при температуре 80°С - 0,03 мг-экв/дм3; для гидроксида магния - соответственно 0,4 и 0,2 мг-экв/дм3.

Как СаС03, так и Mg(OH)2 обладают способностью образовы­вать пересыщенные растворы, которые лишь весьма медленно приближаются к равновесному состоянию даже при контакте с твердой фазой образующегося осадка. На практике нецелесообраз­но длительно выдерживать воду в водоумягчительных аппаратах до наступления равновесного состояния. Поэтому вода, умягчен­ная известкованием (если жесткость вся карбонатная) или извест - ково-содовым методом, обычно имеет остаточную жесткость не менее 0,5-1 мг-экв/дм3.

Глубина умягчения зависит от наличия в обработанной воде избытка осаждаемых ионов и осадительных реагентов. Так, при 40°С, солесодержании воды до 800 мг/дм3, наличии в ней ионов Са2+ в количестве 0,7-1,0; 1-3 и > 3 мг-экв/дм3 остаточная кар­бонатная жесткость в отсутствие замедлителей кристаллизации обычно не превышает 0,5-0,8; 0,6-0,7 и 0,5-0,6 мг-экв/дм3 соот­ветственно, а < 1,2; Щгидр < 0,4 и Жо6щ < 1,0 мг-экв/дм3. При солесодержании 800-2000 мг/дм3 Щ0бЩ = 2,0-2,2 мг-экв/дм3, Щгидр < 0,5-0,8 мг-экв/дм3 и Жобщ < 2,0 мг-экв/дм3. Здесь в под­строчнике «общ» и «гидр» обозначают соответственно «общая» и «гидратная».

Следует отметить, что вода, умягченная известкованием или известково-содовым методом, как правило, пересыщена карбона­том кальция и характеризуется очень высоким рН. Поэтому для увеличения точности дозировки реагентов необходимо в допол­нение к автоматическому регулированию пропорционально рас­ходу обрабатываемой воды корректировать дозу еще и по рН. Воз­можна также корректировка дозы в зависимости от электропро­водности обработанной воды, если содержание SO^, СГ и NO3 стабильно и невелико. При небольших колебаниях дозировки из­вести Mg2+ играет буферную роль: с увеличением дозировки из­вести повышается количество Mg2+, переводимого в осадок (ухуд­шая тем самым его свойства), при сохранении щелочности умяг­ченной воды примерно на постоянном уровне.

Контроль за процессом умягчения осуществляется по вели­чине рН, которая должна быть > 10 из-за необходимости уда­ления из воды Mg2+, или, что менее точно, по величине гид - ратной щелочности, рассчитываемой на основе титрования проб воды кислотой в присутствии индикаторов фенолфталеина и метилоранжа.

Необходимо отметить, что контроль процесса реагентного умягчения воды может осуществляться и по ее электропроводно­сти. При введении в воду извести и переходе бикарбонатов в кар­бонаты, выпадающие в осадок, электропроводность обрабатыва­емой воды изменяется. В соответствии с кривой кондуктометри - ческого титрования в момент полной нейтрализации солей карбонатной жесткости электропроводность достигает минималь­ного значения. При дальнейшем увеличении добавок реагента электропроводность повышается вследствие избытка реагента. Таким образом, оптимальная доза известкового молока, вводимого в умягчаемую воду, характеризуется минимальным значением электропроводности воды.

С повышением температуры воды ускоряются химические ре­акции и кристаллизация осадков СаС03 и Mg(OH)2. Колебания температуры ухудшают условия осаждения.

Коагуляция улучшает осаждение осадков СаС03 + Mg(OH)2. Из-за-высокого рН умягчаемой применяют только коагулян­ты вй основе железа и алюминат натрия. На 1 моль FeS04 необ­ходимо наличие в воде 4 мг 02.

Попадание в осветлитель воздуха приводит к взмучиванию и выносу осадка с умягчаемой водой. Пересыщение воды воздухом можно установить, определяя йодометрическим способом содер­жание кислорода в воде после воздухоотделителя и сравнивая по­лученные результаты с табличными для данных температур.

