Применение hc sr04. Ультразвуковой датчик измерения расстояния HC-SR04
1 Принцип действия ультразвукового дальномера HC-SR04
Действие ультразвукового дальномера HC-SR04 основано на принципе эхолокации. Он излучает звуковые импульсы в пространство и принимает отражённый от препятствия сигнал. По времени распространения звуковой волны к препятствию и обратно определяется расстояние до объекта.
Запуск звуковой волны начинается с подачи положительного импульса длительностью не менее 10 микросекунд на ножку TRIG дальномера. Как только импульс заканчивается, дальномер излучает в пространство перед собой пачку звуковых импульсов частотой 40 кГц. В это же время на ножке ECHO дальномера появляется логическая единица. Как только датчик улавливает отражённый сигнал, на выводе ECHO появляется логический ноль. По длительности логической единицы на ножке ECHO («Задержка эхо» на рисунке) определяется расстояние до препятствия.
Диапазон измерения расстояния дальномера HC-SR04 - до 4 метров с разрешением 0,3 см. Угол наблюдения - 30°, эффективный угол - 15°. Ток потребления в режиме ожидания 2 мА, при работе - 15 мА.
2 Схема подключения датчика расстояния
Питание ультразвукового дальномера осуществляется напряжением +5 В. Два других вывода подключаются к любым цифровым портам Arduino, мы подключим к 11 и 12.
3 Получение дистанции до объекта с датчика HC-SR04
Теперь напишем скетч, определяющий расстояние до препятствия и выводящий его в последовательный порт. Сначала задаём номера выводов TRIG и ECHO - это 12 и 11 пины. Затем объявляем триггер как выход, а эхо - как вход. Инициализируем последовательный порт на скорости 9600 бод. В каждом повторении цикла loop() считываем дистанцию и выводим в порт.
Const int trigPin = 12; const int echoPin = 11; void setup() { pinMode(trigPin, OUTPUT); // триггер - выходной пин pinMode(echoPin, INPUT); // эхо - входной digitalWrite(trigPin, LOW); Serial.begin(9600); // инициализация послед. порта } void loop() { long distance = getDistance(); // получаем дистанцию с датчика Serial.println(distance); // выводим в последовательный порт delay(100); } // Определение дистанции до объекта в см long getDistance() { long distacne_cm = getEchoTiming() * 1.7 * 0.01; return distacne_cm; } // Определение времени задержки long getEchoTiming() { digitalWrite(trigPin, HIGH); // генерируем 10 мкс импульс запуска delayMicroseconds(10); digitalWrite(trigPin, LOW); // определение на пине echoPin длительности уровня HIGH, мкс: long duration = pulseIn(echoPin, HIGH); return duration; }
Функция getEchoTiming() генерирует импульс запуска. Она как раз создаёт тот 10-микросекундный импульс, который является триггером для начала излучения дальномером звукового пакета в пространство. Далее она запоминает время от начала передачи звуковой волны до прихода эха.
Функция getDistance() рассчитывает дистанцию до объекта. Из школьного курса физики мы помним, что расстояние равно скорость умножить на время: S = V×t Скорость звука в воздухе 340 м/сек, время в микросекундах мы знаем (переменная duration ). Чтобы получить время duration в секундах, нужно разделить его на 1 000 000. Так как звук проходит двойное расстояние - до объекта и обратно - нужно ещё разделить результат пополам. Вот и получается, что расстояние до объекта S = 34000 см/сек × duration / 1 000 000 сек / 2 = 1,7 см/сек / 100, что мы и написали в скетче.
Операцию умножения микроконтроллер выполняет быстрее, чем операцию деления, поэтому :100 я заменил на эквивалентное ×0,01 .
4 Библиотека для работы с эхолокатором HC-SR04
Также для работы с ультразвуковым дальномером написано множество библиотек. Например, вот эта библиотека Ultrasonic . Установка библиотеки происходит стандартно: скачать, разархивировать в директорию /libraries/ , которая находится в папке с Arduino IDE. После этого библиотекой можно пользоваться.
Установив библиотеку, напишем новый скетч.
