Е обозначается потеря целостности конструкции. Противопожарные двери и ворота

Главная / Крыша

При разработке противопожарных мер на стадии проектирования зданий и сооружений перед проектировщиками обязательно ставится задача по своевременной эвакуации людей и имущества в случае возникновения аварийной ситуации, а также возможность применения штатных средств пожаротушения и возможность своевременного прибытия соответствующих служб.

Успех перечисленных мероприятий будет зависеть от времени, которое сможет выдержать объект до начала разрушения. Время зависит от характеристик применяемых строительных материалов, условий эксплуатации сооружений. Все вышеперечисленное определяет устойчивость их к огню.

Характеристики степеней

Огнестойкость всего сооружения напрямую зависит от огнестойкости строительных конструкций. Чем выше этот параметр для каждой конструкции, тем дольше будет сопротивляться огню все здание. Для того чтобы можно было охарактеризовать ее, СНиП 21.09-97 выделяет пять базовых степеней огнестойкости.

Для каждой степени определены возможности применения определенных строительных материалов при изготовлении конструкций и требования к их обработке. Меньшей по нумерации степени соответствуют самые жесткие требования.

Производится в соответствии с таблицами. Для этого необходимо знать, какие материалы применялись при строительстве.

В таблицах учтены материалы, применяемые для различных элементов конструкций:

  • стен;
  • перекрытий;
  • фундаментов;
  • отделки.

Конечно же, полученные результаты будут справедливы только при соответствии материалов ГОСТ.


Определение степени огнестойкости производится по таблицам СНиП 31-03-2001 для производственных зданий, СНиП 2.08.02-89 – для общественных зданий и сооружений, СНиП 31-01-2003 – для жилых строений.

Для пользования таблицами нужно воспользоваться такой характеристикой материала, как предел огнестойкости материалов и конструкций.

Соответствие степени огнестойкости

Для проверки зданий и сооружений на соответствие степени, производятся специальные исследования, и определяется требуемая и фактическая огнестойкость.

Требуемая определяется расчетом по нормативным документам (СНиП и СП) и должна учитывать назначение, категорию здания, условия эксплуатации, нормы обеспеченности техникой пожаротушения.

Фактическая устанавливается непосредственно по результатам проведенной пожарно-технической экспертизы. Здание признается соответствующим требованиям пожарной безопасности, если фактическая огнестойкость не ниже требуемой.

Понятие предела огнестойкости

Предел сопротивляемости огню для сооружений зависит, в первую очередь, от характеристик строительных материалов. Основной при этом считается предел огнестойкости – время сопротивления конструкции воздействию огня.

При этом конструкция должна обеспечить свое функциональное назначение и препятствовать распространению пламени. Сопротивляемость измеряется в минутах от начала огневого воздействия на материал до потери возможности нести функциональную нагрузку и ограничивать распространение пламени.

Этот параметр для применяемых материалов прямо влияет на степень огнестойкости строительных конструкций. Можно сказать, что предел – это время, в течение которого конструкция способна сопротивляться огню.

Применение материалов с более высоким пределом повышает общую пожарную безопасность объекта защиты.

Как определить

Чтобы определить предел сопротивляемости конкретной конструкции, можно воспользоваться СНиП II-2-80 и пособием к нему, изданным ЦНИИСК им. В. А. Кучеренко ГОССТРОЯ СССР.

СНиП определяет методы исследований и проверок для фактического определения времени, в течение которого материалы сопротивляются воздействию огня. В пособии используются данные исследований, проведенных ранее, и определяется возможность использования материалов.

Любопытно, что очень часто предел сопротивляемости конструкций из сгораемых материалов выше, чем у не подверженных горению. Это объясняется тем, что он может устанавливаться в соответствии с разными требованиями, которые зависят от типа конструкции.

То есть при одинаковой несущей способности в обычных условиях, металлоконструкции для каркасов перегородок, которые сами по себе не горят, могут потерять несущую способность в результате сильного нагрева очень быстро, а массивные стойки из древесины, даже воспламенившись, будут некоторое время оставаться устойчивыми.