Термохимическое умягчение заключается в подогреве воды выше 100°С и применении извести и соды, реже - едкого натрия и соды. В результате термохимического умягчения кальциевая жесткость может быть снижена до 0,2 мг-экв/дм3, а магниевая - до 0,1 мг-экв/дм3. Термохимический метод часто сочетают с фосфатным доумягчением воды. В качестве фосфатных реагентов используют ди - или тринатрийфосфат. В результате фосфатного доумягчения можно получить воду с остаточной жесткостью 0,04-0,05 мг-экв/дм3.

Сульфатную жесткость устраняют карбонатом, гидроксидом или алюминатом бария.

Для обеспечения правильного проведения описанных выше процессов умягчения воды необходим соответствующий аналити­ческий контроль. Рекомендуемые анализы и частота их выполне­ния приведены в табл. 1.7.

Полезным руководством для обеспечения хорошего эффекта умягчения могут служить следующие правила: 1) гидратная ще­лочность должна превышать магнезиальную жесткость примерно на 0,4 мг-экв/дм3 при процессе без подогрева и на 0,2 мг-экв/дм3 при процессе с подогревом; 2) карбонатная щелочность должна превышать кальциевую жесткость примерно на 1,2 мг-экв/дм3 при процессе без подогрева и примерно на 0,8 мг-экв/дм3 при процессе с подогревом.

Так как некоторые малорастворимые соли при длительном хранении могут выпасть в осадок, a NaOH переходит в Na2C03, то не следует пользоваться данны­ми усредненных проб умягчаемой воды.

Также из-за наличия проскоков суспензии СаС03 и Mg(OH)2 в умягченную воду ее необходимо дополнительно профильтровать через дробленый антрацит. Кварцевый песок в этом случае явля­ется нежелательным материалом в связи с тем, что он может обо­гащать воду соединениями кремниевой кислоты.

Ионитовое умягчение. Оно осуществляется главным образом с применением Na+-, Н+- и NHj-форм.

В процессе умягчения воды Na-катионированием содержание кальция и магния в воде может быть снижено до весьма малых значений. Общая щелочность при этом не изменится, сухой ос­таток несколько возрастает в результате замещения в воде одного иона кальция, имеющего молекулярную массу 40,08, на два иона натрия (масса 2 х 22,99 = 45,98).

Вода

Показатели качества воды

Периодичность анализов

Обязательные

Дополнительные

Исходная

Свободная углекислота, общая жесткость, каль­ций, магний, общая ще­лочность

Сульфаты, сухой оста­ток, рН, кремний, хло­риды

Не реже 1 раза в неде­лю, а жесткость и ще­лочность - ежедневно

Умягченная

Известково-содовое умягчение

Общая жесткость, рН, щелочность общая и по фенолфталеину, взве­шенные вещества

Сульфаты, сухой оста­ток, кальций, магний, кремний. алюминий, хло­риды

Для аппаратов пери­одического действия - при каждой новой дозе реагентов; для аппара­тов непрерывного дейст­вия - ежедневно, хотя может потребоваться и более частое проведе­ние анализа, если ка­чество исходной воды существенно меняется

Фосфатное умягчение с подогревом Общаяжесткость, щелоч­ность по фенолфталеи­ну, избыток фосфатов

При фильтровании через катионит в Н-форме все катионы растворенных солей (в том числе и катионы солей жесткости) будут сорбироваться на его зернах; в воду будет переходить экви­валентное количество Н+-ионов; растворенные в воде соли будут превращаться в соответствующие кислоты. Кислотность воды, прошедшей через Н-катионитовый фильтр, который загружен сильноосновным катионитом, будет равна сумме концентраций в исходной воде солей сильных кислот.

Регенерация Н-катионитовых фильтров кислотой в количестве, недостаточном для полного вытеснения из катионита катионов жесткости («голодная» регенерация), позволяет в рабочем цикле снижать щелочность воды до 0,4-0,5 мг-экв/дм3, не снижая ее некарбонатную жесткость.

Если в умягченной воде не допускается наличия карбонатов натрия и калия, но в ней допустимо присутствие ионов аммония, то вместо H-Na-катионирования можно применять NH4-Na-Ka - тионирование.

