Режимы сверления стали. Выбор рационального режима резания при сверлении

Главная / Ремонт

Лабораторная работа № 6

Расчёт режимов резания при сверлении

Цель работы: научиться рассчитывать наиболее оптимальные режимы резания при сверлении по аналитическим формулам.

1. Глубина резания t , мм. При сверлении глубина резания t = 0,5 D , при рассверливании, зенкеровании и развертывании t = 0,5 (D d ) ,

где d – начальный диаметр отверстия;

D – диаметр отверстия после обработки.

2. Подача s , мм/об. При сверлении отверстий без ограничивающихся факторов выбираем максимально допустимую по прочности сверла подачу (табл.24). При рассверливании отверстий подача, рекомендованная для сверления, может быть увеличена до 2 раз. При наличии ограничивающих факторов подачи при сверлении и рассверливании равны. Их определяют умножением табличного значения подачи на соответствующий поправочный коэффициент, приведенный в примечании к таблице. Полученные значения корректируем по паспорту станка (приложение 3). Подачи при зенкеровании приведены в табл. 25, а при развертывании – в табл.26.

3. Скорость резания v р , м/мин. Скорость резания при сверлении

https://pandia.ru/text/80/138/images/image003_138.gif" width="128" height="55">

Значения коэффициентов С v и показателей степени m , x , y , q приведены для сверления в табл.27, для рассверливания, зенкерования и развертывания – в табл. 28, а значения периода стойкости Т – табл. 30.

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

Кv = Кмv Киv Кιv ,

где Кмv - коэффициент на обрабатываемый материал (см. табл. 1, 3, 7, 8);

Киv – коэффициент на инструментальный материал (см. табл. 4);

Кιv, - коэффициент учитывающий глубину сверления (табл. 29). При рассверливании и зенкеровании литых или штампованных отверстий вводится дополнительно поправочный коэффициент Кп v (см. табл. 2).

4. Частоту вращения n , об/мин, рассчитывают по формуле

https://pandia.ru/text/80/138/images/image005_96.gif" width="180" height="51">

5. Крутящий момент M кр , Н·м, и осевую силу Ро , Н, рассчитывают по формулам:

при сверлении

Мкр = 10 См Dqsy Кр;

Р0 = 10 Ср Dqsy Кр;

при рассверливании и зенкеровании

Мкр = 10 См Dq tx sy Кр;

Р0 = 10 Ср tx sy Кр;

Значения См и Ср и показателей степени q , x , y приведены в табл. 31.

Коэффициент Kp , учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением

Кр = Кмр.

Значения коэффициента Кмр приведены для стали и чугуна в табл. 11, а для медных и алюминиевых сплавов – в табл. 10.

Для определения крутящего момента при развертывании каждый зуб инструмента можно рассматривать как расточной резец. Тогда при диаметре инструмента D крутящий момент, H·м,

;

здесь sz – подача, мм на один зуб инструмента, равная s/z ,

где s – подача, мм/об, z – число зубьев развертки. Значения коэффициентов и показателей степени см. в табл. 22.

6. Мощность резания Ne , кВт , определяют по формуле:

где n пр - частота вращения инструмента или заготовки, об/мин,

Мощность резания не должна превышать эффективную мощность главного привода станка N е < N э (, где N дв - мощность двигателя, h - кпд станка). Если условие не выполняется и N е > N э , снижают скорость резания. Определяют коэффициент перегрузки рассчитывают новое меньшее значение скорости резания https://pandia.ru/text/80/138/images/image011_47.gif" width="75" height="25 src=">, где Рост – осевая сила станка.

7. Основное время То , мин, рассчитывают по формуле ,

где L длина рабочего хода инструмента, мм;

Длина рабочего хода, мм, равна L = l + l 1 + l 2 ,

где l – длина обрабатываемой поверхности, мм;

l 1 и l 2 – величины врезания и перебега инструмента, мм (см. приложение 4).

Таблица 1

Поправочный коэффициент К мv , учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания.

Обрабатываемый

материал

Расчетная формула

Серый чугун

Ковкий чугун

Примечания: 1. σв и НВ – фактические параметры. Характеризующие обрабатываемый материал, для которого рассчитывается скорость резания.

2. Коэффициент Кr характеризующий группу стали по обрабатываемости, и показатель степени nv см. в табл.7.

Таблица 2

Поправочный коэффициент Кп v , учитывающий влияние состояния поверхности заготовки на скорость резания.

Таблица 3

Поправочный коэффициент Км v , учитывающий влияние физико-механических свойств медных и алюминиевых сплавов на скорость резания.

Таблица 4

Поправочный коэффициент Киv , учитывающий влияние инструментального материала на скорость резания.

Обрабатываемый

материал

Значения коэффициента Ки v в зависимости от марки

инструментального материала

Сталь конструкционная

Коррозионно-стойкие и жаропрочные стали

Сталь закаленная

Н 35 – 50

Н 51 – 62

Серый и ковкий чугун

Сталь, чугун, медные и алюминиевые сплавы

Работа по сверлению отверстий в металле, в зависимости от вида отверстий и свойств металла, может выполняться разным инструментом и с использованием различных приёмов. О способах сверления, инструментарии, а также о технике безопасности при выполнении этих работ мы хотим вам рассказать.