Объясняется это тем, что предел прочности металла в холодном состоянии почти в восемь раз выше, чем у древесины. В то же время деревянные стойки, имеющие большее сечение, будут сопротивляться огню, даже объятые пламенем, в течение более длительного времени.

Потеря несущей способности

Потеря несущей способности конструкций грозит обрушением здания. Поэтому к несущим стенам, междуэтажным перекрытиям, покрытиям зданий и лестничным маршам применяются требования по обеспечению заданного значения предела огнестойкости, при котором конструкции сохранят несущую способность в течение заданного времени.

При обозначении в документации этого требования используется буква R с добавлением цифрами времени устойчивости конструкций в минутах.

Например, R20 означает, что со времени начала пожара или воздействия огня, конструкция в течение 20 минут должна сохранить прочность, обеспечивающую несущую способность всего здания.

Потеря целостности

Для ненесущих и ограждающих конструкций устанавливаются требования по сохранению целостности в течение заданного времени. Это объясняется, как необходимостью обеспечить безопасную эвакуацию людей из помещений, так и недопущением проникновения внутрь здания большого количества воздуха, способного усилить развитие пожара.

В документации этот параметр обозначается буквой Е. Например, Е15 означает, что перегородки, выполненные из гипсокартона, должны препятствовать распространению огня из помещения в помещение в течение 15 минут. При этом сами перегородки не должны разрушаться.

Потеря теплоизолирующих свойств

Предел огнестойкости по потере изолирующих свойств должен рассчитываться для междуэтажных перекрытий и внутренних перегородок лестничных клеток. Это нужно для обеспечения безопасного нахождения и эвакуации людей на верхних этажах и на лестничных маршах.

Обозначается такая величина буквой I с добавлением после нее времени огнестойкости. Например, I15 означает, что конструкция в течение 15 минут не должна нагреваться и передавать тепло через материал в течение 15 минут.

К некоторым конструкциям могут применяться требования сразу по нескольким параметрам. Так, например, перекрытия в здании с II степенью огнестойкости должны иметь предел огнестойкости REI45.

Несущая способность

Максимальная нагрузка, которую могут нести строительные конструкции, их элементы, а также грунты оснований без потери их функциональных качеств.

Огнестойкость ЖБК. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Общие принципы расчета пределов огнестойкости ЖБК и способы повышения их пределов огнестойкости. Огнестойкость железобетонных конструкций (ЖБК). В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило: 1) за счет снижения прочности бетона при его нагреве 2) теплового расширения и температурной ползучести арматуры 3) возникновения сквозных отверстий или трещин в сечениях конструкции 4) в результате утраты теплоизолирующей способности Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости обычно находится в пределах R50-R90 Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры. Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности, поверхностных, наиболее прогреваемых слоев бетона и сопротивления рабочей арматуры при нагреве. Это приводит к быстрому снижению несущей способности конструкции при пожаре. В момент времени воздействия пожара, когда несущая способность конструкции снизится до уровня рабочих нагрузок, и наступит ее предел огнестойкости по признаку «R». Для железобетонных колонн предел огнестойкости обычно находится в пределах R90-R150. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Предельными состояниями по огнестойкости для ЖБК являются: 1) потеря прочности (R) 2) потеря теплоизолирующей способности (I) 3) потеря целостности (E) В отличие от металлических конструкций, для которых основополагающей величиной при оценке предела огнестойкости по потере прочности (R) является приведенная толщина (tred) поперечного сечения, для оценки огнестойкости железобетонной конструкции по признаку потери прочности (R) необходимо знать: 1) вид бетона 2) миним. расстояние от обогреваемой поверхности до оси рабочей арматуры 3) размеры сечения конструкции 4) схему опирания. Для оценки огнестойкости железобетонной конструкции по признаку потери теплоизолирующей способности (I) необходимо знать: 1) вид бетона 2) толщину конструкции (для конструкции с внутренними пустотами – эффективную толщину конструкции). Расчет огнестойкости любых строительных конструкций по признаку потери целостности (E) является очень сложной технической задачей и, как правило, не проводится. Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др. Общие принципы расчета пределов огнестойкости ЖБК Расчеты пределов огнестойкости ЖБК, также как и для металлических конструкций связаны с решением прочностной (статической) и теплотехнической задач. В отличие от металлической конструкции, состоящей только из одного материала – металла, предел огнестойкости ЖБК утрачивается в результате утраты прочностных свойств, как несущей металлической арматуры, так и собственно бетона. Утрата прочностных свойств металлической арматуры происходит в результате нагрева ее до критической температуры (), которая, в свою очередь, зависит от напряжений в сечении металлической арматуры (от приложенной нагрузки), вида ЖБК, схемы опирания и нагружения ЖБК, марки металла арматуры. Утрата прочностных свойств бетона также происходит в результате нагрева его до критической температуры (), при которой считается, что бетон мгновенно утрачивает свои прочностные свойства.