Умягченная катионированием вода получается более коррози - онно-активной, чем исходная, из-за полного отсутствия в ней би­карбоната кальция, который при определенных условиях может образовывать защитный слой карбоната кальция на поверхности металла, находящегося в контакте с водой.

При контроле качества фильтрата катионитовых установок осо­бое внимание уделяется определению показателей, так или иначе связанных с понятием жесткости и щелочности воды: жесткости общей и карбонатной, щелочности карбонатной и гидратной, со­держанию солей кальция и магния, общему солесодержанию, ве­личине рН, содержанию анионов.

В процессе работы катионитов дополнительно необходимо пе­риодически проверять поглощение или вынос из них фильтратом органических веществ.

Под обессоливанием воды понимают процесс снижения раство­ренных в ней солей до требуемой величины. Различают частич­ное и полное обессоливание. Частным случаем обессоливания воды является опреснение, в результате которого величина соле - содержания в очищенной воде не превышает 1000 мг/дм3 - ПДК всех солей в питьевой воде.

К наиболее распространенным методам обессоливания воды относятся ионный обмен, электродиализ, обратный осмос и дис­тилляция.

Обессоливание позволяет почти полностью удалить из воды вещества, способные целиком или частично диссоциировать (на­пример, соли и кремниевую кислоту); неэлектролиты при этом могут остаться в воде. Иногда происходит также некоторое уменьшение цветности, связанное с абсорбцией кислых органи­ческих веществ ионитами и мембранами. Так как при обессоли - вании удаляются те вещества, которые проводят электрические вещества, показателем качества обработанной воды служит обыч­но ее электропроводность, выраженная в мкСм/см. Расчетное значение этого параметра при 18°С в «сверхчистой» воде состав­ляет 0,037 мкСм/см. Однако в производственных условиях пока удается получать «сверхчистую» воду с удельной электрической проводимостью 0,1 - 1,0 мкСм/см.

За основной критерий, оценивающий качество обработки воды и ионообменную способность фильтров, часто принимают элект­ропроводность воды, пороговая величина которой устанавливается по опытно-исследовательским данным. Например, электропро­водность воды после катионообменника должна быть менее 240, после слабоосновного анионообменника - 50-220 и после силь­ноосновного анионообменника < 20 мкСм/см. Превышение этих значений указывает на истощение ионообменных смол до конт­рольного уровня и на необходимость их регенерации.

Поскольку существующие нормы качества питьевой воды в большинстве своем регламентируют предельно допустимые концен­трации макро - и микрокомпонентов ее состава, то опресненные воды в основном отвечают действующим нормативным требовани­ям. Однако в связи со все расширяющимся вовлечением опреснен­ных вод в централизованные системы хозяйственно-питьевого во­доснабжения возникает необходимость дополнительного нормиро­вания минимально необходимых концентраций важнейших в гигиеническом отношении показателей качества: содержания каль­ция, бикарбонатов, общего солесодержания, натрия, калия и др. Как показывают современные медико-физиологические исследова­ния, недостаточное содержание в опресненной воды солей жест­кости (менее 1,5 мг-экв/дм3) может привести к нарушениям обме­на веществ и сердечно-сосудистым заболеваниям в организме лю­дей, длительное время употребляющих такую мягкую воду.

Многие слышали об умягчении жесткой воды и стараются обязательно заказать себе для водоподготовки умягчитель.Так ли это важно и нужно?

Физиологическая норма жесткости указана в СанПиНе 2.1.4.1116-02 на бутылированную воду и составляет от 1,5 до 3,5 ммоль/л. Для бытовой техники требуется еще более мягкая воды, чтобы не образовывалась накипь.

Различают два вида жёсткости:
Карбонатная (временная) - называют потому, что она устраняется кипячением.
Некарбонатную (постоянную) - называют потому, что при кипячении жёсткость не устраняется, но при выпаривании на стенках сосуда образуется в виде накипи светло-белый малорастворимый осадок типа сульфата кальция или магния.Соли MgCl2, CaCl2, MgSO4, содержащиеся в воде с постоянной жёсткостью, вызывают коррозию стальных конструкций и ускоряют износ водонагревательного и отопительного оборудования.При использовании для водона-гревательного оборудования и отопительной техники жёсткой воды образуется накипь из карбонатов кальция и магния, гипса и других солей.Образование накипи затрудняет нагревание воды, вызывает увеличение расхода электричества и топлива.