Сверление отверстий в металле может понадобиться при ремонте инженерных систем, бытовой техники, автомобиля, создании конструкций из листовой и профильной стали, конструировании поделок из алюминия и меди, при изготовлении плат для радиоаппаратуры и во многих других случаях. Важно понимать, какой инструмент нужен для каждого вида работ, чтобы отверстия получились нужного диаметра и в строго намеченном месте, и какие меры безопасности помогут избежать травм.

Инструменты, приспособления, сверла

Основными инструментами для сверления являются ручные и электрические дрели, а также, при возможности, сверлильные станки. Рабочий орган этих механизмов — сверло — может иметь различную форму.

Различают сверла:

  • спиральные (наиболее распространённые);
  • винтовые;
  • коронки;
  • конусные;
  • перовые и т. д.

Производство свёрл различной конструкции нормируется многочисленными ГОСТами. Свёрла до Ø 2 мм не имеют маркировку, до Ø 3 мм — на хвостовике указано сечение и марка стали, большие диаметры могут содержать дополнительную информацию. Для получения отверстия определённого диаметра нужно взять сверло на несколько десятых миллиметра меньше. Чем лучше заточено сверло, тем меньше разница между этими диаметрами.

Свёрла отличаются не только диаметром, но и длиной — производятся короткие, удлинённые и длинные. Важной информацией является и предельная твёрдость обрабатываемого металла. Хвостовик свёрл может быть цилиндрическим и коническим, что следует иметь в виду при подборе сверлильного патрона или переходной втулки.

1. Сверло с цилиндрическим хвостовиком. 2. Сверло с коническим хвостовиком. 3. Сверло с мечиком для резьбы. 4. Центровое сверло. 5. Сверло с двумя диаметрами. 6. Центровочное сверло. 7. Коническое сверло. 8. Коническое многоступенчатое сверло

Для некоторых работ и материалов требуется выполнение специальной заточки. Чем твёрже обрабатываемый металл, тем острее должна быть заточена кромка. Для тонколистового металла обычное спиральное сверло может не подойти, понадобится инструмент со специальной заточкой. Подробные рекомендации для различного типа свёрл и обрабатываемых металлов (толщина, твёрдость, тип отверстия) достаточно обширны, и в этой статье мы их рассматривать не будем.

Различные типы заточки сверла. 1. Для жёсткой стали. 2. Для нержавеющей стали. 3. Для меди и медных сплавов. 4. Для алюминия и алюминиевых сплавов. 5. Для чугуна. 6. Бакелит

1. Стандартная заточка. 2. Свободная заточка. 3. Разбавленная заточка. 4. Тяжёлая заточка. 5. Раздельная заточка

Для закрепления деталей перед сверлением используют тиски, упоры, кондукторы, уголки, прихваты с болтами и другие приспособления. Это не только требование безопасности, так на самом деле удобнее, и отверстия получаются более качественные.

Для снятия фасок и обработки поверхности канала пользуются зенковкой цилиндрической или конической формы, а для наметки точки под сверление и чтобы сверло «не соскочило» — молоток и кернер.

Совет! Лучшими свёрлами до сих пор считаются выпущенные в СССР — точное следование ГОСТ по геометрии и составу металла. Хороши и немецкие Ruko с титановым напылением, а также свёрла от Bosch — проверенное качество. Хорошие отзывы о продукции Haisser — мощные, как правило, большого диаметра. Достойно показали себя свёрла «Зубр», особенно серии «Кобальт».

Режимы сверления

Очень важно правильно закрепить и направить сверло, а также выбрать режим резания.

При выполнении отверстий в металле сверлением важными факторами являются количество оборотов сверла и усилие на подачу, прилагаемое к сверлу, направленное по его оси, обеспечивающее заглубление сверла при одном обороте (мм/об). При работе с различными металлами и свёрлами рекомендуются различные режимы резания, причём чем твёрже обрабатываемый металл и чем больше диаметр сверла, тем меньше рекомендуемая скорость резания. Показатель правильного режима — красивая, длинная стружка.

Воспользуйтесь таблицами, чтобы правильно выбрать режим и не затупить сверло преждевременно.

Подача S 0 , мм/об Диаметр сверла D, мм
2,5 4 6 8 10 12 146 20 25 32
Скорость резания v, м/мин
При сверлении стали
0,06 17 22 26 30 33 42
0,10 17 20 23 26 28 32 38 40 44
0,15 18 20 22 24 27 30 33 35
0,20 15 17 18 20 23 25 27 30
0,30 14 16 17 19 21 23 25
0,40 14 16 18 19 21
0,60 14 15 11
При сверлении чугуна
0,06 18 22 25 27 29 30 32 33 34 35
0,10 18 20 22 23 24 26 27 28 30
0,15 15 17 18 19 20 22 23 25 26
0,20 15 16 17 18 19 20 21 22
0,30 13 14 15 16 17 18 19 19
0,40 14 14 15 16 16 17
0,60 13 14 15 15
0,80 13
При сверлении алюминиевых сплавов
0,06 75
0,10 53 70 81 92 100
0,15 39 53 62 69 75 81 90
0,20 43 50 56 62 67 74 82 - -
0,30 42 48 52 56 62 68 75
0,40 40 45 48 53 59 64 69
0,60 37 39 44 48 52 56
0,80 38 42 46 54
1,00 42

Таблица 2. Поправочные коэффициенты

Таблица 3. Обороты и подача при различном диаметре сверла и сверлении углеродистой стали

Виды отверстий в металле и способы их сверления

Виды отверстий:

  • глухие;
  • сквозные;
  • половинчатые (неполные);
  • глубокие;
  • большого диаметра;
  • под внутреннюю резьбу.

