Российский спецназ получит двухсредный дыхательный аппарат. В аппарате с замкнутым циклом дыхания Если рассматривать технический дайвинг как вершину подводных погружений, то ребризеры – это просто полный улёт в космос
Рост популярности.
Современные дыхательные аппараты открытого цикла, или обычные акваланги, начали активно использоваться после 1943 года, когда их изобрёл Жак Ив Кусто и Эмиль Гальяно. Аппараты замкнутого цикла долгое время оставались невостребованными.
В 1987 году в рамках проекта «Wakulla springs» под руководством доктора наук Вильяма Стоуна при исследовании пещерной системы длиной в 5 км был опробован CisLunar Mark I - аппарат замкнутого типа, который продемонстрировал определённые преимущества перед аквалангами. С этого времени интерес к данному виду дыхательных аппаратов стал возрастать.
Ребризеры и их основные типы
Дыхательные аппараты замкнутого типа называют обычно ребризерами, от английского слова «rebreather», то есть «перевдыхатель». Отработанный дыхательный газ в них не отводится в воду, а, освобождаясь от углекислого газа, обогащается кислородом, затем вновь подаётся для дыхания. Поэтому устроены ребризеры сложнее аквалангов.
Помимо шланга, соединяющего баллон с загубником, имеется второй - для возврата отработанной смеси в контур. Обязательно присутствует полужесткий или мягкий мешок с ловушкой для воды для приёма выдыхаемой смеси, давление которой должно быть равно внешнему давлению воды. Далее смесь подаётся в канистру, в которой углекислый газ из неё удаляется химическим поглотителем. Последующее добавление кислорода осуществляется в каждом типе аппарата своим способом.
Основным критерием классификации ребризеров является степень замкнутости дыхательного цикла. Есть аппараты полностью замкнутого цикла, или CCR-ребрирезы, в которых выдыхаемая смесь полностью идёт на переработку. Газ в них отводится в воду, но лишь при всплытии, через травящий клапан. Уменьшающееся давление приводит к расширению смеси, поэтому её излишки удаляются.
Полузамкнутые аппараты, называемые SCR-ребризерами, предусматривают использование искусственных дыхательных смесей (Trimix, Nitrox, Heliox), а не чистого кислорода, поэтому появляющуюся избыточную часть азота и гелия необходимо периодически удалять из дыхательного контура.
Ребризеры замкнутого цикла
Конструкция ребризера, работающего на чистом кислороде, наиболее проста и легка, аппарат не оставляет пузырьков в воде, поэтому популярен у биологов и военных. Однако использование одного кислорода вносит ограничения. При увеличении давления он становится токсичным, негативно воздействуя на дыхательную и нервную системы. В связи с этим глубина для погружений не должна превышать 7-10 м. Кислород, к тому же, способствует быстрому развитию кариеса.
Одна из разновидностей кислородного ребризера - аппарат с химической регенерацией смеси для дыхания. В поглотительной канистре происходит выделение объёма кислорода, равного поглощённому углекислому газу, что позволяет пробыть под водой рекордное количество времени - до 6 часов. Из-за опасности регенерирующего вещества, выделяющего щёлочь при попадании в него воды, такие аппараты уже почти не используются.
Существуют ребризеры, позволяющие работать с искусственными смесями для дыхания, что позволяет погружаться на довольно большие глубины. В одних аппаратах используется электронная система управления подачей кислорода в дыхательный контур, слабым местом которой являются электрохимические датчики, требующие регулярной замены, и электромагнитный клапан. Известные представители - CIS Lunar, Buddy Inspiration. В других управление полуавтоматическое, где поступление кислорода контролируется дайвером.
Полузамкнутые ребризеры
Различие в конструкции ребризеров полузамкнутого цикла заключается в том, как происходит подача дыхательной смеси. В аппаратах с активной подачей дыхательная смесь при открытии вентиля на баллоне непрерывно подаётся в дыхательный контур через дюзу с пропускной способностью, меняющейся с глубиной и от применяемой смеси. Такие ребризеры просты конструктивно и в обслуживании, рассчитать план погружения с ними легко, так как расход смеси на любой глубине примерно одинаков. Возможно, поэтому они и получили наибольшую популярность среди других типов ребризеров. Известные аппараты этого типа - Ray и Draeger Dolphin, Atlantis и Azimuth.
В аппаратах с пассивной подачей смеси количество удаляемого и поступающего газа не регулируется в зависимости от давления, то есть от глубины, поэтому рассчитывать расход газовой смеси приходится как для обычного акваланга. Но у ребризера, в отличие от акваланга, запас времени нахождения под водой в несколько раз больше, так как в нём стравливается не весь объём выдыхаемого газа, а примерно от 10 до 30 процентов. Известные аппараты данного типа - это Halcyon RB-80 (аналог - европейский RB2000).
Ребризер или акваланг?
Ребризеры выигрывают у обычных аквалангов меньшей шумностью и меньшим количеством пузырей, неизменной плавучестью при вдохе и выдохе, так как объём смеси не уменьшается, или почти не уменьшается на выдохе. Поглощение углекислого газа приводит к выделению влаги и теплоты, которые делают вдыхаемый дайвером воздух более приятным, что повышает устойчивость к декомпрессионной болезни. Кроме того, время нахождения под водой с ребризером увеличивается, а доставка газовых смесей к месту погружения за счёт снижения их требуемого объёма не доставляет столько хлопот. Ребризеры замкнутого цикла на смесях позволяют достичь больших глубин, чем пороговые 40 м для остальных аппаратов.
Почему же ребризеры не вытеснили обычные акваланги? У них имеются свои недостатки. Эти аппараты дороже стоят, сложнее в обслуживании, имеют больший вес и размеры, они неудобны для использования двумя дайверами в критических ситуациях, требуют обеспечения расходными материалами, такими как поглотитель и различные датчики. Кроме того, ребризер удобнее использовать в команде.