В жёсткой воде плохо развариваются мясо, овощи, крупа, плохо заваривается чай. При стирке тканей (как и при мытье головы) образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.

Умягчение воды - процесс удаления из неё катионов жёсткости, т.е. кальция и магния.

Термический метод основан на нагревании воды до температуры выше точки кипения, её дистилляцией или вымораживанием с целью устранения карбоната кальция и карбоната магния. Вследствие применения указанного метода остаточная жёсткость воды составляет не более 0,7 ммоль/л. Поэтому термический метод применяется для технических нужд, в частности при использовании вод,идущих на питание котлов низкого давления, а также в сочетании с реагентными методами.

При умягчении воды реагентными методами используют реагенты, образующие при взаимодействии с кальцием и магнием малорастворимые соединения с последующим их отделением в осветителях, тонкослойных отстойниках и осветительных фильтрах. В качестве реагентов-осадителей используют известь, кальцинированную соду, гидрооксиды натрия и бария и другие вещества. Выбор реагентов зависит от качества исходной воды и условий её дальнейшего применения. При применении реагентных методов остаточная жёсткость воды составит до 0,7 мг/л. В соответствии с рекомендациями «Строительных норм и правил» (СН и П) реагентные методы в основном используются для умягчения поверхностных вод, когда одновременно требуется и осветление воды.

Умягчение воды основанное на разных скоростях диффузии этих веществ через полупроницаемую мембрану , разделяющую концентрированный и разбавленный растворы. Умягчение воды методом диализа осуществляется в мембранных аппаратах с нитро- и ацетатцеллюлозными плёночными мембранами. В результате применения данного метода остаточная жёсткость воды составит до 0,01 мг/л и ниже. Отрицательной стороной метода диализа является высокая себестоимость мембранных аппаратов.

Магнитная обработка воды - распространена для борьбы с образованием накипи. Сущность метода состоит в том, что при пересечение водой магнитных силовых линий образователи накипи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки (шлам) удаляют при продувке.

Наибольшее практическое применение получил ионообменный метод умягчения воды. Сущность ионообменного метода заключается в способности ионообменных материалов (ионитов) поглощать из воды положительные или отрица-тельные ионы в обмен на эквивалентное количество ионов ионита. В зависимости от состава существуют минеральные и органические катиониты, которые, в свою очередь, разделяются на вещества естественного и искусственного происхождения. В технологии подготовки воды широко применяют органические катиониты искусственного происхождения, так называемые ионообменные смолы. Качество ионообменных смол характеризуется их физическими свойствами, химической и термической стойкостью, рабочей ёмкостью и др.В установках умягчения воды использует ионообменные смолы, основанные на применении катионита в Na-форме и анионита в Cl-форме, т.е. использует метод натрий - хлор-ионирования. Указанный метод состоит из следующих стадий: натрий-катионирования и хлор-катионирования. На стадии натрий-катионирования происходит замещение ионов кальция и магния, придающих воде жёсткость, на ионы натрия.

В результате обрабатываемая вода умягчается, а кальций и магний образуют нерастворимый полимер. При пропуске натрий-катионированной воды через хлор-аноион протекают реакции обмена анионов, содержащихся в Na- катионированной воде, на ионы хлора и щёлочность обрабатываемой воды снижается. Для восстановления свойств ионообменной смолы (регенерации) используется раствор поваренной соли. Таким образом, достигается глубокое умягчение воды (до 0,03 … 0,05 ммоль/л). При применении метода натрий - хлор-ионирования расходуется только один реагент - поваренная соль, не требуется антикоррозийной защиты оборудования, трубопроводов и специальной арматуры, уменьшается количество оборудования, упрощается контроль работы и эксплуатации водоумягчительной установки. В результате повышается надёжность и уменьшается стоимость установки для умягчения воды. Только пить постоянно такую умягченную