Отверстия под резьбу требуют определения диаметров с допусками, установленными в ГОСТ 16093-2004. Для распространённых метизов расчёт приведен в таблице 5.

Таблица 5. Соотношение метрической и дюймовой резьбы, а также подбор размера отверстия для засверливания

Метрическая резьба Дюймовая резьба Трубная резьба
Диаметр резьбы Шаг резьбы, мм Диаметр отверстия под резьбу Диаметр резьбы Шаг резьбы, мм Диаметр отверстия под резьбу Диаметр резьбы Диаметр отверстия под резьбу
мин. макс. мин. макс.
М1 0,25 0,75 0,8 3/16 1,058 3,6 3,7 1/8 8,8
М1,4 0,3 1,1 1,15 1/4 1,270 5,0 5,1 1/4 11,7
М1,7 0,35 1,3 1,4 5/16 1,411 6,4 6,5 3/8 15,2
М2 0,4 1,5 1,6 3/8 1,588 7,7 7,9 1/2 18,6
М2,6 0,4 2,1 2,2 7/16 1,814 9,1 9,25 3/4 24,3
М3 0,5 2,4 2,5 1/2 2,117 10,25 10,5 1 30,5
М3,5 0,6 2,8 2,9 9/16 2,117 11,75 12,0
М4 0,7 3,2 3,4 5/8 2,309 13,25 13,5 11/4 39,2
М5 0,8 4,1 4,2 3/4 2,540 16,25 16,5 13/8 41,6
М6 1,0 4,8 5,0 7/8 2,822 19,00 19,25 11/2 45,1
М8 1,25 6,5 6,7 1 3,175 21,75 22,0
М10 1,5 8,2 8,4 11/8 3,629 24,5 24,75
М12 1,75 9,9 10,0 11/4 3,629 27,5 27,75
М14 2,0 11,5 11,75 13/8 4,233 30,5 30,5
М16 2,0 13,5 13,75
М18 2,5 15,0 15,25 11/2 4,333 33,0 33,5
М20 2,5 17,0 17,25 15/8 6,080 35,0 35,5
М22 2,6 19,0 19,25 13/4 5,080 33,5 39,0
М24 3,0 20,5 20,75 17/8 5,644 41,0 41,5

Сквозные отверстия

Сквозные отверстия пронизывают заготовку полностью, образуя в ней проход. Особенностью процесса является защита поверхности верстака или столешницы от выхода сверла за пределы заготовки, что может повредить и само сверло, а также снабдить заготовку «заусенцем» — гартом. Чтобы этого избежать, применяют следующие способы:

  • используют верстак с отверстием;
  • подкладывают под деталь прокладку из дерева или «сэндвич» — дерево+металл+дерево;
  • подкладывают под деталь металлический брусок с отверстием для свободного прохода сверла;
  • снижают скорость подачи на последнем этапе.

Последний способ обязателен при высверливании отверстий «по месту», чтобы не повредить близко расположенные поверхности или детали.

Отверстия в тонколистовом металле вырезаются перовыми свёрлами, потому как спиральное сверло повредит края заготовки.

Глухие отверстия

Такие отверстия выполняются на определённую глубину и не пронизывают заготовку насквозь. Отмерить глубину можно двумя способами:

  • ограничивая длину сверла втулочным упором;
  • ограничивая длину сверла патроном с регулируемым упором;
  • пользуясь линейкой, закреплённой на станке;
  • комбинацией способов.

Некоторые станки снабжены системой автоматической подачи на заданную глубину, после чего механизм останавливается. В процессе сверления может потребоваться несколько раз остановить работу, чтобы удалить стружку.

Отверстия сложной формы

Отверстия, расположенные на краю заготовки (половинчатые) можно выполнять, соединив гранями и зажав тисками две заготовки или заготовку и прокладку и высверлив полное отверстие. Прокладка должна быть выполнена из такого же материала, что и обрабатываемая заготовка, иначе сверло будет «уходить» в сторону наименьшего сопротивления.

Сквозное отверстие в уголке (профильный металлопрокат) выполняют, зафиксировав заготовку в тисках и используя деревянную прокладку.

Сложнее выполнить сверление цилиндрической заготовки по касательной. Процесс разделяется на две операции: подготовка перпендикулярной отверстию площадки (фрезеровка, зенковка) и собственно сверление. Высверливание отверстий в поверхностях, расположенных под углом, также начинают с подготовки площадки, после чего вставляют деревянную прокладку между плоскостями, образуя треугольник, и сверлят отверстие сквозь угол.

Полые детали просверливают, заполнив полость пробкой из древесины.