Как видно, преимущества каждого типа дыхательных аппаратов уравновешиваются его недостатками, поэтому и ребризеры, и акваланги достойны того, чтобы находить своё применение. При выборе следует чётко знать, для чего будет использоваться аппарат, какого типа аппараты используются в команде. Выбор в пользу ребризера не заставит разочароваться в нём. Они не зря начинают завоёвывать в последнее время популярность в России
по материалам сайта aqua-globus.ru
Энциклопедичный YouTube
1 / 5
✪ Взрываем РП-4 | Делаем большой бум
✪ Донецкий завод горноспасательной аппаратуры
✪ разборка респиратора Р-30,Р-34
✪ Deutscher Sauerstoff Selbstretter SAR 30 review (ger.)
✪ Разведопрос: Юрий Бычков о работе пожарного
Субтитры
Ребризёры замкнутого цикла
Кислородный ребризёр замкнутого типа - O2-CCR
Это родоначальник ребризёров вообще. Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте. Кислородный ребризёр замкнутого цикла имеет все основные детали, характерные для ребризёра любого типа: дыхательный мешок, канистра с химпоглотителем, дыхательные шланги с клапанной коробкой, байпасный клапан (ручной или автоматический), травящий клапан и баллон с редуктором высокого давления. Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в канистру химпоглотителя, где углекислый газ связывается каустической содой , а оставшийся кислород возвращается в дыхательный мешок. Кислород, заменяющий потребленный водолазом, подается в дыхательный мешок через калиброванную дюзу со скоростью примерно 1 - 1,5 литра в минуту или же добавляется водолазом с помощью ручного клапана. При погружении обжим дыхательного мешка компенсируется либо за счет срабатывания автоматического байпасного клапана, либо с помощью ручного клапана, управляемого самим водолазом. Надо заметить, что, несмотря на название «замкнутый», любой ребризёр замкнутого цикла выпускает через травящий клапан пузырьки дыхательного газа во время всплытия. Чтобы избавиться от пузырей, на травящие клапаны устанавливают колпачки из мелкой сетки или поролона. Это простое устройство весьма эффективно и снижает диаметр пузырьков до 0,5 мм. Такие пузырьки полностью растворяются в воде уже через полметра и не демаскируют водолаза на поверхности.
Ограничения, присущие кислородным ребризёрам замкнутого цикла, обусловлены в первую очередь тем, что в данных аппаратах применяется чистый кислород, парциальное давление которого и является ограничивающим фактором по глубине погружения. Так, в спортивных (рекреационных и технических) системах обучения этот предел составляет 1,6 ата, что ограничивает глубину погружения 6-ю метрами в теплой воде при минимальной физической нагрузке. В военно-морском флоте ФРГ такой предел составляет 8 метров, а в ВМФ СССР - 22 метра.
Ребризёр замкнутого цикла с ручной подачей кислорода - mCCR или KISS
Эта система называется ещё K.I.S.S. (Keep It Simple Stupid) и изобретена канадцем Гордоном Смитом. Это ребризёр замкнутого цикла с приготовлением смеси «на лету» (selfmixer), но в максимально простом исполнении. Принцип работы аппарата состоит в том, что используются 2 газа. Первый, называемый дилюэнтом, автоматически или вручную подается в дыхательный мешок аппарата через легочной автомат или байпасный клапан соответственно для компенсации обжима дыхательного мешка при погружении. Второй газ (кислород) подается в дыхательный мешок через калиброванную дюзу с постоянной скоростью, меньшей, однако, чем темп потребления кислорода водолазом (примерно 0,8-1,0 литров в минуту). При погружении водолаз обязан сам контролировать парциальное давление кислорода в дыхательном мешке по показаниям электролитических датчиков парциального давления кислорода и добавлять недостающий кислород с помощью ручного клапана подачи. На практике это выглядит так: перед погружением водолаз добавляет в дыхательный мешок какое-то количество кислорода, устанавливая по датчикам требуемое парциальное давление кислорода (в пределах 0,4-0,7 ата). В процессе погружения для компенсации по глубине в дыхательный мешок автоматически или вручную добавляется газ-дилюэнт, снижая концентрацию кислорода в мешке, но парциальное давление кислорода всё равно остается относительно стабильным из-за роста давления водяного столба. Достигнув запланированной глубины, водолаз с помощью ручного клапана устанавливает какое-либо парциальное давление кислорода (обычно 1,3) работает на грунте, раз в 10-15 минут контролируя показания датчиков парциального давления кислорода и добавляя при необходимости кислород для поддержания необходимого парциального давления. Обычно за 10-15 минут парциальное давление кислорода снижается на 0,2-0,5 ата в зависимости от физической нагрузки.
В качестве газа-дилюэнта может использоваться не только воздух, но и тримикс или гелиокс , что позволяет погружаться с таким аппаратом на весьма приличные глубины, однако относительное непостоянство парциального давления кислорода в дыхательном контуре затрудняет точный расчет декомпрессии. Обычно с аппаратами, имеющими только индикацию парциального давления кислорода в контуре, погружаются не глубже 40 метров. Если же к контуру подключен компьютер, способный отслеживать парциальное давление кислорода в контуре и рассчитывать декомпрессию на лету, то глубина погружения может быть увеличена. Самым глубоким погружением с аппаратом подобного типа можно считать погружение Матиаса Пфайзера, нырнувшего в Хургаде на 160 (сто шестьдесят) метров. Кроме датчиков парциального давления кислорода Матиас использовал ещё и компьютер VR-3 с кислородным датчиком, который отслеживал парциальное давление кислорода в смеси и рассчитывал декомпрессию с учетом всех изменений дыхательного газа.
Существует большое количество переделок коммерческих, военных и спортивных ребризёров под систему K.I.S.S., но всё это, разумеется, неофициально и под личную ответственность переделавшего и использующего их водолаза.
Ребризёр замкнутого цикла с электронным управлением - eCCR
Собственно, настоящий ребризёр замкнутого цикла (electronicaly controled selfmixer). Первый в истории такой аппарат был изобретен Вальтером Старком и назывался Electrolung. Принцип функционирования состоит в том, что газ-дилюэнт (воздух или тримикс или гелиокс) подается ручным или автоматическим байпасным клапаном для компенсации обжима дыхательного мешка при погружении, а кислород подается с помощью электромагнитного клапана, управляемого микропроцессором. Микропроцессор опрашивает 3 кислородных датчика, сравнивает их показания и усредняя два ближайших, выдает сигнал на соленоидный клапан. Показания третьего датчика, отличающиеся от двух других сильнее всего - игнорируются. Обычно соленоидный клапан срабатывает раз в 3-6 секунд в зависимости от потребления водолазом кислорода.