Статья № 118

Процессы для умягчения воды


Процессы для умягчения воды


Большое количество информации порождает бессмыслицу и запутанность. Проблема, вместо того, чтобы быть решенной перерастает в дилемму. Это утверждение особенно справедливо для ситуации, сложившейся с жесткой водой и в тот момент, когда нужно определить процессы для умягчения воды . Что делать: проводить удаление накипи в котле или жесткая вода все-таки может быть использована? Наверное, ответ будет положительным и средство от накипи применять нужно. Ведь доказано, что известковый налет и отложения часто наносят сильный вред санитарной и бытовой технике.
С другой стороны есть информация о том, что, мол, даже вода из родников потому и вкусная, что там содержатся ионы кальция и магния (именно они, как вы помните, являются главной причиной образования накипи). Также многие врачи заявляют, что в нашей стране у каждого человека наблюдается недостаток кальция и магния в организме, что пагубно для здоровья и ведет к нарушениям в костной системе. Известно также, что именно вода, насыщенная «накипными» солями, является основным источником, из которого можно получить необходимые человеку вещества. Но, при этом, процессы для умягчения воды всё же необходимы.
С одной стороны умягчение воды будто бы не требуется, а с другой – как же тогда уберечь бытовую технику? Между тем, примеров удивительных свойств применения мягкой воды огромное множество: только из мягкой воды готовят чешское пиво лучших сортов, а чай и кофе становятся более ароматными и вкусными. Если вы были в турецком отеле, то наверняка помните, насколько ваша кожа была приятна на ощупь после посещения душа. Это происходит потому, что там используется умягчитель воды для котла и труб .
Перейдем от теории к практике. В России один человек в среднем расходует на себя около 300-400 литров воды, из которых основная часть приходится на бытовые нужды, и только около 5-10 литров мы тратим на приготовление пищи. Что касается питья, то здесь цифры еще меньше – мы выпиваем всего 1-2 литра.
В связи с этим напрашивается будто бы единственное правильное решение – для питьевой воды приобретать жесткую воду (покупать в бутылках), а для техники использовать умягчитель воды. Пожалуй, это самое лучший способ, который позволит избежать постоянных технических поломок, облегчит и разгрузит систему водоснабжения от заторов и позволит сэкономить на моющих средствах. Но сделать это не так легко, как кажется, особенно в нашей стране. Процессы для умягчения воды бывают разными.
Конечно, коммунальные службы делают все возможное для того, чтобы предварительно очистить воду, но, по сути, от них мало что зависит, их умягчение воды лишь поверхностное. Жесткая вода поступает в квартиры граждан практически напрямую, не проходя необходимой очистки. Ни одно средство от накипи при этом не используется.
Совсем другая ситуация сложилась в зарубежных странах, где процесс поступления воды и очистка от накипи очень хорошо организованы. На Западе водоподготовка продумана до мелочей, ведь там действительно очищают воду, но далеко не всю. Разводка коммуникаций проектируется таким способом, что мягкая вода подается лишь в систему горячего водоснабжения. Это позволяет увеличить срок службы котла и минимизирует производимые затраты.
Очистка от накипи котла и теплообменника , этот процесс умягчения воды происходит благодаря тому, что в котловый контур поступает умягченная вода. При этом вода, находящаяся в системе холодного водоснабжения, не подвергается обработке – жесткая вода подается в первозданном виде. Но здесь есть одна хитрость. Дело в том, что поступающая горячая вода смешивается с холодной и дает на выходе 1,5-2 мг-экв/л. Однако такое средство от накипи используется не всегда. К примеру, для воды в сливных бочках унитаза, а также воды, предназначенной для полива газонов, обработка не применяется.
Итак, с теорией и заграничной практикой по проведению процессов для умягчения воды и комплекса таких действий, как водоподготовка, мы знакомы. Что же делать нам, в наших российских условиях для того, чтобы как можно более эффективно и без особых затрат добиться, чтобы происходило естественное удаление накипи и снижение жёсткости воды ?

