Световой прибор для дискотек своими руками. Новогодние схемы Простой трехканальный переключатель световых эффектов на микросхеме
На элементах DD1.1, DD1.2, DD1.3, собран генератор с тремя состояниями и на элементах DD1.4, DD2.1, DD2.2 три усилителя для светодиодов каждый из которых в определенный момент может иметь на выходе плюс или минус (логические "1” или "0”). Резисторы R1, R2, R3, и конденсаторы C1, C2, C, (не С3 потомучто забыл написать) определяют частоту, если у вас нет конденсаторов на 1000 микрофарад, можете поставить на 100 микрофарад, тогда придется увеличить сопротивление резисторов R1, R2, R3, например до 5,6 килоом. Как это работает. В самом начале, при включении питания через резистор с выхода одного из логических элементов начинает заряжаться один из конденсаторов (обычно тот, у которого меньше емкости, или на который приходится больше тока - сколько бы вы не подбирали конденсаторы и резисторы, одинаковых номиналов не существует). Когда напряжение на этом конденсаторе достигнет значения логического "1”, переключается следующий элемент, который заряжает другой конденсатор, таким же способом заряжает третий, а потом опять первый конденсаторы. На выходах всегда имеем один логический "0” и два логических "1” (две единицы потомучто недавно заряженный конденсатор еще разряжается, в то время когда следующий уже имеет на выходе "1”). Потом с этих же трех выходов логические состояния подаются на входы инвертирующих усилителей на DD1.4, DD2.1, DD2.2 и потом на светодиоды. Если по цветам все светодиоды соединены, так как на схеме, тогда всегда будут светиться два зеленых и один красный или два красных и один зеленый. Прикол этого эффекта в том, что два из светодиодов светятся через один и получаем, что те два светят со средней яркостью, а один в два раза ярче, потом один из тех который светил средне станет светить ярче, так как через него теперь светят другие два. Но словами в точности описать этот эффект было бы сложно, попробуйте собрать и сами оцените. Спасибо что собираете свои устройства по моим схемам! Автор - Леша левша, статью редактировал - АКА.
Светодиоды активно применяются как в схемах электронной техники так и в радиолюбительских самоделках. На принципиальных схемах светодиод обозначается, как и полупроводниковый диод в кружке.
Для того чтобы подключить светодиод в простейшем случае, необходимо плюсовой вывод блока питания 3-5 вольт подсоединить к аноду светодиода, а минусовой к катодному. А вот, в случае если напряжение источника питания выше, чем номинальное напряжение светодиода, то напрямую подключить к нему LED нельзя. Необходимо использовать, как минимум .
Во многих радиолюбительских конструкциях и разработках часто поднимается вопрос о индикации питания. Лампы накаливания устарели морально и физически, неонки хороши только в подсветках выключателей и розеток, поэтому отличным элементом индикации служит светодиод. Поэтому в этой статье изучим несколько простых вариантов подключения полупроводниковых световых индикаторов к сети 220 вольт.
Плодотворной основой конструкции считается дешевый фонарь с лампой накаливания, питаемой от батареи, состоящей из 2 гальванических частей типоразмера АА. В качестве источника света был применен сверхяркий диод белого цвета
Садовые аккумуляторных фонарики для ландшафтного дизайна, имеют форму грибка и обладают, отличными свойствами: днем он заряжался от солнечной батареи, встроенной в крышку, а в темное время суток светит из-под крышки. Рассмотрен вариант модернизации готового китайского фонарика, так и представлена аналогичная радиолюбительская самоделка
С помощью такого контроллера можно получить оригинальные цветовые композиции подсветки для интерьера вашего дома или квартиры. Контроллер для светодиодной ленты схема которого рассмотрена, достаточно прост и его сможет собрать даже начинающий радиолюбитель.
Эта несложная схема диммера для светодиодной лампы позволяет изменять ее яркость свечения. Основой схемы является линейный регулятор напряжения LM2941, что и позволило серьезно упростить конструкцию. Кроме того рассмотрен еще ряд схем, в том числе и с ШИМ управлением.
Первый вариант схемы бегущих огней на светодиодах, выполнен на довольно известном микроконтроллере ATtiny2313. В памяти прошивки имеется 12 возможных программ различных световых эффектов. Это и бегущие огни, бегущая тень, нарастающий огонь и т.п.