Погружение выглядит примерно так: водолаз вводит в микропроцессор два значения парциального давления кислорода, которые электроника будет поддерживать на разных этапах погружения. Обычно это 0,7 ата для выхода с поверхности на рабочую глубину и 1,3 ата для нахождения на глубине, прохождения декомпрессии и всплытия до 3 метров. Переключение осуществляется тумблером на консоли ребризёра. В процессе погружения водолаз обязан контролировать работу микропроцессора для выявления возможных проблем с электроникой и датчиками.
Конструктивно ребризёры замкнутого цикла с электронным управлением практически не имеют ограничений по глубине и реальная глубина, на которой возможно их использование, обусловлена в основном погрешностью кислородных датчиков и прочностью корпуса микропроцессора. Обычно предельная глубина составляет 150-200 метров. Других ограничений электронные ребризёры замкнутого цикла не имеют. Основным недостатком этих ребризёров, существенно ограничивающим их распространение является высокая цена самого аппарата и расходных материалов. Важно помнить, что обычные компьютеры и декомпрессионные таблицы не подходят для погружений с электронными ребризёрами, поскольку парциальное давление кислорода остается неизменным на протяжении практически всего погружения. С ребризёрами такого типа должны использоваться либо специальные компьютеры (VR-3, VRX, Shearwater Predator, DiveRite NitekX, HS Explorer) или же погружение должно рассчитываться предварительно с помощью таких программ, как Z-Plan или V-Planer по минимально возможному парциальному давлению кислорода (при этом необходимо очень строго следить, чтобы значение парциального давления не снижалось ниже расчётного, иначе риск получить ДКБ многократно возрастает). Обе программы рекомендованы для применения производителями и создателями всех электронных ребризёров.
Ребризёры полузамкнутого цикла
Ребризёр полузамкнутого цикла с активной подачей - aSCR
Это наиболее распространенный в спортивном дайвинге тип ребризёра. Принцип его действия в том, что в дыхательный мешок с постоянной скоростью подается через калиброванную дюзу дыхательная смесь EANx Nitrox . Скорость подачи зависит только от концентрации кислорода в смеси, но не зависит от глубины погружения и физической нагрузки. Таким образом, концентрация кислорода в дыхательном контуре остается постоянной при постоянной физической нагрузке. Очевидно, что при таком способе подачи дыхательного газа возникают его излишки, которые удаляются в воду через травящий клапан. Вследствие этого ребризёр полузамкнутого цикла выпускает несколько пузырьков дыхательной смеси не только при всплытии, но и при каждом выдохе водолаза. Стравливается примерно 1/5 часть выдыхаемого газа. Для повышения скрытности на травящие клапаны могут устанавливаться колпачки-дефлекторы, аналогичные применяемым в кислородных ребризёрах замкнутого цикла.
В зависимости от концентрации кислорода в дыхательной смеси EANx (Nitrox)скорость подачи может варьироваться в пределах от 7 до 17 литров в минуту, таким образом, время нахождения на глубине при использовании ребризёра полузамкнутого цикла зависит от объёма баллона с дыхательным газом. Глубина погружения ограничивается парциальным давлением кислорода в дыхательном мешке (не должно превышать 1,6 ата) и установочным давлением редуктора. Дело в том, что истечение газа через калиброванную дюзу имеет сверхзвуковую скорость, что позволяет сохранять подачу неизменной до тех пор, пока установочное давление редуктора превышает давление окружающей среды в два или более раз.
Ребризёр полузамкнутого цикла с пассивной подачей - pSCR
Принцип работы аппарата состоит в том, что часть выдыхаемого газа принудительно стравливается в воду (обычно это 1/7 до 1/5 от объёма вдоха), а объём дыхательного мешка заведомо меньше объёма легких водолаза. За счет этого на каждый вдох через легочной автомат в дыхательный контур подается свежая порция дыхательного газа. Такой принцип позволяет использовать в качестве дыхательной смеси любые газы, кроме воздуха и весьма точно поддерживать парциальное давление кислорода в дыхательном контуре вне зависимости от физической нагрузки и глубины. Поскольку подача дыхательного газа осуществляется только на вдох, а не постоянно, как в случае с ребризёрами с активной подачей, то ребризёр полузамкнутого цикла с пассивной подачей ограничен по глубине только парциальным давлением кислорода в дыхательном контуре. Существенным отрицательным моментом в конструкции ребризёров полузамкнутого цикла с пассивной подачей является то, что автоматика приводится в действие за счет дыхательных движений водолаза, а значит, тяжесть дыхания заведомо больше чем на аппаратах другого типа. Аппараты, использующие подобный принцип работы, предпочитают использовать подводные спелеологи и последователи учения DIR в дайвинге.
Механический селфмиксер - mSCR
Весьма редкая конструкция ребризёра полузамкнутого цикла. Первый такой аппарат был создан и испытан Drägerwerk в 1914 году. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, как в ребризёре полузамкнутого цикла с активной подачей. Причем, подача кислорода осуществляется с постоянной объемной скоростью, как в замкнутом ребризёре с ручной подачей, а дилюэнт поступает через дюзу с дозвуковой скоростью истечения, причем количество подаваемого дилюэнта увеличивается с увеличением глубины. Компенсация обжима дыхательного мешка осуществляется подачей дилюэнта через автоматический байпасный клапан, а избытки дыхательной смеси стравливаются в воду так же, как в случае с ребризёром полузамкнутого цикла с активной подачей. Таким образом, только за счет изменения давления воды в процессе погружения происходит изменение параметров дыхательной смеси, причем в сторону уменьшения концентрации кислорода при увеличении глубины. Механическим селфмиксерам свойственно изменение концентрации кислорода в дыхательном мешке при изменении физической нагрузки, и это прямое следствие того, что их принцип действия очень схож с принципом, по которому построены полузамкнутые ребризёры с активной подачей.
Ограничения по глубине для механического селфмиксера такие же, как для ребризёра полузамкнутого цикла с активной подачей с тем исключением, что только установочное давление кислородного редуктора должно превышать давление окружающей среды в 2 и более раз. По времени же селфмиксер в основном ограничен объёмом газа-дилюэнта, скорость подачи которого увеличивается с глубиной. В качестве газа-дилюэнта могут использоваться воздух, Trimix и HeliOx .