Отверстия с уступами получают с использованием двух техник:

  1. Рассверливание. Отверстие высверливается на всю глубину сверлом наименьшего диаметра, после чего на заданную глубину рассверливают свёрлами диаметрами от меньшего к большему. Достоинство метода — хорошо отцентрованное отверстие.
  2. Уменьшение диаметра. На заданную глубину высверливается отверстие максимального диаметра, затем свёрла меняются с последовательным уменьшением диаметра и углублением отверстия. При этом методе легче контролировать глубину каждой ступени.

1. Рассверливание отверстия. 2. Уменьшение диаметра

Отверстия большого диаметра, кольцевое высверливание

Получение отверстий большого диаметра в массивных заготовках, толщиной до 5-6 мм, дело трудоёмкое и затратное. Относительно небольшие диаметры — до 30 мм (максимум 40 мм) можно получить, используя конусные, а лучше ступенчато-конусные свёрла. Для отверстий большего диаметра (до 100 мм) понадобятся полые биметаллические коронки или коронки с твердосплавными зубьями с центровочным сверлом. Причём мастера традиционно в этом случае рекомендуют Bosch, в особенности на твёрдом металле, например, стали.

Такое кольцевое высверливание менее энергозатратное, но может быть более затратным финансово. Помимо свёрл важна мощность дрели и возможность работы на самых низких оборотах. Причём чем толще металл, тем сильнее захочется выполнить отверстие на станке, а при большом количестве отверстий в листе толщиной более 12 мм лучше сразу искать такую возможность.

В тонколистовой заготовке отверстие большого диаметра получают с помощью узкозубых коронок или фрезой, закреплённой на «болгарке», но края в последнем случае оставляют желать лучшего.

Глубокие отверстия, СОЖ

Иногда требуется выполнить глубокое отверстие. В теории, это такое отверстие, длина которого в пять раз больше диаметра. На практике, глубоким называют сверление, требующее принудительного периодического удаления стружки и применения СОЖ (смазочно-охлаждающих жидкостей).

В сверлении СОЖ нужны в первую очередь для снижения температуры сверла и заготовки, которые нагреваются от трения. Поэтому при получении отверстий в меди, которая обладает высокой теплопроводностью и сама способна отводить тепло, СОЖ можно не применять. Относительно легко и без смазки сверлится чугун (кроме высокопрочных).

На производстве в качестве СОЖ применяют индустриальные масла, синтетические эмульсии, эмульсолы и некоторые углеводороды. В домашних мастерских можно использовать:

  • технический вазелин, касторовое масло — для мягких сталей;
  • хозяйственное мыло — для алюминиевых сплавов типа Д16Т;
  • смесь керосина с касторовым маслом — для дюралюминия;
  • мыльную воду — для алюминия;
  • скипидар, разведённый спиртом — для силумина.

Универсальная охлаждаемая жидкость может быть приготовлена самостоятельно. Для этого нужно растворить 200 г мыла в ведре воды, добавить 5 ложек машинного масла, можно отработанного, и прокипятить раствор до получения мыльной однородной эмульсии. Некоторые мастера для снижения трения используют свиное сало.

Обрабатываемый материал Смазочно-охлаждающая жидкость
Сталь:
углеродистая Эмульсия. Осернённое масло
конструкционная Осернённое масло с керосином
инструментальная Смешанные масла
легированная Смешанные масла
Чугун ковкий 3-5%-ная эмульсия
Чугунное литье Без охлаждения. 3-5%-ная эмульсия. Керосин
Бронза Без охлаждения. Смешанные масла
Цинк Эмульсия
Латунь Без охлаждения. 3-5%-ная эмульсия
Медь Эмульсия. Смешанные масла
Никель Эмульсия
Алюминий и его сплавы Без охлаждения. Эмульсия. Смешанные масла. Керосин
Нержавеющие, жаропрочные сплавы Смесь из 50% осернённого масла, 30% керосина, 20% олеиновой кислоты (или 80% сульфофрезола и 20% олеиновой кислоты)
Волокнит, винипласт, оргстекло и так далее 3-5%-ная эмульсия
Текстолит, гетинакс Обдувка сжатым воздухом

Глубокие отверстия могут быть выполнены сплошным и кольцевым сверлением, причём в последнем случае центральный стержень, образованный вращением коронки, выламывают не целиком, а частями, ослабив его дополнительными отверстиями малого диаметра.

Сплошное сверление выполняется в хорошо зафиксированной заготовке спиральным сверлом, в каналы которого подается СОЖ. Периодически, не останавливая вращение сверла, нужно его извлекать и очищать полость от стружки. Работа спиральным сверлом выполняется поэтапно: сначала берут короткое и надсверливают отверстие, которое затем заглубляют сверлом соответствующего размера. При значительной глубине отверстия желательно пользоваться направляющими кондукторными втулками.

При регулярном высверливании глубоких отверстий можно рекомендовать приобретение специального станка с автоматической подачей СОЖ к сверлу и точной отцентровкой.

Сверление по разметке, шаблону и кондуктору

Сверлить отверстия можно по выполненной разметке или без неё — с применением шаблона или кондуктора.

Разметка выполняется кернером. Ударом молотка намечается место для острия сверла. Фломастером тоже можно отметить место, но отверстие нужно ещё и для того, чтобы острие не сдвигалось от намеченной точки. Работа выполняется в два этапа: предварительное сверление, контроль отверстия, окончательное сверление. Если сверло «ушло» от намеченного центра, узким зубилом делаются насечки (канавки), направляющие острие в заданное место.