#include
Результат его работы тот же - в мониторе последовательного порта выводится дистанция до объекта в сантиметрах.
Если в скетче написать float dist_cm = ultrasonic.Ranging(INC); - дистанция будет отображаться в дюймах.
5 Выводы по работе с сонаром HC-SR04
Итак, мы с вами подключили к Arduino ультразвуковой дальномер HC-SR04 и получили с него данные двумя разными способами: с использованием специальной библиотеки и без.
Преимущество использования библиотеки в том, что количество кода значительно сокращается и улучшается читаемость программы, вам не приходится вникать в тонкости работы устройства и вы сразу же можете его использовать. Но в этом же кроется и недостаток: вы хуже понимаете, как работает устройство и какие в нём происходят процессы. В любом случае, каким способом пользоваться - решать только вам.
Приобрести ультразвуковой дальномер по хорошей цене можно
Ардуино – уникальная система, представляющая собой пластилин в руках инженера, из которого он может слепить, что пожелает. Возможно это благодаря большому разнообразию датчиков и модулей разных направленностей. От простых чипов, измеряющих силу тока, до вещей вроде Arduino hc hc sr04.
Это специальный датчик, позволяющий, при помощи ультразвуковых волн, измерить расстояние до объекта, на который его направили. Несложно догадаться, что проще всего его применить для создания простого дальномера. Рассмотрим Arduino hc sr04 и какие нюансы в работе с ним стоит учитывать, прежде чем начать собирать проект.
1. Основы сборки дальномера на Ардуино с помощью датчика HC SR04
Если вы собираетесь собрать дальномер на Ардуино, то без HC SR04 просто не обойтись. Ведь именно этот модуль чаще всего применяют в подобных системах из-за его высокой востребованности, по причине простоты работы, доступности и низкой стоимости. При этом точность показаний остаётся на высоте, что очень важно в подобных системах. Из данного чипа можно собрать не только дальномер на Ардуино, но и полноценного робота, который будет чувствовать расстояние до объекта и обходить любое препятствие.
Однако сегодня мы рассмотрим именно вариант с дальномером на Аrduino, так как он идеально подойдёт для новичков в сфере, которые ещё не слишком хорошо разбираются в основах. Если же вы захотите затем модифицировать своё изобретение, то можно научить его моделировать полноценную трехмерную карту помещения, что будет удобно для тех, кто занимается дизайном и конструированием мебели или зданий. Но сначала стоит рассмотреть, как вообще работает данный прибор и какие основы сборки стоит усвоить, прежде чем создать лазерный дальномер на Ардуино своими руками.
Наш дальномер на Arduino будет основан на сонаре, применяемом в природе дельфинами, для измерения расстояния до объектов и спокойного обхождения препятствий. Делается это с помощью физических свойств ультразвуковых волн, которые способны отражаться, сталкиваясь с твердыми объектами, и возвращаться обратно к датчикам.
Далее в ход вступает программный код, который высчитывает, сколько времени прошло между посланием и возвратом волны, делит его на два и с помощью формул и скорости звука высчитывает усреднённое расстояние до объекта.
Почему усреднённое?
Дело в том, что любой ультразвуковой датчик все равно будет ошибаться на десятые доли метра, связано это с тем, что различные материалы, окружение и прочие переменные могут повлиять на скорость движения и отражения от поверхности звука. А в данном проекте мы берём идеальную систему, которая в реальном мире работать не может.
Можно постараться учесть все эти факторы, но каждую переменную вы все равно не запрограммируете, поэтому наша задача – получить данные, максимально приближённые к показаниям профессиональных приборов, ведь дальномер Ардуино всё ещё далёк от них по точности.
Есть и ещё один нюанс, который вам стоит заранее учесть, собирая ультразвуковой дальномер Arduino – не все поверхности подходят для измерения. Дело в том, что некоторые материалы способны поглощать звук или слишком сильно искажать его движение, подобно тому, как черная рубашка поглощает электромагнитную световую волну.
Соответственно, лучше всего применять прибор к гладким и плоским поверхностям, которые не будут нарушать движения УВ, что также ограничивает его функционал. Но благодаря низкому ценнику и удобству работы датчик всё ещё остается достаточно популярным.