Ребризёр полузамкнутого цикла с активной подачей с приготовлением смеси в процессе подачи
Очень редкая конструкция ребризёра полузамкнутого цикла. Данный тип ребризёра по своему принципу работы полностью аналогичен ребризёру полузамкнутого цикла с активной подачей за исключением того, что дыхательная смесь приготавливается не заранее, а в процессе работы ребризёра. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, так же как в ребризёре полузамкнутого цикла с активной подачей. Подача и кислорода и дилюэнта происходит с постоянной скоростью независимо от глубины, при этом газы смешиваются в дыхательном мешке. В зависимости от скорости подачи кислорода и дилюэнта, мы получаем нужный нам газ. Данному типу ребризёра присущи все недостатки, что и ребризёру полузамкнутого типа с активной подачей, кроме того, он сложнее конструктивно и требует как минимум два баллона с газами (в то время как для нормальной работы aSCR необходим только один баллонон с газом). Преимущество ребризёров этого типа состоит в том, что нет нужды заранее готовить дыхательную смесь и есть возможность задавать нужный газ в контуре (регулируя скорость подачи О2 и дилюэнта) не меняя исходные газы, а лишь их пропорцию. В качестве газа-дилюэнта могут использоваться: воздух, Trimix и HeliOx .
Регенеративные ребризёры
Регенеративные ребризёры могут работать как по замкнутой, так и по полузамкнутой схеме дыхания. Основное их отличие в том, что кроме (вместо) обычного поглотителя углекислого газа используется регенеративное вещество: О3 (о-три), ВПВ или ОКЧ-3 созданное на основе пероксида натрия . Регенеративное вещество способно не только поглощать углекислый газ, но и выделять кислород. Принцип работы регенеративного ребризёра состоит в том, что потребление кислорода водолазом компенсируется не только за счет подачи свежей дыхательной смеси из баллона, но и за счет выделения кислорода регенеративным веществом.
Классическими представителями регенеративных ребризёров можно назвать аппараты ИДА-59, ИДА-71, ИДА-72, ИДА-75, ИДА-85.
Отдельно, как наиболее удачную конструкцию можно отметить аппараты типа ИДА-71, которые до сих пор используются в подразделениях боевых пловцов и водолазов-разведчиков. Конструкция аппарата и принцип его работы просты и доступны. При грамотной эксплуатации он очень надёжен. Несмотря на его «почтенный» возраст (в принципе, аппарат считают морально устаревшим) считается наиболее удачной конструкцией аппаратов подобного типа и выпускается до сих пор (завод «Респиратор»). Аппараты ИДА-75 и ИДА-85 были выпущены опытной серией, но в связи с развалом СССР в серию так и не пошли. После развала СССР конструкторские бюро пока не изобрели аппарата превосходящего по своим характеристикам ИДА-71.
При спусках в аппаратах замкнутого цикла на чистом кислороде не используются режимы декомпрессии. Согласно Правилам водолазной службы ВМФ, спуски на чистом кислороде разрешены на глубины до 20 метров. При использовании смесей типа АКС и ААКС бездекомпрессионные спуски допускаются на глубины до 40 метров - в аппарате ИДА-71, и до 60 метров в аппаратах ИДА-75 и ИДА-85. Максимально допустимое бездекомпрессионное время пребывания на этих глубинах составляет 30 минут. При превышении указанного времени пребывания выход осуществляется с соблюдением режима декомпрессии.
Подводный дыхательный аппарат содержит рабочий блок с химическим источником кислорода, маску и дыхательную трубку, соединяющую маску с рабочим блоком. Рабочий блок выполнен в виде открытой снизу емкости, снабженной расположенной в верхней части этой емкости решеткой для размещения на ней химического источника кислорода в виде брикета вещества, выделяющего кислород при взаимодействии с водой, стабилизатором вертикального положения, индикатором отработки источника кислорода и газовым отводом для дыхательной трубки. Стабилизатор вертикального положения выполнен в виде трубки с газовой емкостью на верхнем конце и прозрачным нижним концом. Индикатор расположен в упомянутой прозрачной части трубки и поджат пружиной к верхнему торцу указанного брикета. Такое выполнение аппарата обеспечивает снижение его массообъемных характеристик, снижение ассортимента расходуемых продуктов, упрощение их состава и индикацию отработки продукта. 2 з.п. ф-лы, 1 ил., 1 табл.
Рисунки к патенту РФ 2240257
Изобретение относится к подводным дыхательным аппаратам индивидуального типа, использующим химические источники кислорода. Аппарат предназначен для погружения и работы под водой на малых средних глубинах.
В настоящее время широко используется аппарат с баллонами на сжатом воздухе с открытой схемой дыхания (акваланг). Для наполнения баллонов акваланга необходима привязка к воздушным компрессорным установкам. Перевозить заполненные баллоны на большие расстояния независимо от вида транспорта запрещено. Длительное хранение заполненных баллонов затруднительно из-за утечек и небезопасно из-за высокого давления, кроме того, баллоны должны подвергаться периодическому освидетельствованию через каждые 5 лет. Масса и объем акваланга, как правило, велики и неудобны для транспортирования по суше. Акваланг сложен в изготовлении (баллоны, автомат подачи воздуха) и поэтому стоит очень дорого. Все вместе взятое делает его малодоступным для рядового туриста (Справочник водолаза/ Под общ. ред. Е.П.Шиканова. - М.: Воениздат, 1973, стр. 88).
Известны шахтерские респираторы для горноспасателей, которые в принципе могут быть использованы для погружения в воду. В качестве источника кислорода в этом аппарате применяется сжатый кислород, а в качестве поглотителя углекислого газа - химический поглотитель известковый (ХПИ). Массогабаритные характеристики респиратора также велики [Диденко Н.С. Регенеративные респираторы для горноспасательных работ. - М.: Недра, 1984, стр. 156].
Наиболее близким по технической сущности и достигаемому результату к предлагаемому аппарату является кислородный изолирующий дыхательный аппарат типа ИДА-64 с замкнутым циклом дыхания (Справочник водолаза/ Под общ. ред. Е.П.Шиканова. - М.: Воениздат, 1973, стр. 71).