Для определения центра цилиндрической заготовки пользуются квадратным кусочком жести, согнутым под 90° так, чтобы высота одного плеча составляла приблизительно один радиус. Прикладывая уголок с разных сторон заготовки, проведите карандашом вдоль края. В результате у вас образуется область вокруг центра. Найти центр можно по теореме — пересечением перпендикуляров от двух хорд.

Шаблон нужен при выполнении серии однотипных деталей с несколькими отверстиями. Им удобно пользоваться для пачки тонколистовых заготовок, соединённых струбциной . Так одновременно можно получить несколько просверленных заготовок. Вместо шаблона иногда используют чертёж или схему, например, при изготовлении деталей для радиоаппаратуры.

Кондуктором пользуются, когда очень важна точность выдерживания расстояний между отверстиями и строгая перпендикулярность канала. При сверловке глубоких отверстий или при работе с тонкостенными трубками кроме кондуктора могут применяться направляющие, фиксирующие положение дрели относительно поверхности металла.

При работе с электроинструментом важно помнить о безопасности человека и не допускать преждевременного износа инструмента и возможного брака. В связи с этим мы собрали некоторые полезные советы:

  1. Перед работой нужно проверить крепления всех элементов.
  2. Одежда при работе на станке или с электродрелью не должна быть с элементами, способными попасть под действие вращающихся частей. Глаза от стружки защитите очками.
  3. Сверло при приближении к поверхности металла должно уже вращаться, иначе оно быстро затупится.
  4. Вынимать сверло из отверстия нужно, не выключая дрель, по возможности снижая обороты.
  5. Если сверло не углубляется в металл, значит, его твёрдость ниже, чем у заготовки. Повышенную твёрдость у стали можно выявить, проведя по образцу напильником — отсутствие следов свидетельствует о повышенной твёрдости. В этом случае сверло нужно выбирать из твёрдого сплава с присадками и работать на низких оборотах с небольшой подачей.
  6. Если сверло маленького диаметра плохо закрепляется в патроне, намотайте на его хвостовик несколько оборотов латунной проволоки, увеличив диаметр для захвата.
  7. Если поверхность заготовки полированная, наденьте фетровую шайбу на сверло, чтобы гарантировано не нанести царапины даже при соприкосновении с патроном дрели. При закреплении заготовок из полированной или хромированной стали, используйте прокладки из ткани или кожи.
  8. При изготовлении глубоких отверстий прямоугольный кусочек пенопласта, насаженный на сверло, может служить измерителем и одновременно, вращаясь, сдувать мелкую стружку.

В процессе резания сверло испытывает сопротивление со стороны обрабатываемого материала. На каждую точку режущей кромки действуют силы сопротивления. Заменим их равнодействующей силой, приложенной к точке А на расстоянии, примерно равном D /4 от оси сверла. Последнюю можно разложить на три составляющие силы Р x , Р у и Р z (рис.72.)

Рис. 72. Силы, действующие на сверло

Сила сопротивления Р х направлена вдоль оси сверла. В этом же направлении действует сила Р п на поперечную кромку, сила трения Р т ленточки о поверхность отверстия, cилы сопротивления, действующие на сверло вдоль ее оси, на ось X заменим равнодействующей силой Р 0 , которая называется осевой силой или силой подачи. Она преодолевается механизмом подачи станка. Последний должен передать на шпиндель станка осевую силу Р" 0 , способную преодолеть силу Р 0 . Максимальная осевая сила, допускаемая механизмом подачи станка, приводится в его паспорте.

Формулы для подсчета осевой силы и момента при сверлении:

Определение силы Р 0 и момента М кр производится по эмпирическим формулам, полученным экспериментальным путём. Для сверл из инструментальных сталей при обработке стальных и чугунных деталей они имеют следующий вид:

; , кГс·мм – при сверлении;

; , кГс·мм при рассверливании.

где: С р и С м – коэффициенты, зависящие от обрабатываемого металла, формы заточки сверла и условий резания;

z p , x p , y p , z M , x M и y M – степени влияния диаметра сверла D , глубины резания t , подачи s на осевую силу P 0 и крутящий момент при сверлении М ;

K p и K M – поправочные коэффициенты на изменённые условия сверления;

Радиальные силы Р у , разнонаправленные, уравновешиваются (SР у = 0). Сила Р z создает момент сопротивления резанию М на главных режущих кромках, а сила Р т ’, касательная к ленточке, - момент трения на ней (им обычно пренебрегают).

Относительное влияние элементов сверла на силу резания и момент кручения при сверлении приведены в таблице 16.

Таблица 16. Влияние элементов сверла на осевую силу P 0 икрутящиймоментМ

Момент сопротивления резанию M рез преодолевается механизмом главного движения, т. е. крутящим моментом на шпинделе станка М кр . На каждой ступени шпинделя станка мощность N шп постоянна, момент М кр переменный. Он зависит от частоты вращения (числа оборотов) п на данной ступени и определяется:

М кр = 716200·1,36·() кГс мм ; N шп = N дв ·h , кВт ,

М кр = 974000·() кГс мм .