2. Что будет в уроке?
Мы соберем дальномер, который будет работать по следующему принципу: при приближении объекта на расстояние менее 4 сантиметров - загорается красный светодиод, иначе горит зеленый.
Достаточно простой пример, в котором мы проверим точность измерения расстояния дальномером hc-sr04. Основа проверки точности станет простая линейка 🙂
3. Инструменты
Чтобы лишний раз не бегать в магазин прямо посреди процесса сборки системы, лучше заранее подготовить все инструменты, что могут вам пригодиться. Так, стоит побеспокоиться, чтобы под рукой были:
- Паяльник. Хорошим выбором станут приборы с регулируемой мощностью, их можно приспособить к любой ситуации.
- Проводники. Естественно, датчик необходимо будет подсоединять к МК, и для этого не всегда подходят стандартные пины.
- Переходник под usb-порт. Если на вашем микроконтроллере нет встроенного порта, побеспокойтесь о том, чтобы его можно было подключить к ПК другим способом. Ведь вам необходимо будет подгружать дополнительные библиотеки и новую прошивку в ваш проект.
- Припой, канифоль и прочие мелочи, в том числе изолированное рабочее пространство.
- Сам чип и МК, а также, при необходимости, корпус будущего устройства. Наиболее опытные инженеры предпочитают распечатывать оболочку для своих проектов на 3Д принтере, однако, если вы живёте в крупном городе, не обязательно тратиться. Можете поискать компании, дающие в аренду принтеры.
Стоит понимать, что дальномер Arduino относится к приборам бесконтактного типа и способен обеспечивать точные измерения. Но всё же не стоит забывать, что профессиональные устройства используют совершенно другие технологии и проходят длительную калибровку под все материалы, а соответственно, в любом случае, окажутся лучше. Также у нашего проекта будет ограниченный диапазон измерения расстояний, от 0.03 до 4 метров, что подойдёт не во всех случаях.
Но, что хорошо, на работу устройства не оказывается никакого влияния со стороны ЭМ излучений и солнечной энергии. А в комплекте к датчику уже находятся нужные ресиверы и трансмиттеры, которые пригодятся, когда вы будете собирать ультразвуковой дальномер Ардуино.
Важно! В нашем уроке можно будет ничего не паять, т.к. мы будем использовать макетную плату и провода-перемычки. Но если вы захотите в итоге собрать законченное устройство - вам пригодится всё что мы указали выше.
4. Комплектующие
Так как мы решили пока ничего не паять - оптимальный набор деталей будет следующим:
- 1 - Arduino UNO R3 (или аналог)
- 1 - Ультразвуковой датчик расстояния HC-SR04
- 1 - красный светодиод
- 1 - зеленый светодиод
- 2 - резистор 560 Ом
- 1- макетная плата
- 8 - проводов-перемычек (папа-папа)
- 1 - линейка для измерения расстояния
5. Подключение датчика HC SR04
С подключением датчика не должно возникнуть никаких проблем. Достаточно с помощью проводников соединить пин на питание с источником или МК, а ввод и вывод, соответственно, присоединить непосредственно к МК. Воспользуйтесь схемой ниже для сборки схемы:
У самого сенсора SR04 следующие характеристики от которых вам стоит отталкиваться:
- Напряжение для питания – 5В.
- Работает в цепях с силой тока 15 мА.
- Если датчик не используется, то для поддержания его в пассивном состоянии всё ещё требуется до 2 мА.
- Угол обзора у модуля небольшой, всего 15 градусов.
- Разрешение сенсора – 3 десятых см.
- А вот угол для измерений составляет уже приятные 30 градусов.
Также на датчике имеются четыре вывода по стандарту 2.54 мм. В них входит контакт для питания с положительным напряжением +5В, пины для ввода и вывода сигнала и заземление.
В конечном варианте выглядеть устройство должно примерно таким образом:
6. Код
Код для нашего устройства ниже. Помните, что красный светодиод должен загораться при расстоянии менее 4 см.