Аппарат содержит рабочий блок, состоящий из регенеративных коробок с химическим источником кислорода на основе надперекиси калия и дыхательного мешка, баллон с кислородом, трубки вдоха и выдоха, клапанную коробку и маску.
Включение в аппарат осуществляется после полного удаления из мешка воздуха и заполнения его чистым кислородом из баллона. Включаясь, следует сделать полный выдох в атмосферу, после чего начать дышать в аппарат. Выдыхаемая газовая смесь из клапанной коробки поступает в регенеративные коробки. Проходя через вещество, она очищается от углекислого газа и обогащается кислородом. Очищенная смесь поступает в дыхательный мешок готовой для очередного вдоха. При недостатке газовой смеси в мешке во время погружения и в других случаях она пополняется чистым кислородом из баллона дыхательным автоматом. Давление в кислородном баллоне контролируется по выносному манометру. Избыток газовой смеси при уменьшении глубины вытравливается из мешка травяще-предохранительным клапаном. В качестве химических продуктов используются хемосорбционные блоки на основе перекисного соединения и поглотителя углекислого газа ХПИ.
Недостатками этого аппарата являются относительно высокие массо-объемные характеристики, затрудняющие транспортабельность аппарата с запасом химических продуктов (запасом кислорода) по суше. Кроме того, использование целого набора дефицитных переснаряжаемых компонентов фактически исключает возможность переснаряжения аппарата в полевых условиях. Существенным недостатком ИДА является также принципиальная невозможность контроля отработки продукта, т.е. времени защитного действия аппарата. Все это делает недоступным использование этого аппарата в массовом масштабе.
Указанные недостатки аппарата ИДА обусловлены тем, что хемосорбционная схема работы химических продуктов предъявляет особые требования к их составу и структуре. В результате резко снижается количество выделяемого кислорода от теоретического, степень уплотнения продуктов, и фактически невозможен контроль отработки (время защитного действия аппарата). Технология изготовления химических продуктов усложнена, что приводит к их удорожанию.
Задачей изобретения является снижение массообъемных характеристик аппарата, снижение ассортимента расходуемых продуктов, упрощение их состава и индикация отработки продукта.
Задача решается предлагаемым изобретением, согласно которому в аппарате, включающем рабочий блок с химическим источником кислорода, маску и дыхательную трубку, рабочий блок выполнен в форме открытой снизу емкости, снабженной газовым отводом для дыхательной трубки, стабилизатором вертикального положения и индикатором отработки источника кислорода.
В качестве химического источника кислорода используются надперекиси щелочных металлов или перекиси щелочно-земельных металлов или продукты на их основе.
Сущность изобретения поясняется чертежом. На чертеже изображен общий вид аппарата в разрезе. Аппарат содержит маску 1, фильтр 2, дыхательную трубку 3, выполненную в теплоизоляционном исполнении, и рабочий блок 4 с брикетом химического источника кислорода 5. Теплоизоляция дыхательной трубки 3 необходима для подогрева вдыхаемого воздуха. В верхней части рабочего блока 4 имеется стабилизатор 6 вертикального положения рабочего блока 4. Стабилизатор 6 представляет собой трубку 7, на верхнем конце которой имеется газовая емкость 8. Элементы стабилизатора 7 выполнены из материала с плотностью меньше единицы (полипропилен, полиэтилен). Нижний конец трубки 7 сделан прозрачным с целью фиксации положения индикатора отработки 9, прижатого пружиной к верхнему торцу брикета. Брикет 5 расположен на решетке в верхней части емкости рабочего блока 4. Нижняя часть рабочего блока 4 выполнена из материала с плотностью больше единицы (сталь) и открыта для сообщения с водной средой. Верхняя часть рабочего блока 4 всегда имеет положительную плавучесть (всплывает), нижняя часть блока имеет отрицательную плавучесть (тонет).
Масса рабочего блока 4 сбалансирована таким образом, чтобы средняя результирующая плавучесть его при дыхании была немного положительной. При этом центр результирующей подъемной силы, расположенной по вертикали рабочего блока 4, всегда выше центра тяжести. Благодаря такой конструкции рабочий блок 4 всегда занимает в воде устойчивое вертикальное положение и при случайных колебаниях или наклонах автоматически быстро возвращается в исходное вертикальное положение по принципу "Ваньки-встаньки".
Рабочий блок 4 соединен с маской 1 гибкой дыхательной трубкой 3 с краном 10 и крепится к поясу или спине тросиком 11 (~0,6 м). Такое крепление рабочего блока обеспечивает пловцу достаточную свободу для кантования при сохранении блока 4 в вертикальном положении. Вертикальное положение блока 4 дает также надежную ориентацию пловца в пространстве.
Роль дыхательного мешка выполняет частично гибкая газовая емкость 8 стабилизатора 6 и частично колебание жидкости в нижней части рабочего блока 4.
Аппарат имеет также сборник осадка соды 12. Дыхательная смесь из аппарата не выбрасывается.
Аппарат работает следующим образом. Для дыхания используется кислород, выделяемый брикетом 5 при его контакте с водой. В качестве химического источника кислорода используются надперекиси щелочных металлов, или перекиси щелочно-земельных металлов, или продукты на их основе. Поглощение углекислого газа осуществляется водным раствором продуктов гидролиза. Аппарат при дыхании работает в автоматическом маятниковом режиме.
Снаряжение аппарата брикетом 6 производится непосредственно перед спуском. Для захода в воду достаточно открыть кран 10 и одеть маску 1 с фильтром 2.
При вдохе вода через открытое снизу пространство входит внутрь рабочего блока 4 и реагирует с брикетом источника 5 с получением кислорода. При избытке кислорода вода вытесняется газом от брикета 5 вниз, и реакция прекращается.
При выдохе газ через дыхательную трубку 3 поступает в рабочий блок 4, жидкость отступает вниз и обеспечивает поглощение углекислого газа с образованием соды. Часть соды растворяется в водной среде, а часть оседает в сборнике 12. Концентрация соды в сбрасываемом растворе много ниже предельно допустимой и таким образом совершенно безопасна для человека.