Зная момент сопротивления М , можно определить эффективную мощность N э затрачиваемую на резание при сверлении,

Мощность на подачу сверла составляет около 1 % от мощности и в расчетах не учитывается. По мощности определяют мощность, которую должен иметь электродвигатель станка для обеспечения заданного процесса резания:

, кВт

Станок пригоден для заданных условий сверления, если N шп > N e .

6.4. Влияние различных факторов на осевую силу и момент при сверлении. На осевую силу Р 0 и момент сопротивления резанию М влияют свойства обрабатываемого материала, геометрические параметры сверла, элементы среза (диаметр, подача) и др.

6.4.1. Свойства обрабатываемого материала . Чем выше предел прочности σ в и твердость НВ материала, тем больше его сопротивление резанию, тем выше значения Р 0 и М . Для сверл из быстрорежущей стали получены экспериментально следующие зависимости:

, и - для стали;

, и - для чугуна.

где: С р и С м – коэффициенты, зависящие от условий резания.

6.4.2. Геометрические параметры сверла . С увеличением угла w осевая сила Р 0 и момент М уменьшаются в связи с увеличением передних углов γ х на главных режущих кромках и облегчением отвода стружки. Угол j , (2j ) влияет на составляющие силы резания и момент по аналогии с точением: при уменьшении угла осевая сила Р 0 уменьшается, а тангенциальная Р z увеличивается, тем самым увеличивается и М . С уменьшением угла 2j сопротивление резанию в связи с увеличением γ х уменьшается, но одновременно увеличивается ширина среза и уменьшается его толщина. Последнее ведет к росту деформации (тонкие стружки деформируются полнее) и, следовательно, росту силы Р x и момента М . Угол наклона поперечной кромки d > 90° (см. рис. 72) и это значительно увеличивает осевую силу Р 0 . Ранее было отмечено, что сила, действующая на поперечную кромку Рп = 0,55Р 0 . Для ее снижения уменьшают длину кромки путем подточки, увеличивают ее передний угол, тем самым создаются более благоприятные условия резания вблизи нее. На величину М геометрия поперечной кромки влияет слабо. Двойная заточка сверла также слабо влияет на Р 0 и М .

Диаметр сверла и подача. С увеличением диаметра сверла D и подачи s увеличиваются ширина и толщина срезаемого слоя, следовательно, возрастают силы и момент резания. Экспериментально установлено, что диаметр сверла влияет на Р 0 в большей степени (1), чем подача (0,8). Для объяснения можно привести аналогию с точением, где глубина резания t влияет в большей степени на силы резания, чем подача (см.), а при сверлении t = D /2 мм. Подача влияет примерно в одинаковой степени (0.8) на осевую силу Р 0 и крутящий момент М , а диаметр влияет в большей степени (1,9) на М и в меньшей - на Р 0 (1). Это объясняется тем, что при увеличении диаметра й возрастает сила Р z , создающая момент М , и одновременно увеличивается длина плеча, на котором действует эта сила, что также способствует увеличению М (рис.).

Охлаждающая жидкость. Подача охлаждающей жидкости в зону резания облегчает отвод стружки, уменьшает работу трения и замедляет износ сверла. Она способствует снижению осевой силы Р 0 и момента М до 25% при обработке стальных деталей и до 15% - при обработке чугунных.

Износ сверла

Природа и характер износа сверл и резцов одинаковы. При обработке вязких материалов (сталей и др.) быстрорежущими сверлами изнашиваются передние и задние поверхности сверла (рис. 73.), а у твердосплавных сверл передние поверхности изнашиваются незначительно.

Рис. 73. Характер износа сверла: А – по задней поверхности; Б – по ленточке; В – по уголкам; Г – по передней поверхности

При обработке хрупких материалов (чугуна, пластмассы и др.) преимущественно изнашиваются задние поверхности и уголки сверла. Передние и задние поверхности сверла более интенсивно изнашиваются на периферии, так как здесь скорость резания наибольшая и уголки сверла, являясь ослабленным местом, сильно нагреваются и разрушаются. Закономерность износа свёрл примерно та же, что и резцов при точении (Рис. 74).

Рис. 74. Характер протекания износа сверла от времени работы

Оценку износа рекомендуется производить: при обработке вязких материалов -по длине износа по задним поверхностям h з , для хрупких материалов - по длине износа уголков h y . Допустимая величина износа -критерий износа при сверлении быстрорежущими свёрлами:

h З кр = 0,4…1,2 мм, при обработке стали;

При обработке чугуна быстрорежущими свёрлами в качестве критерия износа принимается износ по длине уголков.

h у = 0,4…1,2 мм – обработка сверлом из быстрорежущей стали;

h у = 0,9…1,4 мм. – обработка сверлом из твёрдого сплава;

Период стойкости Т , мин, зависит от диаметра сверла и обрабатываемого материала.

Т = (1,0…1,25)∙D – обработка стали быстрорежущими свёрлами;

T = (1,25…1,5) D – обработка чугуна быстрорежущими свёрлами;

Т = (1,5…2,0) D – обработка чугуна свёрлами из твёрдого сплава.