Сочетание процессов для умягчения воды

Для этого, в первую очередь, желательно быть в курсе того, какова жесткость именно вашей воды. Если хотите узнать, то сделать это так просто не получится – придется отнести анализ воды на пробу в специальную лабораторию, где определяют пригодность воды. Существует классификация, согласно которой, вода с жесткостью 1,5-3 мг-экв/л считается мягкой, с показателями в 3-6 мг-экв/л – умеренно жесткой. Действительно жесткая вода содержит от 6 до 9 мг-экв/л катионов солей. В соответствии с ГОСТ – вода, которая поступает из крана, должна содержать 7 мг-экв/л катионов солей. Сочетание процессов для умягчения воды позволит максимально снизить жёсткость.
Следует заметить, что этот параметр – 7 мг-экв/л выводился без учета потребностей людей, исходя из времени выхода из строя труб. Трубопроводная система изнашивается гораздо быстрее при воде с жесткостью выше 7 мг-экв/л. Получается, что все существующие нормы были введены, во избежание зарастания известью и предупреждения скорого вывода трубопровода из строя.
Однако чтобы не мучить себя, нужен ли вам умягчитель воды, можно определить уровень содержания солей на глаз. Однако, это не так эффективно, как сочетание процессов для умягчения воды, например с разными средствами от накипи. От жесткой воды на душевом рассеивателе остается известковый налет, а кожа после водных процедур часто сохнет, шелушится, становясь при этом грубой. Количество накипи, которая остается после кипячения воды в чайнике, ни о чем не говорит, поскольку она остается даже при использовании умягченной воды.
Возвращаемся к поставленной проблеме: как же решить ее наиболее эффективным образом – так, чтобы сэкономить финансы и уберечь технику?
На данный момент существует множество способов по проведению такой процедуры, как водоподготовка. Самым простым из них всегда было и остается обычное кипячение. Такое умягчение воды эффективно при карбонатной жесткости (временная жесткость). Гидрокарбонат при термическом воздействии выпадает в осадок, выделяется углекислый газ. Данный метод используют не только в быту, но и в промышленности. Он особенно результативен при наличии дарового тепла.
Помимо этого, иногда используются реагентные методы. В процессе умягчения воды и воздействия химвеществ соли кальция переводятся в нерастворимые соединения, которые впоследствии образуют осадок. Сфера применения – станции муниципальной подготовки воды. Удаление накипи происходит при добавлении гашеной извести и соды. Это устраняет мутные взвеси, а также способствует умягчению воды.
Однако, сочетание процессов для умягчения воды и воздействие реагентами имеет весомые недостатки, которые не позволяют использовать этот метод в домашних условиях. Во-первых, нужна точная дозировка веществ. Во-вторых, их надо где-то хранить. В-третьих, очистка от накипи оставляет большое количество твердых отходов.
В древности воду смягчали, добавляя в нее печную золу. Не менее эффективный способ – добавление соды, в пропорциях 1-2 чайные ложки на ведро воды. Это, конечно, решает проблему, но не в таких масштабах, в каких нам нужно. Плюс ко всему, это требует времени и наличия необходимых элементов. Мы же выяснили, что человек потребляет около 300 литров воды в день – а это много для того, чтобы каждый раз добавлять в воду соду, кипятить ее или смешивать с золой.
Следующими способами являются электродиализ и обратный осмос. Методы используются при обессоливании, смягчении и подготовке воды к питью. Довольно широко используется способ умягчения воды, основанный на ионообменных смолах, в ходе которого происходит обмен «жестких» ионов на ионы натрия смолы. Регенерация смолы, полученной в ходе ионного обмена, осуществляется при использовании раствора поваренной соли. Импортные смягчители изготовлены в виде напорного бака, имеющего высокую прочность. Ионообменная смола находится внутри такого баллона.
Сейчас существует множество различного оборудования, предназначенного для умягчения воды. Однако наиболее мобильным, эффективным и практически безотходным являются электромагнитные умягчители. По сравнению с теми же процессами для умягчения воды и осмосными и ионообменными установками, они гораздо дешевле, компактнее и не создают никакого шума, а также не имеют побочных эффектов. Важный параметр – это время очистки и объем воды, который может быть очищен за определенный промежуток времени. По сравнению с существующими аналогами, электромагнитный умягчитель и здесь показывает самые лучшие результаты. Сочетание процесса для умягчения воды с другими процессами, даёт наилучший результат.

© 2020 reabuilding.ru -- Портал о правильном строительстве