Контроль степени отработки брикета производится по изменяющейся высоте брикета 5 с помощью индикатора 9.
Для примера брикет 6 из надперекиси натрия массой 250-260 г и объемом 140-150 см 3 обеспечивает работу аппарата под водой в течение одного часа. Масса осадка при растворении такого брикета составляет примерно 160 г.
Стабилизатор 6 всегда автоматически устойчиво обеспечивает вертикальное положение всего рабочего блока.
Газовая емкость 8 стабилизатора 6 может быть гибкой и частично выполнять роль дыхательного мешка.
Для исключения непосредственного контакта надперекисного продукта с руками и окружающими предметами при снаряжении брикет 6 герметично покрыт тонким слоем (0,5-2 мм) специального вещества, не влияющего на работоспособность брикета 5 в аппарате. До снаряжения брикеты герметично хранятся в легкой полиэтиленовой таре.
После всплытия перекрывается кран 10 и маска 1 снимается. Процедура переснаряжения аппарата предельно упрощена и сокращена до 1-2 мин.
Длина тросика 11 и место его крепления на теле пловца выбираются из целей удобства.
Указанный принцип действия аппарата проверен экспериментально на макетном образце.
Такое техническое решение дает возможность
1. Использовать надперекись натрия как наиболее эффективный кислородоноситель фактически в чистом виде;
2. Использовать кислородоноситель в предельно компактной (уплотненной) форме;
3. Использовать окружающую водную среду для поглощения углекислого газа и растворения отходов.
4. Использовать выделяемое реакцией тепло для подогрева дыхательной смеси, поступающей на вдох.
В результате существенно снижается масса и объем химического источника кислорода на единицу объема получаемого кислорода. Упрощается конструкция аппарата. По расчетным данным (см. табл.) масса аппарата снижается в 4,7 раза, а объем аппарата - в 2,8 раза. Расходуемая масса продукта, приходящаяся на 1 м 3 кислорода, меньше чем для аппарата ИДА в 2,8 раза, а объем - в 4,3 раза. Если бы пришлось перевозить аппараты с запасом продукта (кислорода) на 6 часов работы под водой (запас кислорода 400-411 л), то для предлагаемого аппарата по сравнению с аппаратом ИДА транспортируемая масса необходима в 4 раза меньше, а объем - почти в 2,5 раза меньше.
Вместо трех дефицитных, относительно дорогих расходуемых компонентов (хемосорбционные блоки на основе перекисного соединения, поглотителя ХПИ и сжатого кислорода в баллоне) можно пользоваться одним брикетом из чистой надперекиси натрия или калия. Процедура переснаряжения аппарата упрощается и сокращается (в течение 1-2 мин).
Сравнительная простота конструкции предлагаемого аппарата и отсутствие баллонов делает их изготовление недорогим. По расчетам в 10-30 раз дешевле акваланга и 3-5 раз дешевле аппарата ИДА. Стоимость 1 м 3 кислорода, получаемого из брикета надперекиси натрия, становится в 5-8 раз дешевле стоимости кислорода, получаемого в аппарате ИДА.
В результате все перечисленные преимущества предлагаемого аппарата делают его доступным для массового использования.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Подводный дыхательный аппарат, содержащий рабочий блок с химическим источником кислорода, маску и дыхательную трубку, соединяющую маску с рабочим блоком, отличающийся тем, что рабочий блок выполнен в виде открытой снизу емкости, снабженной расположенной в верхней части этой емкости решеткой для размещения на ней химического источника кислорода в виде брикета вещества, выделяющего кислород при взаимодействии с водой, стабилизатором вертикального положения, индикатором отработки источника кислорода и газовым отводом для дыхательной трубки, при этом стабилизатор вертикального положения выполнен в виде трубки с газовой емкостью на верхнем конце и прозрачным нижним концом, а индикатор расположен в упомянутой прозрачной части трубки и поджат пружиной к верхнему торцу указанного брикета.
2. Подводный дыхательный аппарат по п.1, отличающийся тем, что в качестве химического источника кислорода используются надперекиси щелочных металлов или перекиси щелочноземельных металлов или продукты на их основе.
3. Подводный дыхательный аппарат по п.1, отличающийся тем, что дыхательная трубка выполнена в теплоизоляционном исполнении.
Если рассматривать технический дайвинг
как вершину подводных погружений,
то ребризеры – это просто полный улёт в космос!
Мало кто знает, что ребризеры или аппараты замкнутого цикла дыхания пришли к нам намного раньше чем обычный акваланг, для этого всего лишь нужно заглянуть в историю изобретения ребризера и тем не менее, только в наше время технический прогресс помог сделать эти погружения на системах замкнутого цикла, повсеместно доступными дайверскому сообществу, а не только профессионалам из специализированных военных и научных организаций.
Вам порядком надоел грохот выдыхаемого воздуха, а груда тяжеловесного железа
с очертаниями навешанных баллонов не выглядит столь эстетично
как в первый раз, и конечно вы давно зотели оптимизировать
свой декомпрессионный режим, то путь в ребризеры - ваш путь!
выглядит
следующим образом:
Считается
самым удачным и потому самым распространенным ребризером полузамкнутого
цикла с пассивной подачей дыхательной смеси.
Разработан немецкой фирмой Draeger и является модификацией более ранней модели Atlantis I. Эту модель отличается простотой в эксплуатации и надежностью в применении.
Используя стандартные найтроксные смеси, он позволяет погружаться до глубины 40 метров. Существует модификация с использованием тримикса, что увеличивает разрешенную глубину до 80м.
Обучение работе с данным аппаратом занимает 2–3 дня. Четыре погружения на открытой воде позволяют в полном объеме отработать необходимые упражнения и получить полное представление о специфике погружений в ребризере. Мы весьма рекомендуем этот курс как предварительный для курса Inspiration.
Это
первый в мире смесевой замкнутый ребризер, выпускаемый серийно.
Кроме того, Inspiration является первым и на сегодняшний день
единственный в своем классе аппарат, получивший сертификацию
европейского агентства по стандартизации. Этот сертификат
санкционирует безопасное использование аппарата на глубинах
до 50 метров с воздухом в качестве дилуента и как минимум
до 100 метров с использованием тримиксных смесей.
