Подключение нескольких датчиков температуры ds18b20 к arduino. Датчик температуры DS18B20,Arduino и библиотека OneWire

Главная / Ремонт

Рассмотрим как при помощи Arduino считывать показания с цифрового датчика температуры DS18B20 или DS18S20. В настоящий момент м/с DS18B20 фирмы Dallas является наиболее распространенным и доступным цифровым датчиком температуры. Работает по протоколу . Даташит датчика:

Схема подключения датчика DS18B20 к Arduino приведена ниже. Подтягивающий Pull-Up резистор номиналом 4.7 кОм (5 кОм) включается между выводом DQ (Data) и питанием датчика Vdd.

Рабочий скетч представлен ниже. Необходима библиотека OneWire, последнюю версию которой можно скачать .

После установки библиотеки, в меню появиться рабочий пример, которым и можно воспользоваться.

#include "OneWire.h" // OneWire DS18S20, DS18B20, DS1822 Temperature Example // // http://www.pjrc.com/teensy/td_libs_OneWire.html // // The DallasTemperature library can do all this work for you! // http://milesburton.com/Dallas_Temperature_Control_Library OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary) void setup(void) { Serial.begin(9600); } void loop(void) { byte i; byte present = 0; byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC is not valid!"); return; } Serial.println(); // the first ROM byte indicates which chip switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Device is not a DS18x20 family device."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // start conversion, with parasite power on at the end delay(1000); // maybe 750ms is enough, maybe not // we might do a ds.depower() here, but the reset will take care of it. present = ds.reset(); ds.select(addr); ds.write(0xBE); // Read Scratchpad Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // we need 9 bytes data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Convert the data to actual temperature // because the result is a 16 bit signed integer, it should // be stored to an "int16_t" type, which is always 16 bits // even when compiled on a 32 bit processor. int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; // 9 bit resolution default if (data == 0x10) { // "count remain" gives full 12 bit resolution raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); // at lower res, the low bits are undefined, so let"s zero them if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms //// default is 12 bit resolution, 750 ms conversion time } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); }

В предыдущих уроках мы уже работали с датчиком температуры и влажности DHT11, а также с терморезистором. На этот раз попробуем разобраться ещё с одним популярным датчиком измеряющим температуру — DS18B20. Это устройство позволяет измерять температуру в диапазоне от –55°C до +125°C с точностью ±0.5°C (при температуре от –10°C до +85°C). Питаться DS18B20 может как от 3.3, так и от 5 Вольт. Сам по себе датчик — это микросхема, которая может встречаться в разных корпусах: Также популярными являются готовые модули, на которых размещен датчик, резистор подтяжки и разъем.
Другой вариант — датчик в герметичной стальной капсуле с проводом:

1. Подключение модуля DS18B20-ROC к Ардуино

В этом уроке мы будем работать с модулем датчика температуры, разработанным в RobotClass. Подключать мы его будем к контроллеру Ардуино Уно. Как и DHT11, датчик DS18B20 использует однопроводную шину (1-wire) для обмена данными с контроллером. Так что нам потребуется всего три провода чтобы подключить датчик к Ардуино. Принципиальная схема Внешний вид макета
Примечание. В случае использования не модуля, а отдельной микросхемы, необходимо вывод микросхемы OUT соединить с контактом питания через резистор 4,7 КОм. В указанном выше модуле этот резистор уже установлен.

2. Программа для получения данных с датчика DS18B20

Напишем программу, которая будет каждую секунду считывать показания температуры с датчика и выводить их в COM-порт. #include OneWire ds(2); void setup() { Serial.begin(9600); } void loop() { byte i; byte data; byte addr; float celsius; // поиск адреса датчика if (!ds.search(addr)) { ds.reset_search(); delay(250); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // команда на измерение температуры delay(1000); ds.reset(); ds.select(addr); ds.write(0xBE); // команда на начало чтения измеренной температуры // считываем показания температуры из внутренней памяти датчика for (i = 0; i < 9; i++) { data[i] = ds.read(); } int16_t raw = (data << 8) | data; // датчик может быть настроен на разную точность, выясняем её byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; // точность 9-разрядов, 93,75 мс else if (cfg == 0x20) raw = raw & ~3; // точность 10-разрядов, 187,5 мс else if (cfg == 0x40) raw = raw & ~1; // точность 11-разрядов, 375 мс // преобразование показаний датчика в градусы Цельсия celsius = (float)raw / 16.0; Serial.print("t="); Serial.println(celsius); } Процедура на первый взгляд может показать совершенно непонятной. На самом деле, все эти 0xBE, 0x44 и т.п. взяты из спецификации к датчику. Для удобства мы можем всю процедуру вычисления выделить в отдельную функцию или даже в отдельный модуль. Загружаем программу на Ардуино и запускаем монитор COM-порта. В окне терминала мы должны увидеть данные о температуре, обновляющиеся раз в секунду: t=23.15 t=23.47 t=23.32 Вот и всё, датчик работает!