/* Arduino HC-SR04 ультразвуковой датчик расстояния VCC подключается к 5v, GND к GND Echo к 13 пину на Arduino, Trig к 12 пину на Arduino Позитивная нога красного светодиода к 11 пину на Arduino Позитивная нога зеленого светодиода к 10 пину на Arduino */ #define trigPin 13 #define echoPin 12 #define led 11 #define led2 10 void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); pinMode(led, OUTPUT); pinMode(led2, OUTPUT); } void loop() { long duration, distance; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = (duration/2) / 29.1; if (distance < 4) { // На этом этапе происходит вкл/выкл светодиода digitalWrite(led,HIGH); // когда загорается красный, зеленый обязан выключится digitalWrite(led2,LOW); } else { digitalWrite(led,LOW); digitalWrite(led2,HIGH); } if (distance >= 200 || distance <= 0){ Serial.println("Out of range"); // Вне диапазона } else { Serial.print(distance); Serial.println(" cm"); // тут тоже можно указать " см" } delay(500); }
Единственное, о чем стоит помнить, – далеко не все функции и библиотеки написаны профессионалами. Многие из них создаются такими новичками, как и вы, соответственно, старайтесь просматривать код, прежде чем заключать, что датчик не работает или выдаёт неправильные данные.
Но значительно лучше будет изучить основы программирования и С++, чтобы в дальнейшем самостоятельно писать многие вещи самому.
7. Запуск и настройка
При первом запуске устройства происходит следующее:
- Подается импульс на вход Trig.
- В самом датчике сигнал преобразуется в 8 импульсов, у которых частота достигает 40 кГц, их он, соответственно, и посылает вперёд.
- Доходя до препятствия, импульсы отражаются и возвращаются на приемник, происходят моментальные расчеты в МК, и вся информация подаётся на устройство вывода. В нашем случае – это консоль ПК, но в будущем мы сделаем урок, где данные будут выводиться на LED-экранчик.
При первом запуске мы используем линейку, которая позволит сравнить точность измерений. Запустив устройство, проверьте данные, которые будут выведены в консоли.
Датчик пользуется большой популярностью и всё больше людей пишут свои решения для работы с ним.
Добрый день, уважаемые программисты. Сегодня мы переходим к третьему уроку. Мы научимся подключать ультразвуковой дальномер HC-SR04 к Arduino . Разберем принцип работы дальномера , его характеристики и программирование этого устройства.
Ну что, приступим! Начнем мы с характеристики дальномера.
Характеристики ультразвукового датчика HC-SR04
Большим превосходством такого ультразвукового датчика над инфракрасными является то, что на ультразвуковые датчики не влияют источники света или цвет препятствие. Могут возникнуть проблемы с измерением расстояния до тонких или пушистых объектов. Хотелось бы сказать, что скорость звука в воздухе зависит от температуры. Следовательно, погрешность измерения будет меняться от повышения или понижения температуры.
- Рабочее напряжение 4,8 В до 5,5 В (± 0.2В макс).
- Диапазон измерения: от 2 см до 400 см.
- Диапазон рабочих температур: 0 ° С до 60 ° С (± 10%).
- Ток потребления в режимах ожидания до 2 мА.
- Ток потребления в режимах работы 15 мА.
- Ультразвуковой диапазон работы на частоте 40 кГц.
- Угол обзора 15 градусов.
- Измеряемое расстояние от 0,03 до 0,6 мс разрешающей способностью 3 мм.
- От 0,6 до 5 погрешность увеличивается.
Датчик имеет 4 вывода:
- VCC: "+" питание
- TRIG (T): вывод входного сигнала
- ECHO (R): вывод выходного сигнала
- GND: "-" питание
Необходимые компоненты для подключения ультразвукового дальномера
- Arduino (в нашем случае - UNO)
- Breadboard (макетная плата для удобного подключения приборов к Arduino)
- Провода
- Ультразвуковой датчик HC-SR04
Принцип работы ультразвукового дальномера HC-SR04
- Подаем импульс продолжительностью 10 мкс, на вывод Trig.
- Внутри дальномера входной импульс преобразуется в 8 импульсов частотой 40 КГц и посылается вперед через "T глазик".