19. Предел огнестойкости конструкций и их предельные состояния по огнестойкости в соответствии с Федеральным законом № 123-Ф3. Предел огнестойкости конструкции (заполнения проемов противопожарных преград) – промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции (заполнения проемов противопожарных преград) предельных состояний.

Ст.35 123-ФЗ : Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

3. Предел огнестойкости для заполнения проемов в противопожарных преградах наступает при потере целостности (Е), теплоизолирующей способности (I), достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).

4. Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности.

5. Условные обозначения пределов огнестойкости строительных конструкций содержат буквенные обозначения предельного состояния и группы.

Строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

1) ненормируемый;

2) не менее 15 минут;

3) не менее 30 минут;

4) не менее 45 минут;

5) не менее 60 минут;

6) не менее 90 минут;

7) не менее 120 минут;

8) не менее 150 минут;

9) не менее 180 минут;

10) не менее 240 минут;

11) не менее 360 минут.

Строительные конструкции зданий и сооружений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости :

1) ненормируемый; 2) не менее 15 минут; 3) не менее 30 минут; 4) не менее 45 минут;

5) не менее 60 мин.; 6) не менее 90 минут; 7) не менее 120 минут; 8) не менее 150 минут;

9) не менее 180 минут; 10) не менее 240 минут; 11) не менее 360 минут.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний .

Пределы огнестойкости строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическим методом, установленным нормативными документами по пожарной безопасности .

Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности .

Фактический предел огнестойкости строительных конструкций во многих странах определяют экспериментальным путем посредством проведения натурных огневых испытаний строительных конструкций. Метод натурных огневых испытаний регламентирован международным стандартом ISO/DIS 834 "Испытание на огнестойкость элементов строительных конструкций". В России с 01.01.96 г. пределы огнестойкости строительных конструкций и их условные обозначения устанавливают по ГОСТ 30247, ГОСТ 51136, ГОСТ Р 53307 и ГОСТ Р 53308 по времени наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний.

В ГОСТ 30247.0-94 приведены общие положения, в том числе определения терминов, используемых при установлении огнестойкости конструкций, формулировка сущности методов испытания на огнестойкость, общие требования к испытательному оборудованию, температурному режиму, образцам и процедуре проведения испытаний.

В этом же стандарте перечислены основные виды предельных состояний конструкций по огнестойкости, основные положения по оценке результатов испытаний, требования к протоколу испытаний. Стандарт устанавливает для одной и той же конструкции различные пределы огнестойкости по парным признакам наступления предельного состояния. Так, испытания стены на огнестойкость могут быть продолжены до полного ее разрушения, а в процессе испытаний будут установлены пределы ее огнестойкости по признаку потери теплоизолирующей способности и по признаку потери целостности в зависимости от того, где установлена несущая стена. Требования по ее теплоизолирующей способности могут быть следующими:

для межквартирной стены – 30 мин., межсекционной – 45 мин., внутриквартирной – 15 минут. Но по несущей способности она должна выдерживать, например:

Все 120 минут в зданиях I-ой степени огнестойкости;

90 минут в зданиях II -ой степени огнестойкости;

45 минут в зданиях III-ой степени огнестойкости;

15 минут в зданиях IV-ой степени огнестойкости.

В ходе проектирования данные особенности должны учитываться и это, в конечном итоге, должно выразиться в выборе наиболее приемлемых строительных материалов, входящих в состав строительной конструкции, и главным образом, в экономии финансовых средств.