Заключение

С помощью датчика температуры можно сделать простейшую систему автоматической вентиляции в квартире или в теплице. Достаточно добавить в программу оператор условия, который будет проверять достижение температурой определенного значения и включать вентилятор с помощью реле. Подобным же образом мы работали

Так исторически сложилось, что на текущий момент одним из самых популярных цифровых температурных датчиков является датчик DS18B20 корпорации Dallas Semiconductor. Конечно же и мы не можем обойти его стороной.

Вся память DS18B20 включает в себя оперативную (SRAM) и энергонезависимую (EEPROM) память. В EEPROM хранятся регистры TH, TL и регистр конфигурации. Если функция тревожного сигнала не используется, то регистры TH и TL могут использоваться как регистры общего назначения. В режиме термостата TH содержит значение верхнего порога температуры, TL соответственно нижнего порога.

Кодинг.

Первым делом нам потребуется библиотека OneWire которая нам очень упростит жизнь. Скачать можно с GitHub или с нашего сайта .

Любое общение с датчиком начинается с команды Reset . То есть МК прижимает шину данных в состояние логический «0» на 480 µs, потом отпускает ее. Датчик отвечает на это сигналом присутствия, после чего мы отправляем команду Skip ROM (0xCC) . Тое сть обратимся ко всем датчика которые присутствуют на шине.

OneWire(uint8_t pin);

Конструктор, Pin – номер вывода, к которому подключен датчик.

uint8_t reset(void);

Инициализация операции на шине. С этой команды должна начинаться любая операция обмена данными. Возвращает:

  • 1 – если устройство подключено к шине (был ответный импульс присутствия);
  • 0 – если устройство отсутствует на шине (ответного импульса не было).
void write(uint8_t v, uint8_t power = 0);

Запись байта. Передает байт в устройство на шине.

Отправим команду 0x44 инициализации измерения температуры.

Пауза 1 сек . Ожидание на время, необходимое для выполнения датчиком преобразования температуры. Это время зависит от выбранной разрешающей способности датчика. Разрешение 12 бит установлено в датчике по умолчанию. Время преобразования для него – 750 мс.

Затем мы отправляем команду Reset , Skip ROM (0xCC) , а замет команду 0xBE чтения памяти датчика.

Вот и сам код из библиотеке:

#include // OneWire DS18S20, DS18B20, DS1822 Temperature Example // // http://www.pjrc.com/teensy/td_libs_OneWire.html // // The DallasTemperature library can do all this work for you! // http://milesburton.com/Dallas_Temperature_Control_Library OneWire ds(10); // датчик на выводе 10 (а резистор 4.7 K является необходимым) void setup(void) { Serial.begin(9600); } void loop(void) { byte i; byte present = 0; //переменные byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC недопустимый!"); return; } Serial.println(); // первый байт ROM указывает, какой чип (8 бит код чипа, 48 бит серийный номер, 8 бит CRC) switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Не является устройством семейства DS18x20."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 0); // старт преобразования с питание от внешнего источника. delay(1000); // ждем конца преобразования. // we might do a ds.depower() here, but the reset will take care of it. present = ds.reset(); ds.select(addr); ds.write(0xBE); // Читаем память. Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // нам нужно 9 байт data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразование данных в фактическую температуру //поскольку результатом является 16-разрядное целое число со знаком // ранится в типе "int16_t", который всегда составляет 16 бит // даже при компиляции на 32-битном процессоре. int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; // 9 бит разрешение по умолчанию у датчиков DS18S20 or old DS1820 if (data == 0x10) { // "количество остается" дает полное разрешение 12 бит raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); // при более низком разрешении низкие биты не определены, поэтому давайте обнуляем их. if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms //// default is 12 bit resolution, 750 ms conversion time } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); }

Собственно это библиотека подходить для всех датчиков семейства DS18 (DS18B20, DS18S20, DS1820, DS1822) подключение не чем не отключаются. Ну а некоторые различия можно уже узнать из datesheet к ним.

DS18B20 подключение к Arduino — это фантастический датчик определения температурной составляющей с цифровым интерфейсом в своем составе — следовательно он не требует выполнения калибровки. Поэтому, такие устройства можно подключить одновременно в множественном количестве к одному контакту arduino. Такую возможность предоставляет оригинальный адрес, который был запрограммирован в схему DS18B20 при его изготовлении.

Вот так выглядит эта «супер-сложная» схема DS18B20 подключение к Arduino:

Здесь нужен всего один резистор и больше ничего))). К тому же здесь отсутствуют необходимость в калибровании температуры, а также исключаются возможные неточности при выполнении сборки. Питающее напряжение возможно подавать в диапазоне от 3v до 5v. Все элементарно. А отображение температурного значения - три строки)). Ниже показан образец, все досконально и четко расписано.

Вот отсюда нужно скачать библиотеку:

Тут все аналогично, код в образце Multiple.pde. Разница лишь в том, что применено некоторое количество переменных величин имеющих адреса термометров — следовательно на три датчика три переменные величины со своим адресом и аналогичный код для поиска:

If (!sensors.getAddress(Thermometer1, 0)) Serial.println("Не найден адрес датчика 0"); if (!sensors.getAddress(Thermometer2, 1)) Serial.println("Не найден адрес датчика 1"); if (!sensors.getAddress(Thermometer3, 2)) Serial.println("Не найден адрес датчика 2");

Естественно и вывода температурных составляющих также по три.