В другой конструкции эффект бегущего огня проявляется от плавного поочередного зажигания трех гирлянд собранных лампочек накаливания. Гирлянды нужно расположить таким образом, чтобы лампочки одной гирлянды чередовались с лампочками других
Если вы хотите внести световое разнообразие во внешний вид вашего велосипеда, существует множество путей для этого, один из них это подсветка для велосипеда.
Светодиодный куб |
Это такая радиолюбительская конструкция где по всему объему расположены светодиоды. С помощьюкуба можно генерировать различные световые и анимационные эффекты. Сложные схемы led кубов способны даже отображать различные объемные слова.
Другими словами это элементарный объемным монитор. Светодиодный куб схему которого мы рассмотрим можно применить для оформления шоу и презентаций. Думаю, многим начинающие радиолюбители захотят собрать своими руками такую LED конструкцию, но не все готовы сразу начать с программирования микроконтроллеров.
Управление двухцветным led можно построить при помощи микросхемы таймера КР1006ВИ1
Схема поочередно включает зеленый или красный цвет
Проблесковые маячки используются в электронных охранных домовых системах и на автомобилях как средства индикации, сигнализации и предупреждения. С развитием светодиодной техники появились и светодиодные маяки которые можно установить даже на велосипед и после этого вы не останетесь незамеченными на дороге в темное время суток.
Эти схемы на микроконтроллерах работают по принципу генератора случайных чисел, который имитирует случайное выбрасывание костей, но кроме того в одну из схем добавлен датчик движения.
Оформить витрину магазина или оживить маршрутное табло в маршрутке помогут схемы бегущих светодиодных строк. Возможностей их реализации и совмещения с различными дополнительными функциями великое множество, но рассмотрим лишь несколько простых вариантов реализации.
Cветодиодное сердце своими руками |
Неисчерпаемый потенциал светодиодов в очередной раз раскрылся в конструировании новых и модернизации уже имеющихся цветомузыкальных приставок. 30 лет назад пиком моды считалась цветомузыка, собранная из разноцветных лампочек на 220 вольт, подключенных к кассетному магнитофону. Сейчас ситуация изменилась и функцию магнитофона теперь выполняет любое мультимедийное устройство, а вместо ламп накаливания устанавливают сверхъяркие светодиоды или светодиодные ленты.
Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы:
- широкая цветовая гамма и более насыщенный свет;
- различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки);
- высокая скорость срабатывания;
- низкое энергопотребление.
Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.
Простейшая схема с одним светодиодом
Для начала следует разобраться с простой схемой цветомузыки, собранной на одном биполярном транзисторе, резисторе и светодиоде. Питание на неё можно подавать от источника постоянного тока напряжением от 6 до 12 вольт. Работает данная цветомузыка на одном транзисторе по принципу усилительного каскада с общим эмиттером. Возмущающее воздействие в виде сигнала с изменяющейся частотой и амплитудой поступает на базу VT1. Как только амплитуда колебаний превышает некоторое пороговое значение, транзистор открывается и светодиод вспыхивает.
Недостаток данной простейшей схемы состоит в том, что темп мигания светодиода полностью зависит от уровня звукового сигнала. Другими словами, полноценный цветомузыкальный эффект будет наблюдаться только на одном уровне громкости. Снижение громкости приведёт к редкому подмигиванию, а увеличение – к почти постоянному свечению.
Схема с одноцветной светодиодной лентой
Простейшая вышеприведенная цветомузыка на транзисторе может быть собрана с использованием светодиодной ленты в нагрузке. Для этого нужно увеличить напряжение питания до 12В, подобрать транзистор с наибольшим током коллектора превышающим ток нагрузки и пересчитать номинал резистора. Такая простейшая цветомузыка из светодиодной ленты прекрасно подойдёт начинающим радиолюбителям для сборки своими руками даже дома.
Простая трёхканальная схема
Избавиться от недостатков предыдущей схемы позволяет трёхканальный преобразователь звука. Самая простая схема цветомузыки с разделением звукового диапазона на три части показана на рисунке.