В соответствии со статьей 35, ч.2 и ч.5 Технического регламента о требованиях пожарной безопасности строительные конструкции по предельному состоянию на огнестойкость подразделяются на следующие виды и имеют буквенные обозначения:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

1. Потеря несущей способности(R) в виде обрушения конструкции либо возникновения предельной деформации (в зависимости от типа конструкции).

Числовые значения величин предельных деформаций для различных типов конструкций приведены в приложении "А" ГОСТ 30247.1-94. Для изгибаемых конструкций оно составляет величину L/20, либо если скорость нарастания деформаций составит L 2 /(9000 h) см/мин (где L – длина конструкции, см; h – расчетная высота поперечного сечения (толщина) конструкции, см.

Для вертикальных конструкций предельным состоянием по огнестойкости следует считать условие, когда вертикальная деформация достигает L/100 или скорость нарастания деформаций достигает 10 мм/мин - для образцов высотой 3 0,5 м.

По первому предельному состоянию конструкций по огнестойкости оценивают конструкции несущих стен, покрытий, перекрытий (балок, ферм, колонн, арок, рам) и узлов, их соединяющих.

Предел огнестойкости узлов крепления и сочленения строительных конструкций должен быть не ниже требуемого предела огнестойкости самих конструкций.

2. Потеря целостности (Е) или дефектность структуры ограждающей конструкции в результате образования сквозных трещин, отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. Оценивается по их количеству и размерам (длиной, шириной и глубиной), измеряемым с помощью специальных калиброванных щупов и игл, оптических луп или микроскопов, ультразвукового диагностирования; путем простукивания конструкции, обратив внимание на
звук: неплотный бетон издает глухой звук, при наличии отслоений -
дребезжащий, при плотном бетоне звук звонкий.

3. Потеря теплоизолирующей способности (I) , т. е. прогрев конструкций до температур, превышение которых может вызвать самовоспламенение горючих материалов, находящихся в смежных помещениях.

Установлено, что сквозной прогрев конструкции до температуры порядка 220 0 С уже может представлять опасность самовоспламенения различных твердых и жидких веществ. Поэтому потеря теплоизолирующей способности строительной конструкции при пожаре наступает при превышении температуры на не обогреваемой поверхности по сравнению с начальной:

– приращение температуры более чем на 140 0 C (по измерениям пятью термопарами);

– в любой точке этой поверхности приращение температуры более чем на 180 0 C;

– или абсолютная температура равна 220 0 C в любой точке поверхности, независимо от первоначальной температуры конструкции до испытания.

Таким образом, первое предельное состояние конструкции по огнестойкости (R) характеризует потерю конструкцией несущей способности, второе(Е) и третье (I) – ограждающей.

Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать принятым в технической документации. Величину испытательной нагрузки устанавливают из условия создания в поперечных сечениях образцов конструкции таких напряжений, которые предусмотрены в конструкции по проекту или технической документации. При определении величины проектных напряжений учитывают только постоянные и временные длительные нагрузки в их расчетных значениях с коэфициентом надежности равным 1.

Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; балки – с трех сторон, а колонны, столбы и фермы – с четырех или с трех сторон - с учетом реальных условий использования.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, моногослойных несимметричных – с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

В процессе испытания регистрируют следующие параметры:

а) время наступления предельных состояний конструкции по огнестойкости и их вид;

б) температуру в печи, на не обогреваемой поверхности ограждающей конструкции, а также в других предварительно определенных местах.

Термопары для измерения температуры среды в огневой камере печи должны быть установлены не менее чем в пяти местах. Конец термопар следует устанавливать на расстоянии 100 мм от образца – конструкции.

Среднюю температуру не обогреваемой поверхности образцов ограждающих конструкций (стеновых панелей, плит перекрытий, перегородок и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар.

Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей). При определении средней температуры не обогреваемой поверхности образца эти точки в расчет не принимают.

в) величину избыточного давления в печи (при испытании ограждающей конструкции на газодымонепроницаемость). Оно должно составлять 10 ( 2) Па;

г) величину деформации (при испытании несущей конструкции);

д) время появления пламени на не обогреваемой поверхности образца (ограждающей конструкции) определяют с помощью ватных тампонов;

е) время появления и характер трещин, отверстий, отслоений, а также другиет явления (например, нарушение условий опирания, появление дыма).