- Дойдя до препятствия, импульсы отражаются и принимаются "R глазиком". Получаем выходной сигнал на выводе Echo.
- Непосредственно на стороне контроллера переводим полученный сигнал в расстояние.
Схема подключение дальномера к Arduino
Вам представлена схема подключения ультразвукового датчика к Ардуино. Как вы можете заметить, она очень проста и очень интересна. Но следует не забывать о правильном подключении. Мой совет: никогда не торопитесь подключать прибор потому, что вы больше затратите времени на поиск ошибки в подключении.
Следующим этапом является изучение скетча программы
Программирование ультразвукового датчика HC-SR04
#define
Trig 8 /* Обозначаем пин подачи импульса*/
#define
Echo 9 /* Обозначаем пин приема импульса*/
void
setup() {
pinMode
(Trig, OUTPUT); /*инициируем как выход */
pinMode
(Echo, INPUT); /*инициируем как вход */
Serial.begin
(9600); /* устанавливаем скорость порта */
}
unsigned int
impulseTime=0;
unsigned int
distance_sm=0;
void
loop() {
digitalWrite
(Trig, HIGH);
/* Подаем импульс на вход trig дальномера */
delayMicroseconds
(10); /* Импульс длится 10 микросекунд */
digitalWrite
(Trig, LOW); // Отключаем подачу импульса
impulseTime=pulseIn
(Echo, HIGH);
/*Принимаем импульс и подсчитываем его длину*/
distance_sm
=impulseTime/58; /* Пересчитываем его значение в сантиметры */
Serial.println(
distance_sm); /* Выводим значение на порт программы */
delay
(200);
}
После того как вы вставили этот код, загрузите его в программу и включите "монитор порта". Там вы увидите расстояние от датчика до препятствия, поэкспериментируйте с изменением расстояния объекта.
Вот что должно у вас получиться!
Надеюсь у вас все получилось! Если у вас остались вопросы, можете написать нам в
Всех приветствую.
В этом мини обзорчике, мы посамодельничаем с ультразвуковым модулем измерения расстояния…
Сразу извиняюсь, упаковок и распаковок не будет. Сам не люблю их в других обзорах, свои портить не буду. Разве что какой заказ прибудет в экстраординарной упаковке или супер непотребном виде…
Возникла идея автоматически включать свет при посещении сортира и так же выключать при покидании оного. Был заказан pir-выключатель для этих целей, а так же pir-датчик отдельно, на всякий…
Выключатель был установлен в однозначно посещаемом всеми членами семьи помещении и…
И оказалось, что плясать лезгинку, при выполнении процедур характерных для посещения сортира, никто не в состоянии, а замирание в привычной позе характерно для всех. Тут и подстерегала бяка. Только задумался о добром и вечном, свет хлоп и выключился, что довольно досадно.
Перепробованы все способы регулировок выключателя, но желаемого результата достичь не удалось.
Не удалось обмануть себя и физику, подменив необходимый датчик присутствия, на датчик обнаружения.
Так что выключатель и неиспользованный pir-датчик были отправлены на длительное хранение до лучших времен, а их место занял…
Комбинированный радар для воротных систем , пока никуда не пристроенный.
Микроволновый блок естественно был отключен, зачем нам подставлять макушку под микроволны. Осталась только ИК матрица.
Штука довольна специфическая. Минимальная зона у него размером с помещение. Свет включает и выключает при посещении на ура. Но есть один недостаток. Датчик очень педантичен и любит, чтобы все стояло на своих местах. Передвинул рулончик бумажки или опустил/поднял стульчак, требуется перенастройка. Да и ценник у него не сортирный.
Так что поиск решения был продолжен.
На просторах интернета набрел на сайт и с темой о простом автоматическом выключателе света на ультразвуковом датчике.
Тема показалась интересной, тем более изобретать велосипед с прошивкой не надо, автор постарался за нас, за что ему спасибо.
Схема есть, прошивки есть. Осталось сделать печатку и получить на выходе полноценный датчик присутствия. Или не получить… посмотрим…
Датчик был заказан на banggood"e. Нравится мне этот магазин стабильностью сроков доставки. Безтреком 28-30 дней и заказ у меня.