дает нам возможность использовать все преимущества найтроксных смесей, причем на все 100%. Блок контроля автоматически поддерживает постоянное парциальное давление кислорода в дыхательном контуре независимо от глубины, соответственно постоянно меняя процентный состав смеси. Другими словами, аппарат обеспечивает оптимальную дыхательную смесь (best mix) на любой глубине в течение всего погружения вплоть до подачи чистого кислорода на последних декомпрессионных остановках.
Это означает беспрецедентную универсальность: затонувшее на большой глубине судно или мелководный прибрежный риф, нет никакой разницы,- стандартно подготовленный аппарат обеспечит вас оптимальной смесью на любой глубине. Он позволяет в полной мере реализовать все преимущества best mix, такие как расширение NDL, минимизация декомпрессионных режимов и т.д., но без муторного предварительного планирования, связанного с подбором газовой смеси в зависимости от конкретной глубины погружения, расчета запаса газов, выбором конфигурации снаряжения, этапных баллонов и т.п. Кроме того, вы избавлены от необходимости переключения со с меси на смесь под водой.
Погружение на Inspiration – это максимально эффективное использование газов. Особенно ярко эта эффективность проявляется на значительных глубинах, где расход газовой смеси в системах, работающих по открытой схеме дыхания, становится катастрофическим. Отсюда – высокая популярность ребризера среди технических дайверов.
Наряду с уже перечисленными преимуществами следует отметить и такие положительные качества как минимизация затрат на дорогостоящий гелий, компактность аппарата, легкость регулирования плавучести, дыхание теплым увлажненным газом и, наконец, полное отсутствие выдыхаемых пузырей, что делает погружение комфортным, тихим и не вызывающим стрессового состояния у подводных обитателей.
Inspiration произвел настоящую революцию в дайвинге. Будучи первым серийным аппаратом этого класса и, что самое главное, доступным, он широко продается в более чем 40 странах по всему миру. Пройдя жесткие испытания в специализированных организациях Великобритании и США, аппарат производится в строгом соответствии со стандартами и требованиями качества, обеспечивается его сервисное обслуживание и заводское снабжение запасными частями.
-
Выдыхаемый газ направляется невозвратным клапаном по шлангу
в мешок выдоха. С этого начинается цикл.
- Затем газ, освободившись от возможных остатков воды, попадает
в патрон поглотителя. Здесь он вступает в химическую реакцию
с абсорбентом (Sofnolime), где освобождается от двуокиси углерода.
- В зоне смешения в верхней части патрона расположены три
независимых кислородных датчика, измеряющие парциальное давление
кислорода в смеси, позволяя электронному регулятору с высокой
точностью поддерживать заданное значение РО2 путем впрыскивания
из баллона дополнительного количества чистого кислорода по
мере его потребления организмом.
- Очищенная и обогащенная кислородом смесь проходит по шлангу
в мешок вдоха, и далее через клапанную коробку к загубнику.
Цикл завершен.
Дилуент
Inspiration имеет два трехлитровых баллона. В одном баллоне находится чистый кислород, другой содержит так называемый дилуент – газ-разбавитель. До глубин 50 м это обычно воздух, глубже – тримикс или гелиокс. Дилуент имеет несколько функций:
Вручную или через легочный автомат (если он установлен) дилуент подается в дыхательный контур для компенсации возрастающего с увеличением глубины давления и предотвращения «схлопывания» мешков.
Он также используется для поддува BCD и сухого гидрокостюма. Расход дилуента крайне незначителен, порядка 30 – 40 бар за все погружение.
Как разбавитель, он является основной составляющей дыхательной газовой смеси, поддерживая ее в безопасных с точки зрения кислородного отравления пределах.
Одной из важнейших функций дилуента является возможность его использования в качестве резервного запаса для вентиляции контура либо для перехода на дыхание по открытой схеме в случае чрезвычайной ситуации.
Это аппарат, который очищает использованный для дыхания газ. Необходимый для дыхания кислород непрерывно натекает (подается принудительно) в контур смеси газов. Отработанный газ остается в цепи: он проходит через однонаправленный канал и очищается от СО2. После очистки газ вновь подается в мешок вдоха, затем цикл повторяется.
Ребризер: новая технология?
Знаете ли Вы, что первый аппарат для погружений под воду был ребризером? Он был создан в 1878 инженером Флеуссом и состоял из резиновой маски, подсоединенной к дыхательному мешку, который наполнялся кислородом, подаваемым из медного баллона; углекислый газ поглощался "фильтром": переплетенными волокнами, пропитанными каустическим поташем (углекислый калий).В 1915 идея Флеусса была заимствована сэром Робертом Дэвисом при создании аппарата для аварийного всплытия с подводных лодок, который затем начали роизводить во всем мире. Ганс Хасс - первый подводный фотограф, погружавшийся на ребризере.
ARO - (кислородный ребризер замкнутого цикла) родом из Италии, был создан в период между I-ой и II-ой Мировыми войнами. В 1933-34 годах итальянские военные водолазы Teseo Tesei и Elios Toschi по достоинству оценили незаменимость этого аппарата в военных операциях, в устройство были внесены некоторые изменения, и оно стало играть первую скрипку в операциях бойцов отрядов Gamma и Maiali.
После войны ARO использовался военно-морским флотом для тренировки дайверов.
ARO по сей день используется при обучении и для погружений на очень большие глубины.
Между тем, в 1969 году компания Dra"ger разрабатывает очень актуальные нитроксные аппараты полузамкнутого цикла и выпускает FGT (этот аппарат до сих пор используется многими военными водолазами).
Позже вышел FGT III, гелиоксный полузамкнутого цикла, для погружений на глубины до 200 метров.
В последующие годы Dra"ger довел до совершенства систему для обеспечения непрерывного потока и занял лидирующие позиции в производстве этих комплектующих.
В 1995 году стали производиться первые ребризеры полузамкнутого цикла для спорта.
На сегодняшний день существует три основных типа ребризеров - кислородные, полузамкнутые и замкнутые аппараты.