Приведенный перечень измеряемых параметров и регестрируемых явлений может дополняться и изменяться в соответствии с требованиями методов испытаний конкретных видов конструкций.

Испытания должны продолжаться до наступления одного или, по возможности, последовательно всех предельных состояний конструкций по огнестойкости, нормируемых для испытываемой конструкции. Результаты, полученные при испытании, могут быть использованы для оценки пределов огнестойкости расчетными методами других аналогичных (по форме, материалам, конструктивному исполнению) конструкций. В свою очередь, стандарт допускает определять пределы огнестойкости строительных конструкций расчетным методом, при этом испытания можно не проводить. Расчетный метод не распространяется на конструкции, огнестойкость которых может характеризоваться потерей плотности.

Если для конструкции нормируют (или устанавливают) различные пределы огнестойкости по различным предельным состояниям, обозначение предела огнестойкости состоит из двух или трех частей, разделенных между собой наклонной чертой, например:

R120/ЕI 60 – предел огнестойкости 120 мин – по потере несущей способности; предел огнестойкости 60 мин – по потере целостности или теплоизолирующей способности, независимо от того, какое из этих двух предельных состояний наступит ранее.

При различных значениях пределов огнестойкости, регламентируемых разными предельными состояниями, обозначение числовых значений времени перечисляется по убыванию.

Цифровой показатель в обозначении предела огнестойкости должен соответствовать одному из чисел следующего ряда: 15, 30, 45, 60, 90, 120, 150, 180, 240, 360, т.е. должны быть кратными 15, а при получении экспериментальных или расчетных промежуточных показателей необходимо принимать меньшее числовое значение из этого ряда.

Пределы огнестойкости запроектированных или реально существующих конструкций принято называть фактическими, а определяемые условиями безопасности или нормами,- требуемыми и обозначать, соответственно, П ф и П тр. Фактические и требуемые пределы огнестойкости конструкций нормируются и учитываются пи проектировании зданий и сооружений. Требования безопасности считаются выполненными при выполнении условия: П ф ≥ П тр

    Приложение А (обязательное). Определение предельного состояния конструкций по потере несущей способности в зависимости от деформаций

Межгосударственный стандарт ГОСТ 30247.1-94
"Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции"
(введен в действие постановлением Минстроя РФ от 23 марта 1995 г. N 18-26)

Elements of building constructions fire-resistance test methods. Loadbearing and separating constructions

Взамен СТ СЭВ 1000-78, СТ СЭВ 5062-85

1 Область применения

1.2. Стандарт применяют для:

Несущих, самонесущих и навесных стен и перегородок без проемов;

Покрытий и перекрытий без проемов с подвесными потолками (при применении их для повышения предела огнестойкости конструкции) или без них;

Колонн и столбов;

Балок, ригелей, элементов арок, ферм и рам, а также других несущих и ограждающих конструкций.

При установлении пределов огнестойкости конструкций в целях определения возможности их применения в соответствии с противопожарными требованиями нормативных документов (в том числе при сертификации) следует применять методы, установленные настоящим стандартом.

ГОСТ 30247.0-94 Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

СТ СЭВ 383-87 Пожарная безопасность в строительстве. Термины и определения

3 Определения

В настоящем стандарте применяют следующие термины.

Несущие конструкции (элементы) - конструкции, воспринимающие постоянную и временную нагрузку, в том числе нагрузку от других частей зданий.

Огнестойкость конструкции - по СТ СЭВ 383.

Самонесущие конструкции - конструкции, воспринимающие нагрузку только от собственного веса.

Ограждающие конструкции - конструкции, выполняющие функции ограждения или разделения объемов (помещений) здания. Ограждающие конструкции могут совмещать функции несущих (в том числе самонесущих) и ограждающих конструкций.

4 Стендовое оборудование

4.2 При испытании ограждающих конструкций регулирующее устройство системы дымовых каналов должно обеспечивать избыточное давление в огневом пространстве печи. При испытании вертикальных ограждающих конструкций избыточное давление должно поддерживаться на высоте не менее чем верхние 2/3 проема печи.