Питается она постоянным напряжением 9В и может засветить один или два светодиода в каждом канале. Состоит схема из трёх независимых усилительных каскадов, собранных на транзисторах КТ315 (КТ3102), в нагрузку которых включены светодиоды разного цвета. В качестве элемента для предварительного усиления можно использовать небольшой сетевой трансформатор понижающего типа.
Входной сигнал подаётся на вторичную обмотку трансформатора, который выполняет две функции: гальванически развязывает два устройства и усиливает звук с линейного выхода. Далее сигнал поступает на три параллельно включенных фильтра, собранных на базе RC-цепей. Каждый из них работает в определённой полосе частот, которая зависит от номиналов резисторов и конденсаторов. Низкочастотный фильтр пропускает звуковые колебания частотой до 300 Гц, о чем свидетельствует мигание красного светодиода. Через фильтр средних частот проходит звук в диапазоне 300-6000 Гц, что проявляется в мерцании синего светодиода. Высокочастотный фильтр пропускает сигнал, частота которого больше 6000 Гц, что соответствует зелёному светодиоду. Каждый фильтр оснащен подстроечным резистором. С их помощью можно задать равномерное свечение всех светодиодов, независимо от музыкального жанра. На выходе схемы все три отфильтрованных сигнала усиливаются транзисторами.
Если питание схемы осуществляется от низковольтного источника постоянного тока, то трансформатор можно смело заменить однокаскадным транзисторным усилителем.
Во-первых, гальваническая развязка теряет практический смысл. Во-вторых, трансформатор в несколько раз проигрывает схеме, показанной на рисунке, по массе, размерам и себестоимости. Схема простого усилителя звуковой частоты состоит из транзистора КТ3102, двух конденсаторов, отсекающих постоянную составляющую, и резисторов, обеспечивающих транзистору режим с общим эмиттером. С помощью подстроечного резистора можно добиться общего усиления слабого входного сигнала.
В случае когда необходимо усилить сигнал с микрофона, ко входу предыдущей схемы подключают электретный микрофон, подавая на него потенциал от источника питания. Схема двухкаскадного предварительного усилителя показана на рисунке.
В данном случае подстроечный резистор стоит на выходе первого усилительного каскада, что даёт больше возможностей для регулировки чувствительности. Конденсаторы С1-С3 пропускают полезную составляющую и отсекают постоянный ток. Для реализации подойдёт любой электретный микрофон, для нормальной работы которого достаточно смещения 1,5В.
Цветомузыка с RGB светодиодной лентой
Следующая схема цветомузыкальной приставки работает от 12 вольт и может устанавливаться в автомобиле. Она совместила в себе основные функции ранее рассмотренных схемотехнических решений и способна работать в режиме цветомузыки и светильника.
Первый режим достигается за счёт бесконтактного управления RGB-лентой при помощи микрофона, а второй – за счёт одновременного свечения красного, зелёного и синего светодиодов на полную мощность. Выбор режима осуществляется при помощи переключателя, размещенного на плате. Теперь остановимся подробно на том, как сделать цветомузыку, которая отлично подойдет даже для установки в авто, и какие детали для этого потребуются.
Структурная схема
Чтобы понять, как работает данная цветомузыкальная приставка, сначала рассмотрим её структурную схему. Она поможет проследить полный путь прохождения сигнала.
Источником электрического сигнала является микрофон, который преобразует звуковые колебания от фонограммы. Т.к. этот сигнал чрезмерно мал, его необходимо усилить при помощи транзистора или операционного усилителя. Далее следует автоматический регулятор уровня (АРУ), который удерживает колебания звука в разумных пределах и подготавливает его к дальнейшей обработке. Фильтры разделяют сигнал на три составляющие, каждая из которых работает только в одном частотном диапазоне. В конце остаётся только усилить подготовленный токовый сигнал, для чего используют транзисторы, работающие в ключевом режиме.
Принципиальная схема
На основании структурных блоков, можно перейти к рассмотрению принципиальной схемы. Её общий вид представлен на рисунке.
Для ограничения тока потребления и стабилизации питающего напряжения установлен резистор R12 и конденсатор С9. Для задания напряжения смещения микрофона установлены R1, R2, C1. Конденсатор C fc подбирается индивидуально к конкретной модели микрофона в процессе наладки. Он нужен для того, чтобы немного приглушить сигнал той частоты, которая превалирует в работе микрофона. Обычно снижают влияние высокочастотной составляющей.