Приехал безтреком в срок. Упаковка для посылок без трека у banggood"а стандартная, мусорный мешок и все…
Датчик был упакован в антистатик, что подозреваю и спасло его от почтовых неприятностей. :0)
К сожалению мусорный мешок выбросил по пути домой, а антистатик уже дома, так что показать кроме датчика вам нечего, да и сам датчик уже потрепался (ножки выпрямил) в процессе изготовления устройства.
ТТХ датчика:
- 45*20*23 мм. ДхШхГ (Г - с выпрямленными ножками)
- вес - 8,28 грамм
- напряжение питания - DC 5V
- ток потребления - 15mA
- минимальное рабочее расстояние - 2 см.
- максимальное рабочее расстояние - 4 метра
- угол зоны обнаружения - 15 градусов
Кратко.
Датчик работает по принципу эха. Один пьезик датчика излучает пакет импульсов с частотой 40 кГц, сигнал отражается от поверхности перед датчиком, отраженный сигнал принимает другой пьезик, блок обработки обрабатывает полученные данные и на выходе выдает импульс длинной пропорциональной расстоянию прохождения УЗ сигнала.
Т.е. на выходе мы имеем импульс, длительность которого нам и важна.
В изготавливаемом нами автоматическом включателе/выключателе мы сравниваем длительность импульса занесенного в память микроконтроллера, с длительностью нового отраженного импульса. Если длительность нового импульса меньше того что в памяти, микроконтроллер решает, что в зоне обнаружение есть объект и нужно включить нагрузку… Если длинна импульса больше, то ничего не делаем или выключаем нагрузку, если она включена.
Далее:
Сам датчик.
Маркировка на микросхемах стерта.
Быстренько перерисовываем готовую схему в Diptrace, там же рисуем печатку, изготавливаем платку для опытов.
Процесс изготовления спрятал под спойлер, по тому как думаю многих уже притомил процессами.
Один раз я уже показывал, как делаю платки. В этот же раз наделал фоток, жалко выкидывать.
Больше народ процессами мучить не буду, если есть вопросы по платам, пишите пожалуйста в личку.
ссылка на скачивание того, что я собрал по теме, плюс схема и печатка платки в Diptrace.
Несколько фоток.
Подготавливаем платку и шаблон. Фоторезист нанесен.
Засвечиваем, промываем, травим.
Травим, смываем фоторезист.
Наносим маску, засвечиваем шаблон.
Режем платку, сверлим.
Сама платка.
Собрана схема на ATtiny13.
Зачем для тестов такая красивая? Просто она делалась попутно с другой платой, под эл. нагрузку.
Почему так бестолково расположены радиоэлементы? По тому что тестовая. Чтобы проверить, рабочее ли устройство в сборе. Не было смысла разводить и компоновать.
Припаиваем датчик к платке.
Программируем.
В результате получаем готовый бескорпусной датчик присутствия с питанием пять вольт, кушающее 30mA, способное обнаруживать посторонние предметы в заранее запрограммированной зоне обнаружения с углом в 15 градусов и расстоянием от 2 сантиметров, до 3,5 метров. При обнаружении включать светодиод.
Принцип работы прост. Направляем датчик, куда нам нужно. Нажимаем кнопку.
Настроечный светодиод (у меня он красненький) начинает мигать.
Мигает он в 3-х режимах:
10% светодиод включен- объект вне зоны действия, нагрузка выключена.
90% светодиод включен- объект в зоне действия, нагрузка включена.
50% светодиод включен- зона обнаружения свободна, идет отсчет 60 или 10 секунд, или одна секунда, в зависимости от прошивки, до выключения, лампа включена.
Дальше у вас есть 10 секунд чтобы уйти из зоны обнаружения.
Можно ограничить зону. Для этого нужно в момент запоминания настроек встать на границе зоны, тем самым зона будет ограничена.
Паспортные минимальные 2 сантиметра я подтверждаю. Если ограничить зону как на фото, то при просовывании пальца между коробкой и датчиком светодиод загорается, убираем палец, гаснет.