Через 5 мин после начала испытания избыточное давление должно составлять Па:

При испытании горизонтальных элементов - на расстоянии 100 мм от обогреваемой поверхности образца;

При испытании вертикальных элементов - на высоте, равной 3/4 вертикального размера проема печи, считая от низа.

5 Температурный режим

По ГОСТ 30247.0.

6 Образцы для испытаний конструкций

Образцы для испытаний конструкций должны соответствовать ГОСТ 30247.0 и иметь проектные размеры.

Если образцы таких размеров испытать не представляется возможным, то минимальные размеры образцов и проемов печей принимают такими, чтобы обеспечить минимальные размеры зоны огневого воздействия на образец в соответствии с приведенными в таблице 1.

Таблица 1

Наименование конструкции Минимальные размеры зоны
огневого воздействия на образец
Ширина Длина Высота
Стены и перегородки


двум сторонам

Покрытия и перекрытия, опирающиеся по
четырем сторонам

Балки и другие горизонтальные
стержневые конструкции

Колонны, столбы и другие вертикальные
стержневые конструкции

3,0 - 3,0

7 Проведение испытаний

7.2.1 Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать расчетным схемам, принятым в технической документации.

7.2.2 Испытательную нагрузку устанавливают из условия создания в расчетных сечениях образцов конструкций напряжений, соответствующих их проектным значениям или технической документации.

7.2.3 При определении проектных значений напряжений следует учитывать только постоянные и временные длительные нагрузки в их расчетных значениях с коэффициентом надежности, равным 1.

7.2.4 При приложении нагрузки необходимо обеспечить условие, чтобы при деформации образца грузы не смещались и не влияли на величину предела огнестойкости вследствие изменения условий теплообмена с окружающей средой.

Нагрузку устанавливают не менее чем за 30 мин до начала испытания и поддерживают (с точностью ) постоянной в течение всего времени испытания.

7.3 Расстановка термопар

7.3.1 Среднюю температуру на необогреваемой поверхности образцов ограждающих конструкций (стен, перегородок, перекрытий и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар. При этом одну термопару располагают в центре, а остальные - в середине прямых, соединяющих центр и углы проема печи.

7.3.2 В случае испытания образцов конструкций, состоящих из отдельных элементов, необходимо, чтобы их стыковые соединения не совпадали с местами установки термопар, предназначенных для измерения средней температуры необогреваемой поверхности.

7.3.3 Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности образцов ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей и т.п.).

При определении средней температуры необогреваемой поверхности эти точки в расчет не принимают.

Места расположения термопар для измерения температуры на необогреваемой поверхности образца ограждающей конструкции в любом случае должны располагаться не ближе 100 мм от края проема печи.

7.3.4 При испытании колонн, столбов, балок, элементов ферм и других стержневых конструкций термопары для измерения температуры материалов конструкции, при необходимости выполнения таких измерений, устанавливают в плоскостях, перпендикулярных продольной оси образца, расположенных не реже чем через 1 м друг от друга и не ближе 200 мм от внутренней поверхности печи. Одна из этих плоскостей должна быть расположена в центре длины образца.

7.4 Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; покрытия и перекрытия - снизу; балки - с трех сторон; колонны, столбы и фермы - с четырех или с трех сторон с учетом реальных условий использования и наихудшего ожидаемого результата испытания.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, многослойных несимметричных - с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

8 Предельные состояния

8.1 При испытании несущих и ограждающих конструкций различают следующие предельные состояния.

8.1.1 Потеря несущей способности R вследствие обрушения конструкции или возникновения предельных деформаций, значения которых приведены в приложении А .

8.1.2 Потеря теплоизолирующей способности I вследствие повышения температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С или любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания или более 220°С независимо от температуры конструкции до испытания.

8.1.3 Потеря целостности Е в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. В процессе испытания потерю целостности определяют при помощи тампона по ГОСТ 30247.0 , который помещают в металлическую рамку с держателем и подносят к местам, где ожидается проникновение пламени или продуктов горения, и в течение 10 с держат на расстоянии 20-25 мм от поверхности образца.

Время от начала испытания до воспламенения или возникновения тления со свечением тампона является пределом огнестойкости конструкции по признаку потери целостности.