Нестабильное напряжение автомобильной сети может оказывать влияние на работу цветомузыки. Поэтому наиболее правильно подключать самодельные электронные устройства через стабилизатор на 12В.
Звуковые колебания в микрофоне преобразуются в электрический сигнал и через С2 поступают на прямой вход операционного усилителя DA1.1. с его выхода сигнал следует на вход операционного усилителя DA1.2, снабженного цепью обратной связи. Сопротивления резисторов R5, R6 и R10, R11 задают коэффициент усиления DA1.1, DA1.2 равный 11. Элементы цепи ОС: VD1, VD2, C4, C5, R8, R9 и VT1 вместе с DA1.2 входят в состав АРУ. В момент возникновения на выходе DA1.2 сигнала слишком большой амплитуды транзистор VT1 открывается и через С4 замыкает входной сигнал на общий провод. Это приводит к мгновенному снижению напряжения на выходе.
Затем стабилизированный переменный ток звуковой частоты проходит через отсекающий конденсатор С8, после чего разделяется на три RC-фильтра: R13, C10 (НЧ), R14, C11, C12 (СЧ), R15, C13 (ВЧ). Чтобы цветомузыка на светодиодах светила достаточно ярко, нужно усилить выходной ток до соответствующего значения. Для ленты с потреблением до 0,5А на каждый канал подойдут транзисторы средней мощности типа КТ817 или импортный BD139 без монтажа на радиатор. Если собираемая светомузыка своими руками предполагает нагрузку около 1А, то транзисторам потребуется принудительное охлаждение.
В коллекторах каждого выходного транзистора (параллельно выходу) стоят диоды D6-D8, катоды которых объединены между собой и выведены на переключатель SA1 (White light). Второй контакт переключателя соединён с общим проводом (GND). Пока SA1 разомкнут, схема работает в режиме цветомузыки. При замыкании контактов переключателя все светодиоды в ленте зажигаются на полную яркость, образуя в сумме белый поток света.
Печатная плата и детали сборки
Для изготовления печатной платы понадобится односторонний текстолит размером 50 на 90 мм и готовый файл.lay, который можно скачать . Для наглядности плата показана со стороны радиоэлементов. Перед выводом на печать необходимо задать её зеркальное отображение. В слое М1 показаны 3 перемычки, размещаемые на стороне деталей.
Для сборки цветомузыки из светодиодной ленты своими руками понадобятся доступные и недорогие компоненты. Микрофон электретного типа, подойдет в защитном корпусе со старой аудио аппаратуры. Светомузыка собрана на микросхеме TL072 в DIP8 корпусе. Конденсаторы, независимо от типа, должны иметь запас по напряжению и быть рассчитаны на 16В или 25В. При необходимости конструкция платы позволяет установить выходные транзисторы на небольшие радиаторы. С краю запаивают клеммную колодку на 6 позиций для подачи питания, подключения RGB светодиодной ленты и переключателя. Полный перечень элементов приведен в таблице. В заключение хочется отметить, что количество выходных каналов в самодельной цветомузыкальной приставке можно увеличивать сколь угодно раз. Для этого нужно разбить весь частотный диапазон на большее количество секторов и пересчитать полосу пропускания каждого RC-фильтра. К выходам дополнительных усилителей подключить светодиоды промежуточных цветов: фиолетового, бирюзового, оранжевого. От такого усовершенствования цветомузыка своими руками станет только краше.
Приведенные схемы принадлежат сайту cxem.net
Читайте так же
Новогодние схемы – автоматы световых эффектов, которые легко собрать своими руками начинающему радиолюбителю
Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “
Время летит очень быстро. Не успеешь оглянуться – а на “носу” Новый год, пора подбивать итоги прожитого года, не стыдно ли, оглядываясь назад, за прожитые дни. Да и предстоящий праздник надо как-то разнообразить новыми новогодними самоделками
, собранными своими руками
на радость родным и близким.
Сегодня мы с вами рассмотрим несколько новогодних схем
автоматов световых эффектов
для украшения праздника, простых, не содержащих дефицитных деталей и легких в сборке.