В результате проведенных опытов при сверлении стали быстрорежущими сверлами получена следующая зависимость:

Из полученных результатов видно, что на износ сверла в большей степени влияет скорость, в меньшей - подача. Это становится понятным, если учесть, что на температуру резания степень влияния скорости примерно в 2 раза выше, чем подачи.

А. Выбор подачи

Подача при сверлении представляет собой перемещение сверла за один его оборот и измеряется в мм/об.

Величина подачи выбирается в зависимости от диаметра сверла и обрабаты­ваемого материала. Сверло большего диаметра по своей прочности допускает боль­шую подачу. Подача выбирается максимально допустимой с учетом требуемой чис­тоты и точности обработки.

Технологически допускаемая подача при сверлении спиральными сверлами из быстрорежущей стали и сверлами, оснащенными твердым сплавом, выбирается на основе опыта (см. табл. 1).

Таблица Подачи при сверлении S, мм/об.

Сталь, а < 90 кг/мм 2

Чугун и цветные металлы

быстро­режущая сталь

твердый сплав

быстрорежущая сталь

твердый сплав

быстрорежущая сталь

твердый сплав

Подачи, приведенные в таблице 1, даны для сверления отверстий с глубиной сверления до трех диаметров.

При глубине сверления больше ЗД следует вводить поправочный коэффициент к = 0,75 - 0,9.

В случаях, когда диаметр отверстия превышает 30-40 мм, следует применять рассверливание, деля припуск примерно на две равные части.

При рассверливании величина подачи увеличивается примерно в полтора -два раза по сравнению с приведенными табличными данными.

Максимальные значения подач применяют при сверлении глухих отверстий При сверлении сквозных отверстий для всех перечисленных случаев следует брать среднее значение подач. Это уменьшение величины подачи при сквозном сверлении объясняется тем, что при выходе сверла из отверстия вследствие наличия упругих деформаций в шпинделе, механизме подачи станка, в сверле, а также наличии мерт­вого хода шпинделя, фактическая подача может увеличиваться, что приведет к за­еданию сверла и выкрашиванию режущих кромок.

Б. Скорость резания при сверлении

В процессе сверления имеют место стесненные условия отвода стружки в связи с ограниченным пространством между стенками отверстия и поверхностью винтовых канавок сверла.

Выбор скорости резания при сверлении зависит от следующих основных факторов: 1) обрабатываемого материала; 2) материала режущей части сверла; 3) диаметра сверла; 4) подачи; 5) стойкости сверла; 6) глубины просверливаемого отверстия; 7) формы заточки сверла; 8) охлаждения.

Скорость резания при сверлении в зависимости от основных факторов резания может быть подсчитана по формуле:

где C v - постоянный коэффициент, характеризующий обрабатываемый мате риал, материал инструмента, геометрию сверла, различные условия обработки (С 12-20);

Д - диаметр сверла, мм;

Т - период стойкости инструмента, мин.;

S - подача, мм/об.;

t - глубина резания (припуск на сторону), мм.

В. Основное (технологическое) время

Основное технологическое время при сверлении, рассверливании, зенкерова нии и развертывании определяется по формуле:

(2)

где L - расчетная длина обработки, мм; n - число оборотов инструмента, об./мин.;

S - осевая подача инструмента, мм/об.

Расчетная длина L определяется следующей суммой:

Величина врезания l1 при сверлении будет равна:а при рассверливании, зенкеровании и развертыванииВеличина выхода сверла 1 2 = 1–2мм.

Основными элементами режима резания при сверлении являются скорость резания, подача и глубина резания.
Скоростью резания называется окружная скорость наиболее удаленной от центра сверла точки режущей кромки, измеряемая в метрах в минуту (м/мин ).

Таблица 19

Скорости резания при сверлении (работа с охлаждением) конструкционных сталей

Подача
в
мм/об

Диаметр сверла в мм

Скорость резания в м/мин

0,05
0,08
0,1
0,12
0,15
0,18
0,2
0,25
0,3
0,35
0,4
0,46
0,5
0,6
0,7
0,8
0,9

46
32
26
23
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
42
36
31
26
-
-
-
-
-
-
-
-
-
-
-

-
-
49
43
36
31
28
-
-
-
-
-
-
-
-
-
-

-
-
-
-
38
35
33
30
27
-
-
-
-
-
-
-
-

-
-
-
-
-
-
38
34
31
28
26
-
-
-
-
-
-

-
-
-
-
-
-
-
35
31
29
27
26
-
-
-
-
-

-
-
-
-
-
-
-
37
34
31
29
27
26
-
-
-
-

-
-
-
-
-
-
-
-
33
30
29
27
26
24
-
-
-

-
-
-
-
-
-
-
-
-
-
30
28
26
24
23
-
-

-
-
-
-
-
-
-
-
-
-
-
29
27
25
23
21
-

-
-
-
-
-
-
-
-
-
-
-
27
26
25
23
22
21

Скорость резания v определяется по формуле

где D - диаметр сверла;
n - число оборотов шпинделя в мин.;
π = 3,14 - постоянное число.
Число оборотов режущего инструмента определяется по формуле