Обугливание тампона, происходящее без воспламенения или без тления со свечением, не учитывают.

8.2 Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:

Для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов R;

Для наружных несущих стен и покрытий - потеря несущей способности R и целостности Е, для наружных ненесущих стен - Е;

Для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности I и целостности Е;

Для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности R, Е, I соответственно.

9 Оценка результатов испытания

Сталь является негорючим материалом, но, как и все материалы, используемые в строительстве, не может в течение длительного времени выдерживать воздействие высоких температур, возникающих внутри здания при пожаре. При температуре до 250 °С прочность мягкой малоуглеродистой стали увеличивается, затем этот предел постепенно снижается, и при 400 °С прочность стали вновь принимает свое первоначальное значение. Критическая температура, при которой происходит потеря несущей способности стальных конструкций при нормативной нагрузке, принимается равной 500 °С.

Нагрев металлических сооружений в условиях пожара зависит от множества факторов, среди которых основными являются интенсивность огня и способы теплозащиты металлоконструкций.

Конструкции без огнезащиты деформируются и разрушаются под воздействием напряжений от внешних нагрузок и температуры. Огнезащита, блокируя тепловой поток от огня к поверхности конструкций, предохраняет ее от быстрого прогревания и позволяет сохранить несущую способность в течение заданного времени.

Металлы отличаются высокой теплопроводностью, поэтому их огнезащита заключается в создании на поверхности металлических элементов конструкций теплоизолирующих экранов, выдерживающих воздействие огня или высоких температур.

Наличие теплоизолирующих экранов позволяет конструкциям при пожаре замедлить прогревание металла и сохранить свои функции в течение определенного времени, то есть до наступления критической температуры, при которой начинается потеря несущей способности.

Можно выделить следующие способы огнезащиты стальных конструкций:

Облицовка конструкций огнезащиты плитными материалами или установка огнезащитных экранов на относе (конструктивный способ);

Нанесение непосредственно на поверхность конструкций огнезащитных покрытий (обмазка, окраска, напыление и т.д.);

Комбинированный (композиционный) способ, представляющий собой рациональное сочетание различных способов огнезащиты.

Предельное состояние по огнестойкости строительных конструкций характеризуется:

Потерей несущей способности в результате обрушения или достижения предельных деформаций (R);

Потерей целостности в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя (Е);

Потерей теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции более чем на 140 °С (I).

Согласно п. 8.2 ГОСТ 30247.0-94 "Конструкции строительные. Методы испытания на огнестойкость", в зависимости от вида конструкций и их роли в устойчивости зданий и сооружений для нормирования пределов огнестойкости несущих и ограждающих конструкций, применяются следующие предельные состояния:

Для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов (R);

Для наружных несущих стен и покрытий - потеря несущей способности и целостности (R, E);

Для наружных ненесущих стен - только потеря целостности (Е);

Для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности и целостности (Е, I);

Для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности (R, Е, I).

Фактический предел огнестойкости стальных конструкций (см. табл. 1) при так называемом стандартном пожаре в зависимости от толщины элементов и величины действующих напряжений равен 6-15 минутам. Значение требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляет от 15 минут до 4 часов в зависимости от степени огнестойкости здания и типа конструкций. Однако большинство незащищенных стальных конструкций может удовлетворять минимальным требованиям по пределу огнестойкости лишь до 15 минут. Это позволяет сделать вывод о том, что область применения металлических конструкций ограничена по огнестойкости, так как не обеспечивается выполнение следующего условия безопасности:

где Пф - фактический предел огнестойкости конструкций;

Птр - требуемый (нормативный) предел огнестойкости.

Это условие безопасности является основным критерием обоснования необходимости огнезащиты металлических конструкций, то есть если значение показателя Пф больше или равно значению Птр, то огнезащита не требуется, а при Пф меньше Птр огнезащита обязательна.

Необходимые пределы огнестойкости строительных конструкций определяются исходя из требуемой степени огнестойкости зданий (сооружений) по таблице 4* СНиП 21-01-97".

Фактические пределы огнестойкости строительных конструкций можно установить двумя способами: огневыми испытаниями (REI) и расчетным методом (RI).