Первая схема:
Миниатюрная елка с “бегущим огнем”
Такая елка на светодиодах станет украшением праздничного стола и обязательно порадует всех ваших друзей и знакомых:
На транзисторах VT1 и VT2 собран генератор прямоугольных импульсов, на транзисторах VT3 и VT4 – электронные ключи, которые коммутируют группы светодиодов. Светодиоды расположены на печатной плате в виде елки. Частота генерируемых импульсов зависит от номиналов сопротивлений R2, R3 и конденсаторов С1 и С2 (чем больше их номинал – тем меньше частота генератора).
Транзисторы VT3 и VT4 подключены к выходам генератора через токоограничительные резисторы R5 и R6 соответственно. Импульсы с генератора поочередно открывают транзисторы. Когда открыт транзистор VT3 – светятся светодиоды HL1-HL3, HL10-HL14, HL18, HL19. А когда открыт транзистор VT4 – HL4-HL9, HL15-HL17, HL20. Их переключение создает эффект бегущего огня. Питание осуществляется от батареи напряжением 9 вольт.
Все детали монтируют на односторонней печатной плате:
Детали применять можно любого типа, светодиоды – с маленьким током потребления, типа КИП.
Вторая схема.
Она не совсем вторая. На базе этой схемы, с использованием одной широкодоступной микросхемы, нескольких транзисторов и светодиодов, можно собрать большое количество разнообразных автоматов световых эффектов.
Такие автоматы световых эффектов
станут украшением новогоднего праздника, прекрасным новогодним подарком.
Основа этой схемы трехфазный генератор собранный на микросхеме К561ЛА7
(в крайнем случае ее можно заменить на К561ЛЕ5).
Что из себя представляет микросхема К561ЛА7
и ее полный аналог CD4011A
:
Схема трехфазного генератора на микросхеме К561ЛА7:
Сопротивления резисторов и емкость конденсаторов в такой схеме равны: R1=R2=R3, C1=C2=C3.
Работает генератор так. В момент включения питания все конденсаторы разряжены, на входах микросхемы 1-2, 5-6, 8-9 логический ноль, а на выходах 3, 4, 10 – логическая единица. Конденсаторы, через резисторы начинают заряжаться. Хотя номиналы резисторов и конденсаторов одинаковы, но из-за разброса параметров реальных деталей, какой-то конденсатор будет заряжаться быстрее. Допустим первым зарядился конденсатор С1, на входе 1-2 микросхемы появляется логическая единица, а на выходе 3 – соответственно логический ноль. Конденсатор С2, не успев зарядиться, начнет разряжаться через резистор R2. Тем временем, конденсатор С3 успеет зарядиться до логической единицы и естественно на выходе 10 появится логический ноль – конденсатор С1 начнет разряжаться через резистор R1. Дальнейший путь работы микросхемы вы можете проследить по аналогии сами. Таким образом на выходах 1-2-3 происходит периодическая смена логического нуля на логическую единицу. Теперь достаточно подключить к выходам 1-2-3 транзисторные ключи со светодиодами и мы получим автомат световых эффектов
:
Четвертый элемент – DD1.4 – не используется, и его входы (выводы 12-13) соединены с “+” питания.
На транзисторах VT1-VT3 собраны транзисторные ключи, каждый из которых включает и выключает соответствующую гирлянду светодиодов. Резисторы R4-R6 ограничивают ток через светодиоды. Буквами А-Г обозначены места подключения светодиодных гирлянд другого типа, для описываемых ниже автоматов.
Все резисторы любые, малогабаритные, транзисторы серии КТ315 с буквенными обозначениями А-Г. Светодиоды должны быть одного типа и одного цвета свечения. На приведенных ниже печатных платах аноды светодиодов должны припаиваться к квадратным контактным дорожкам.
Первый автомат световых эффектов
“Треугольник”.
Светодиоды на плате этого автомата расположены по контуру треугольника:
При работе генератора на его выходах последовательно формируются импульсы положительной полярности, которые поочередно открывают транзисторы, в результате чего создается эффект движения “огней” по периметру.
Второй автомат световых эффектов
“Пропеллер”.
Схема не отличается от предыдущей, а световой эффект “пропеллер” обеспечивается соответствующим расположением светодиодов на плате:
Экспериментируя с расположением светодиодов на плате, вы сможете получить множество других световых эффектов.
Третий автомат световых эффектов
“Снежинка”.