При сверлении или развертывании отверстий важно правильно выбрать скорость резания, при которой инструмент будет работать нормально, т. е. наиболее эффективно.
Таким образом, скорость резания режущего инструмента и подача его на один оборот составляют режим резания.
Режим резания необходимо выбирать таким, чтобы сохранить инструмент от преждевременного износа с учетом максимальной производительности.
Режимы резания можно выбирать по табл. 19 и 20. Таблица 20

Переводная таблица скоростей резания и чисел оборотов сверл в минуту

Диа-
метр
сверла
в
мм

Скорость резания в м/мин

Число оборотов в минуту

1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
27
30
32
34
36
38
40
42
46
50

3180
1590
1061
796
637
530
455
398
353
318
265
227
199
177
159
145
132
122
113
106
99
93
88
84
80
76
71
64

4780
2390
1590
1195
955
796
682
507
530
478
398
341
298
265
239
217
199
184
171
159
149
140
133
126
119
113
106
96

6370
3190
2120
1595
1275
1061
910
796
708
637
530
455
398
353
318
290
265
245
227
213
199
187
177
168
159
152
142
127

7960
3980
2660
1990
1590
1326
1135
996
885
796
663
568
497
442
398
362
332
306
284
265
249
234
221
210
199
189
177
159

9550
4780
3180
2390
1910
1590
1365
1191
1061
955
796
682
597
531
478
432
398
368
341
318
298
280
265
252
239
227
212
191

11150
5580
3720
2790
2230
1855
1590
1392
1238
1114
929
796
696
619
558
507
465
429
398
371
348
327
310
294
279
265
248
223

12730
6880
4250
3185
2550
2120
1820
1590
1415
1273
1062
910
795
709
637
580
531
490
455
425
398
374
354
336
318
307
283
255

14330
8060
4780
3595
2865
2387
2045
1792
1593
1433
1193
1010
895
795
716
652
597
551
511
478
448
421
398
378
358
341
319
286

15920
7960
5320
3980
3180
2622
2270
1992
1770
1592
1326
1136
994
884
796
724
664
612
568
530
498
468
442
420
398
378
354
318

19100
9560
6360
4780
3820
3180
2730
2338
2122
1910
1592
1364
1194
1062
956
870
796
736
682
636
596
560
530
504
478
458
424
382

31840
15920
10640
7960
6360
5304
4340
3984
3540
3184
2652
2272
1988
1768
1592
1148
1328
1224
1136
1060
996
936
884
840
796
756
708
636

Зная диаметр сверла и материал обрабатываемой детали, находим по табл. 19 и 20 скорость резания, а по скорости резания и диаметру сверла определяем по переводной таблице (или по формуле) число оборотов сверла в минуту. Найденное число оборотов и значение подачи сопоставляют с фактическим числом оборотов шпинделя станка. На каждом станке имеется таблица оборотов шпинделя и подач, которая прикреплена к станку.
При работе сверлами из углеродистой стали величины скорости резания и подачи следует уменьшать на 30 - 40%.
Для уменьшения трения и нагрева инструмента при сверлении применяют охлаждающую жидкость. При обильном применении охлаждающей жидкости при сверлении стали можно увеличить скорость резания примерно на 30 - 35%. Кроме этого, обильное охлаждение облегчает удаление стружки из отверстия. Для нормального охлаждения необходимо к месту сверления подавать не менее 10 л охлаждающей жидкости в минуту.
При сверлении различных металлов и сплавов рекомендуется применять охлаждающие жидкости, приведенные в табл. 21.

Таблица 21

Если во время работы режущая кромка сверла быстро затупляется, то это признак того, что скорость резания выбрана слишком большой и ее надо уменьшить.
При выкрашивании режущих кромок следует уменьшить величину подачи.
Для предупреждения затупления и поломки сверла на выходе из отверстия рекомендуется уменьшать подачу в момент выхода сверла.
Для получения отверстий высокого класса точности развертки в шпинделе станка крепят на специальных качающихся оправках, которые дают возможность развертке занимать требуемое положение в отверстии. Этим устраняется «разбивание» отверстия.
Для получения высокой чистоты обработки отверстия при работе развертку следует смазывать растительным маслом.
Скорость резания при развертывании отверстий в стали принимается равной от 5 до 10 м/мин , подача - от 0,3 до 1,3 мм/об .
В табл. 22 приведены величины скорости резания при развертывании отверстий в различных металлах.

Таблица 22

Средние скорости резания развертками на сверлильных станках в м/мин

При сверлении отверстия диаметром более 25 мм рекомендуется производить предварительное сверление сверлом диаметром 8 - 12 мм , а затем рассверлить отверстие до требуемого диаметра. Разделение обработки отверстия на два прохода - сверление и рассверливание способствует получению более точного по диаметру отверстия, а также уменьшает износ инструмента.
При сверлении глубокого отверстия необходимо своевременно удалять стружку из отверстия и спиральных канавок сверла. Для этого периодически выводят сверло из отверстия, чем облегчают условия сверления и улучшают чистоту обрабатываемого отверстия.
При сверлении деталей из твердых материалов применяют сверла, оснащенные пластинками из твердого сплава.
Пластинки твердого сплава закрепляют пайкой на медь к державке, изготовляемой из углеродистой или легированной стали.
Скорость резания такими сверлами достигает 50 - 70 м/мин .

© 2020 reabuilding.ru -- Портал о правильном строительстве