В этом уроке мы будем использовать датчик температуры DS18B20 с Arduino UNO для создания термометра. Датчик DS18B20 является хорошим вариантом, когда в проекте с высокой точностью требуется хорошая реакция. Мы покажем как подключить DS18B20 к вашему и отобразить данные температуры на ЖК-дисплее 16x2.

Обзор датчика DS18B20

Датчик DS18B20 взаимодействует с Arduino через 1-проводную шину. По определению для связи с Arduino требуется только одна линия данных (и земля).

Каждый DS18B20 имеет уникальный 64-битный последовательный код или адрес, который позволяет нескольким DS18B20s работать на той же однопроводной шине. Поэтому использование микропроцессора упрощает управление несколькими DS18B20, распределенными по большой площади. Приложения для этой функции включают в себя экологический контроль, системы контроля температуры в зданиях и механическом оборудовании.

Особенности DS18B20

  • Необходим только один однопроводный интерфейс для связи между микроконтроллером и датчиком.
  • Требуется только один внешний компонент: резистор 4,7 кОм.
  • Может питаться от линии передачи данных напрямую, требуя напряжения от 3,0 до 5,5 В.
  • Каждое устройство имеет уникальный 64-битный последовательный код, хранящийся на встроенном ПЗУ.
  • Может измерять температуру в диапазоне от -55° C до + 125° C (от -67° F до + 257° F).
  • Точность ± 0,5° C в диапазоне от -10° C до + 85° C.

В этом проекте используется DS18B20, который поставляется в форме температурного зонда, который является водонепроницаемым. Использование водонепроницаемого датчика расширяет возможности - датчик температуры сможет измерить температуру жидкостей, таких как вода, химикаты, чай и кофе.

Требования к комплектующим

Требования к оборудованию для вашего термометра достаточно стандартные, нам пригодятся:

  • ЖК-дисплей 16х2
  • Датчик температуры DS18B20
  • Провода для перемычек
  • Резистор 1K
  • Макетная плата

Схема соединения

Сделайте соединения согласно приведенной ниже схеме.

Соединяем датчик и Ардуино

  • VCC -> Arduino 5V, плюс резистор 4,7K, идущий от VCC к Data
  • Data -> Пин 7 Arduino
  • GND -> GND Arduino

Соединения для ЖК-дисплея и Arduino UNO

  • Пин 1 -> GND
  • Пин 2 -> VCC
  • Пин 3 -> Arduino Пин 3
  • Пин 4 -> Arduino Пин 33
  • Пин 5 -> GND
  • Пин 6 -> Arduino Пин 31
  • Пин 7-10 -> GND
  • Пин 11 -> Arduino Пин 22
  • Пин 12 -> Arduino Пин 24
  • Пин 13 -> Arduino Пин 26
  • Пин 14 -> Arduino Пин 28
  • Пин 15 -> VCC через резистор 220 Ом
  • Пин 16 -> GND

Подключите потенциометр, как показано выше, к контакту 3 на ЖК-дисплее, для управления контрастностью.

Этот проект работает на температурах до 125° C. В случае наличия некоторого диссонанса в значении показанной температуры дважды проверьте соединения с резистором, подключенным к DS18B20. После соединения всего, что описано выше, мы можем перейти к программированию.

Исходный код для термометра

Перед загрузкой исходного кода вам нужно настроить две библиотеки, необходимые для запуска этого кода в среде Arduino.

  • Первая библиотека называется - OneWire ().
  • Вторая библиотека называется - DallasTemperature ().

После скачивания обеих библиотек переместите файлы в папку библиотек Arduino по умолчанию. Затем скопируйте код в и загрузите его после двойной проверки правильности подключения вашего датчика.

//Code begins #include #include #include #define ONE_WIRE_BUS 7 OneWire oneWire(ONE_WIRE_BUS); DallasTemperature sensors(&oneWire); float tempC = 0; float tempF = 0; LiquidCrystal lcd(12,11,5,4,3,2); void setup() { sensors.begin(); lcd.begin(16,2); lcd.clear(); pinMode(3, OUTPUT); analogWrite(3, 0); Serial.begin(9600); } void loop() { sensors.requestTemperatures(); tempC = sensors.getTempCByIndex(0); tempF = sensors.toFahrenheit(tempC); delay(1000); Serial.println(tempC); lcd.setCursor(0,0); lcd.print("C: "); lcd.print(tempC); lcd.print(" degrees"); lcd.setCursor(0,1); lcd.print("F: "); lcd.print(tempF); lcd.print(" degrees"); }

Примерно это выглядит так:

Мы смогли измерить температуру до 100°C с помощью этого датчика! Он очень отзывчив.

После того, как вы создали проект, потестируйте устройство, погрузив датчик в горячую и холодную воду.

© 2020 reabuilding.ru -- Портал о правильном строительстве