Устройство создает эффект падающей снежинки, который достигается последовательным зажиганием (с вращением) трех расположенных “концентрично” гирлянд из одноцветных светодиодов.
От предыдущих схем эта отличается количеством светодиодов в гирлянде (четыре вместо трех) и с отсутствием в связи с этим токоограничительных резисторов R4-R6:
Гирлянды подключаются к соответствующим точкам А-В на схеме.
Схема печатной платы:
Внешний вид автомата:
Четвертый автомат световых эффектов
“Бегущие огни”.
Эта схема ничем не отличается от схемы “Снежинки” – также по 4 светодиода в гирлянде, но расположены они по другому. Эта конструкция создает оригинальный эффект “бегущих огней” в виде вращающейся световой линейки:
Внешний вид “Бегущих огней”:
Пятый автомат световых эффектов
“Звезда”.
Автомат создает эффект испускания лучей звездой.
Отличие этой схемы от предыдущих – в числе светодиодов и способа их включения:
Чертеж печатной платы “Звезда”:
А вот так выглядит автомат световых эффектов “Звезда”:
Шестой автомат световых эффектов
“Бегущая букашка”.
Вспыхивающие последовательно светодиоды этого устройства создают эффект перебирания лапками насекомого, при этом его брюшко и головка светятся постоянно.
Схема гирлянды “Бегущая букашка”:
Гирлянды А-Б-В имитируют лапки, а гирлянда Г (светящаяся постоянно) имитирует брюшко и головку.
Печатная плата “Бегущей букашки”:
Внешний вид автомата световых эффектов “Бегущая букашка”:
Седьмой автомат световых эффектов
“Бегущая волна”.
Последовательные вспышки нескольких гирлянд, каждая из которых состоит из трех светодиодов, расположенных в виде обратной галочки, создает в этой конструкции “бегущей волны”.
Концертных программ, шоу и дискотек. Схема "светового ежа" показана на рисунке. Основа узла управления шаговым двигателем М2, вращающим рефлектор, — микроконтроллер PIC12C508A, в память программ которого с помощью программатора следует записать коды из таблицы. Все прошивки для МК вы можете скачать на форуме.
Сформированные контроллером сигналы поступают на обмотки шагового двигателя М2 через транзисторные ключи микросхемы ULN2004. Каждый ее выход снабжен защитным диодом, причем общий катод диодов соединен с выводом 9. Таким образом, обмотки двигателя зашунтированы диодами, подавляющими коммутационные выбросы напряжения. Программой предусмотрено пять различных скоростей и два направления вращения рефлектора. Различные сочетания этих параметров и создают световые эффекты. Если контакты выключателя SA1 замкнуты, смена сочетаний скорость/направление происходит периодически по программе. В противном случае (выключатель разомкнут) смена синхронизирована импульсами, поступающими на вывод 4 микросхемы DD1.
Формирователь импульсов в такт с ритмом музыкального произведения собран на микросхеме DA1. Каскад на ОУ DA1.1 усиливает принятый микрофоном BM1 звуковой сигнал музыкального сопровождения. Резистор R3 — регулятор усиления. Далее через фильтр R7C6R8C7 сигнал поступает на вход усилителя на ОУ DA1.2, охваченного АРУ (автоматической регулировкой усиления), поддерживающей амплитуду сигнала на выходе DA1.2 постоянной независимо от громкости музыки. Детектор АРУ собран на диоде VD5, фильтр — R12C8, исполнительный элемент — транзистор VT1. Амплитудным детектор на диоде VD6 с фильтром R16R17C14 и повторителем DA1.3 выделяют огибающую музыкального сигнала. Пороговое устройство на ОУ DA1.4 с узлом задержки повторного срабатывания превращает огибающую в прямоугольные импульсы, поступающие на вход GP3 микроконтроллера DD1.