Кислородные ребризеры
Данный тип аппаратов используют чистый кислород и являются полностью замкнутыми. История их создания и использования берет свое начало в 19 веке.Данные аппараты активно использовал Ганс Хаас и его жена Лота Хаас – известнейшие подводные исследователи и фотографы. Во время войны данные аппараты активно использовались подводными диверсантами всех стран участниц войны. В настоящее время кислородные ребризеры претерпели незначительные изменения и применяются в основном военно-морскими силами. Аппараты этого типа являются наиболее компактными,простыми по конструкции и надежными. Как правило они содержат один дыхательный мешок,один баллончик с кислородом и канистру с химическим поглотителем. В дыхательный мешок подается чистый кислород через специальное отверстие-дюзу с определенной скоростью,либо периодически.Далее вы вдыхаете кислород и выдыхаете уже в канистру с содой –где поглощается образовавшийся углекислый газ и все снова по кругу. Никакой электроники, только манометр.Наиболее известные изделия этого класса – LAR-V немецкой фирмы draeger , Oxyng французской компании spirotechnique , изделия итальянцев от OMG и конечно большое количество советских аппаратов - ИПСА, ИДА-64 , ИДА-76 , ИДА -71 и т.д. Основным недостатком этих аппаратов было и есть – ограничение по глубине - 6 метров.
Полузамкнутые ребризеры
Эти аппараты делятся на два типа: aSCR – аппараты с активной подачей газа и pSCR – с пассивной подачей соответственно.
aSCR – эти аппараты были разработаны в пятидесятых годах и использовались,как это всегда обычно бывает военными, в основном водолазами –саперами. Принцип работы предельно прост. В баллоны заправляется nitrox (в основном) , газ поступает постоянным потоком через специальную дюзу (draeger Dolphin, Ray) или через регулируемый игольчатый клапан (Azimuth, Ubs-40) в мешок вдоха,затем вы выдыхаете соответственно в мешок выдоха, далее газ поступает в канистру с химопоглотителем и опять в мешок вдоха. При этих процедурах, как правило возникает избыток газа, который удаляется в воду через специальный клапан.
aSCR –самые популярные рециркуляционные аппараты на любительском рынке, на сегодняшний день. Они просты, надежны и легки в обучении. Основное их преимущество - экономия газа,использование смесей нитрокс и малошумность. На аппаратах, в базовой комплектации, нет никакой электроники и рекомендуемые температурные режимы эксплуатации от -1 до +35 градусов, что тоже является преимуществом. Недостатками являются - ограничение по глубине, отсутствие преимуществ по режимам декомпрессии и большая разница между газом в баллонах и газом в дыхательном контуре, что следует учитывать при планировании. Разница тем больше,чем выше физическая нагрузка и может варьироваться от 5 до 20%.
Наиболее известные модели Mix-55 , Mixegers 78 (Франция) , Aromix OMG (Италия), Draeger FGT I (Германия) , АКА – 60 (Россия).Наиболее известные модели для любительского рынка - Draeger Dolphin (Германия) , Draeger Ray (Германия) – сняты с производства. Fieno (Япония) – снят с производства. Azimuth Pro (Италия) , UBS -40 (Италия) – производятся до сих пор.
pSCR – отличаются от aSCR тем,что газ подается не через дюзу,а через стандартный регулятор в соответствии с минутным потреблением смеси ныряльщика. В результате прямого принудительного добавления газа, состав реальной дыхательной смеси в контуре пассивной системы более постоянный, чем у аппаратов с активной подачей газа и не изменяется значительно при изменении физических нагрузок.
Поскольку аппарат пассивного типа привязан к значению RMV , планирование погружения облегчается.
Основным недостатком этих аппаратов является повышенное сопротивление вдоху –выдоху, поскольку дыхательный мешок располагается в районе поясницы. (имеются ввиду аппараты Halcyon и его клоны – Ron , SF-1 и т.п.). Интересной разработкой этого направления является аппарат K2-advantage (у него дыхательный мешок на груди).
Аппараты данного типа слабо распространены и не сертифицированы в Европе.
Замкнутые ребризеры
Подразделяются на eCCR и mCCR .
eCCR – этот тип аппаратов является наиболее сложным,продвинутым и соответственно дорогостоящим.
Цена изделий колеблется от 9 до 14 тыс.долларов. Это самые тихие аппараты, но самое главное их преимущество – это возможность поддерживать постоянное парциальное давление кислорода, за счет этого происходит эфеективная и быстрая декомпрессия, а также увеличиваются бездекомпрессионные пределы. Как правило, в аппарате используется два баллона- один с кислородом, второй с дилуентом (воздухом,тримиксом,гелиоксом). В ребризере используется электроника для отслеживания парциального давления кислорода и для подачи кислорода в контур по необходимости,через электромагнитный клапан (соленоид). В принципе это все,отличаются аппараты нюансами – количеством датчиков кислорода, расположением дыхательных мешков,наличием встроенных декомпрессиметров и т.д. Наиболее известные и популярные аппараты данного типа - Inspiration Vision (Англия) , Megalodon (США) . В настоящее время на рынке появилось достаточно много электронных аппаратов замкнутого типа – Optima (США) , Sentinel (Англия) , Voyager (Италия) и т.д. Но лидеры остались прежние.
Самое главное - eCCR требуют к себе уважительного отношения,повышенного внимания и очень хорошего обучения. Спуски на замкнутых аппаратах требуют больше дисциплины и ответственности,следовательно их пользователями должны быть люди,регулярно погружающиеся и хорошо разбирающиеся в специфике ребризеров. При работе с CCR существует повышенный риск нарваться на гипоксию или гипероксию.
mCCR - отличаются от электронных аппаратов тем,что у них кислород в контур подается не через соленоид по команде компьютера,а постоянно натекает через дюзу (почти как в SCR или в простом кислородном аппарате) , но подается он в меньшем количестве чем необходимо организму человека, т.е. где-то 0.6-0.7 л/мин. Электроника присутствует для отслеживания значений po2 . Недостаток кислорода подается вручную. Как это обычно и бывает в нашей стране – что имеем не храним, потеряем плачем. Иностранцы брали наши ИДА-71 и делали из них mCCR . На сегодня самыми популярными аппаратами данного типа являются – KISS (Канада) , rEVO (Бельгия) , Submatix (Германия) , Pelagian (Таиланд) .
Цены колеблются от 5 до 8 тыс.долларов.