В соответствии с методикой расчета, изложенной в"Пособии по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов" (ЦНИИСК им. В.А. Кучеренко Госстроя СССР, Москва, 1985 г.), следует считать, что металлические конструкции не распространяют огонь (предел распространения огня здесь нужно приравнивать к нулю).

Предел огнестойкости несущих металлоконструкций зависит от приведенной толщины металла (6пр, мм) и собственного предела огнестойкости. Приведенная толщина металла вычисляется по формуле:

где F - площадь сечения (мм2), значение которой для проката фасонной стали берется по сортаменту (ГОСТу), а для составных (сварных) сечений определяется из расчета суммы площадей составляющих элементов конструкций;

Р - периметр обогреваемой поверхности конструкции (мм).

Обогреваемый периметр металлоконструкций определяется без учета поверхностей, примыкающих к плитам, настилам перекрытий и стенам при условии, что предел огнестойкости этих конструкций не ниже предела огнестойкости обогреваемой конструкции.

Для ферм и других статически определимых конструкций, состоящих из элементов различного сечения, приведенная толщина металла определяется по наименьшему значению для всех нагруженных элементов. При установлении предела огнестойкости стальных конструкций с огнезащитой по IV предельному состоянию (для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции) в качестве критической температуры следует принимать параметр 500 °С (Пособие по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов, п. 2.34).

Продлить время сохранения свойств металлов в условиях пожара (когда это необходимо и экономически оправдано) можно, используя следующие способы:

Выбор изделий из металлов, более стойких к воздействию пожара. Здесь преимущество отдается сталям (вместо алюминиевых сплавов), причем низколегированным, а не углеродистым. При выборе арматурных изделий следует предпочесть арматуру, не упрочненную наклепом и термообработкой;

Изготовление специальных металлических изделий, более стойких к нагреву;

Огнезащита металлоизделий (конструкций) посредством нанесения внешних теплоизоляционных слоев.

Огнезащита металлоконструкций путем обетонирования по армирующей стальной сетке, оштукатуривания или облицовки негорючими листовыми материалами значительно утяжеляет конструкции и является весьма трудоемкой, что делает ее в ряде случаев неприемлемой. В настоящее время все большее распространение получают новые менее трудоемкие методы с использованием огнезащитных составов, незначительно утяжеляющих конструкции. Наиболее технологичным является нанесение на поверхность объекта тонкослойных вспучивающихся огнезащитных составов (красок). Их огнезащитные свойства проявляются за счет увеличения толщины слоя и изменения теплофизических характеристик при тепловом воздействии в условиях пожара.

Вспучивающиеся огнезащитные краски (покрытия) представляют собой композиционные материалы, имеющие в своем составе полимерное вяжущее и наполнители (антипирены, газообразователи, жаростойкие вещества и стабилизаторы вспененного угольного слоя). При нагревании они разлагаются вокруг защищаемой конструкции с поглощением тепла, происходит выделение инертных газов и паров, которые замещают атмосферный кислород и блокируют конвективный перенос тепла к защищаемой поверхности, подавляя пламя вблизи слоя покрытия, уменьшают радиационный поток тепла и замедляют процесс горения. Вспучивающиеся покрытия содержат компоненты, которые являются источником образования вспененного угольного слоя, покрывающего поверхность конструкции. Этот слой постепенно закоксовывается, становится жестким.

Вспененный слой, отличаясь низкой теплопроводностью, выполняет функцию теплозащитного экрана, который замедляет распространение тепла по конструкции и ее прогрев, в результате чего обработанный объект значительно позже попадает в область критической температуры.

Сегодня на территории Российской Федерации для обеспечения огнезащиты строительных конструкций используется широкий спектр средств огнезащитных материалов (штукатурные составы, вспучивающиеся краски, обмазки, минераловатные плиты (маты), сухие штукатурки), имеющие различную огнезащитную эффективность и соответственно достоинства и недостатки.

Для существующих огнезащитных составов, красок и мастик, сертифицированных в соответствии с методикой, описанной в НПБ 236-97 "Огнезащитные составы для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности", определена лишь группа их огнезащитной эффективности.

© 2020 reabuilding.ru -- Портал о правильном строительстве