Если подвинуть коробку на полсантиметра ближе, то свтодиод загорается, устройство настраиваться отказывается.
Максимальные 4 метра подтвердить не удалось. Максимальное расстояние которое удалось подтвердить, где устройство уверенно фиксирует человека равно 3.5 метра. На з-х метрах уверенно фиксирует мою руку с коробкой 15х15 сантиметров. Включает нагрузку и не отключает, пока коробку не уберешь.
Выводы.
- Получившийся датчик присутствия мне понравился.
- Простейшая и удобная настройка.
- Реально работает.
- Дешево и сердито.
В общем, вот такое получилось годное устройство на ультразвуковом модуле измерения расстояния HY-SRF05.
В недалеком будущем я приспособлю его по месту, только коробку подберу.
Теперь можно будет замирать в нужной позе не боясь отключения света.
Желающие думаю могут придумать еще множество способов его использования. Особенно ардуинщики, для кого этот датчик в принципе и разработан. А может и не для них… Планирую купить +41 Добавить в избранное Обзор понравился +41 +81
Новые статьи
● Проект 23: Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример
В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ WH1602.
Необходимые компоненты:
Ультразвуковой дальномер HC-SR04 (рис. 23.1) - это помещенные на одну плату приемник и передатчик ультразвукового сигнала. Излучатель генерирует сигнал, который, отразившись от препятствия, попадает на приемник. Измерив время, за которое сигнал проходит до объекта и обратно, можно оценить расстояние. Кроме самих приемника и передатчика, на плате находится еще и необходимая обвязка, чтобы сделать работу с этим датчиком простой и удобной.
Характеристики ультразвукового дальномера HC-SR04:
Измеряемый диапазон - от 2 до 500 см;
. точность - 0,3 см;
. угол обзора - < 15°;
. напряжение питания - 5 В.
Датчик имеет 4 вывода стандарта 2,54 мм:
VCC - питание +5 В;
. Trig (T) - вывод входного сигнала;
. Echo (R) - вывод выходного сигнала;
. GND - земля.
Последовательность действий для получения данных такова:
Подаем импульс продолжительностью 10 мкс на вывод Trig;
. внутри дальномера входной импульс преобразуется в 8 импульсов частотой 40 кГц и посылается вперед через излучатель T;
. дойдя до препятствия, посланные импульсы отражаются и принимаются приемником R, в результате получаем выходной сигнал на выводе Echo;
. непосредственно на стороне контроллера переводим полученный сигнал в расстояние по формуле:
Ширина импульса (мкс) / 58 = дистанция (см);
-- ширина импульса (мкс) / 148 = дистанция (дюйм).
В нашем эксперименте мы создадим звуковую сигнализацию, которая будет включаться при приближении к плате Arduino на расстояние меньше 1 м. Датчик размещен на кронштейне вращающейся сервы и контролирует пространство с углом обзора 180°. Если датчик обнаруживает объект в радиусе 1 м, подается звуковой сигнал на пьзоизлучатель, вращение сервы прекращается. Схема соединения элементов представлена на рис. 23.2.
Рис. 23.2. Схема соединения элементов для звуковой сигнализации
При написании скетча будем использовать библиотеку Servo для работы с сервоприводом и библиотеку Ultrasonic.
Для работы Arduino с датчиком HC-SR04 имеется готовая библиотека - Ultrasonic.
Конструктор Ultrasonic принимает два параметра: номера пинов, к которым подключены выводы Trig и Echo, соответственно:
Ultrasonic ultrasonic(12,13);
Содержимое скетча показано в листинге 23.1.
#include
Порядок подключения:
1. Закрепляем датчик расстояния HC-SR04 на сервоприводе.
2. Подключаем датчик HC-SR04, пьезозуммер и сервопривод к плате Arduino по схеме на рис. 23.2.
3. Загружаем в плату Arduino скетч из листинга 23.1.
4. Наблюдаем за циклическим перемещением сервопривода, при попадании объекта в поле зрения датчика HC-SR04 пьезозуммер издает сигнал, сервопривод останавливается, при исчезновении объекта из поля зрения датчика сервопривод возобновляет движение.
Листинги программ