Мощность трансформатора Т1 должна быть больше мощности лампы ЕL1 не менее чем на 20 Вт. Напряжение на вторичной обмотке этого трансформатора при подключенной лампе должно составлять 10-12 B. В качестве основной лампы EL1 пригодна любая осветительная мощностью до 100 Вт. Кроме мощности, лампы классифицируют по цветовой температуре, чем она ниже, тем "краснее” свет. Обычные лампы накаливания характеризуются сравнительно низкой цветовой температурой, поэтому лучи цветов, лежащих в синей области спектра, покажутся тусклыми. У галогенных ламп этот показатель выше, но срок службы меньше. Рекомендуется использовать галогенную лампу КГМ12-100-2 мощностью 100 Вт. Возможные замены - лампы КГМ12-100 или FSR12-100. В крайнем случае можно взять автомобильные лампы для противотуманных фар. Устанавливая лампу, следует учитывать, что ее спираль должна быть обращена к рефлектору светящейся поверхностью наибольшей площади, а центр этой поверхности — находиться на оптической оси прибора, обозначенной на рис. 1 штрих пунктирной линией. Ширина защитного экрана на 5 мм больше диаметра колбы лампы. Так как рабочая температура колбы галогенной лампы EL1 превышает 250 °С, без принудительной вентиляции в замкнутом внутреннем пространстве "ежа" лампа может перегреться вплоть до размягчения и деформации колбы. Под воздействием высокой температуры нередко разрушается панель лампы, отказывают электронные компоненты блока управления двигателем. Для охлаждения прибора применен вентилятор от блока питания компьютера.
Приводом рефлектора служит шаговый двигатель ДШР-39. Возможная замена — ПБМГ-200, применявшийся в приводах пятидюймовых гибких магнитных дисков для компьютеров. Линза-объектив прибора — двукратная лупа с фокусным расстоянием 192 мм. Подойдет и другая диаметром не менее 100 мм и с фокусным расстоянием 150...300 мм. Приблизительно определить последнее можно, сфокусировав на какой-либо негорючей поверхности изображение солнечного диска. Расстояние от линзы до поверхности и есть фокусное. На фото ниже вы видите используемую мной для светового прибора лупу.
Корпус "светового ежа" делают из любого листового металла. Пластмассу, фанеру и другие материалы с плохой теплопроводностью и термостойкостью применять не рекомендуется. Диаметр отверстия под линзу на 5 мм меньше ее диаметра. Линзу крепят по периметру несколькими зажимами.
Налаживание узла управления начинают с проверки напряжения на выходах интегральных стабилизаторов DA2 (9 В) и DA3 (5 В). Замкнув выключатель SA1, с помощью осциллографа проверяют наличие прямоугольных импульсов периодически изменяющейся частоты на выводах 2, 3, 5 и 6 микроконтроллера DD1. Если их нет, микроконтроллер неисправен или неправильно запрограммирован. Аналогичные импульсы, но амплитудой приблизительно 12 В, должны быть на выводах 14,13,11,10 микросхемы DD2. Если на одном из них импульсов нет, а напряжение равно нулю, причиной может быть обрыв обмотки двигателя М2. Затем включают музыку с басами - барабанами. На экране осциллографа, подключенного к выходу ОУ DD1.1 (вывод 6), должна быть видна осциллограмма музыкального сигнала, амплитуду которого регулируют с помощью подстроечного резистора R3. При ее десятикратном изменении амплитуда сигнала на выходе DD1.2 (вывод 14) должна оставаться приблизительно равной 3 В. В противном случае необходимо проверить исправность транзистора VT1 и связанных с ним элементов. Постоянный уровень пару вольт на выходе DA1.3 во время звучания музыки должен сопровождаться всплесками в такт сильной доле произведения. Напряжение на выводе 6 DA1.4 — приблизительно 4 В — немного изменяется в зависимости от характера музыки.
Остается проверить наличие прямоугольных положительных импульсов на выходе DA1.4 (вывод 7). Их длительность зависит от параметров цепи C16 R23 и должна составлять 100 мс. Устранить пропуски или несвоевременную выдачу импульсов удается подборкой номинала резистора R19. Не буду точно утверждать, что использовал контроллер PIC12C508, не вспомню уже, но что использовал PIC12C508A и PIC12C509A - это 100%. Использовал программатор EXTRA PIC - схема на форуме. Прошивал в ICProg. Никаких изменений в исходник не вносил. Указывал в программе именно тот контроллер, который стоит в постельке. Приборы работают в обоих режимах. Видеоролик работы самодельного дискотечного прибора смотрите тут:
От встроенной программы - отрабатывают прошитую программу. А от музыки - просто без музыки останавливается, а при музыке запускается та-же встроенная программа. Конструкцию собрал и испытал: Romick_Калуга