Методы преобразования электрической энергии в тепловую. Способ и устройство преобразования тепловой энергии в электрическую

Главная / Ремонт

Они являются устройствами непосредственного превращения тепловой энергии в электрическую. Принцип действия ТЭГ основан на применении эффекта Зеебека. С помощью такого эффекта во многих энергетических системах (например, в двигателях внутреннего сгорания) можно преобразовывать бесполезно теряемую (сбросовую) тепловую энергию от двигателя в электрическую и использовать ее для питания различных устройств в автомобиле. Термоэлектрические генераторы могут найти применение также на некоторых электростанциях, где используется метод когенерации, т.е. в дополнение к произведенной электроэнергии вырабатывается тепло, которое применяется в альтернативных целях. Термоэлектричество может использоваться также в системах преобразования солнечной энергии.

Простейший полупроводниковый термоэлектрогенератор (термоэлемент) состоит из отрицательной (н-типа проводимости) и положительной (р-типа проводимости) ветвей. Материал с электронной проводимостыо имеет отрицательную ТЭДС, а с дырочной проводимостью - положительную, поэтому можно получить большее значение термо-ЭДС (а следовательно, повышенное 77).

Рис. 4.54.

Электрическая цепь работающего ТЭГ состоит из р- и и-ветвей одного или нескольких термоэлементов (рис. 4.54), коммутационных пластин горячего (при температуре Т г) и холодного (при температуре Г) спаев и активной нагрузки 7?.

При нагреве горячих спаев термоэлемента до температуры Т г и рассеивании тепла О на холодных спаях, поддерживаемых при температуре Т, а также при разомкнутой цепи 7?, между спаями стационарно устанавливается разность температур (Г г - Г х). Тепловой поток через термоэлемент, в данном случае после некоторых упрощений, можно записать как

где к - среднее значение теплопроводностей ветвей в интервале температур Г г - Г х; А и / - площадь поперечного сечения и длина р- и я-ветвей соответственно.

Разность температур па спаях термоэлемента вызывает термодиффузию носителей, в результате чего горячие спаи ветвей обедняются электронами и дырками, которые концентрируются на холодных спаях. Нарушение электрической нейтральности создает поле, направленное от холодных участков к горячим, которое препятствует дальнейшей термодиффузии носителей. Поле и создает термоэлектродвижущую силу V, возникающую на концах разомкнутой цепи термоэлемента. Возникающая ЭДС пропорциональна разности температур и разности коэффициентов ТЭДС каждой ветви:

В момент замыкания термоэлемента на внешнюю нагрузку 7? в цепи потечет обусловленный эффектом Зеебека постоянный ток:

(ЯРТЭГ), солнечные концентраторы различного исполнения (СТЭГ). Ориентировочно полагается, что при электрических мощностях от 1 до 10 кВт на космическом летательном аппарате целесообразны РИТЭГ и СТЭГ, а при повышенных уровнях мощности (в особенности, в дальнем космосе) - ЯРТЭГ.

Для катодной защиты магистральных газо- и нефтепроводов от коррозии, при отсутствии вдоль трассы линии электропередачи используются ТЭГ, работающие на газообразном топливе. Для работы автоматики газовых буровых скважин применяются ТЭГ, использующие перепад температур окружающей среды и газа из скважины. Недостатками ТЭГ являются сравнительно низкий (3-5%) КПД преобразования энергии и значительная (10-15 кг/кВт) удельная масса. Поверхностная плотность мощности ТЭГ достигает 10 кВт/м 2 (па единицу поперечного сечения элемента), а объемная плотность мощности равна 200-400 кВт/м 3 .

Для получения в ТЭГ стандартного рабочего напряжения в 30 В при значении ТЭДС одного термоэлемента 0,1-0,3 В требуется последовательно соединить в батарею до 100 элементов. Для космических аппаратов создаются ТЭГ мощностью от единиц до сотен ватт. Каскадное соединение ТЭГ позволяет повысить КПД преобразования энергии до 13%.

Термоэлектрические генераторы бывают низкотемпературные, среднетемпературные и высокотемпературные. Максимальная рабочая температура низкотемпературных (самых распространенных) ТЭГ с типовыми размерами 3x3 и 4x4 см 2 достигает 470-520 К. Напряжение, ток и мощность подобных ТЭГ при температурах холодного и горячего спаев 323 и 423 К равны соответственно 2 В, 1 А и 2 Вт.

  • Рис. 4.55. Вид промышленного ТЭГ (о) и его принципиальное устройство (б) где г - внутреннее сопротивление термоэлемента. Этот же токвызовет выделение и поглощение тепла Пельтье на спаях р- и/7-ветвей термоэлемента с металлическими пластинами. Движение носителей будет происходить от горячих спаев к холодным, что соответствует поглощению на горячих спаях теплотыПельтье. Другими словами, вся электрическая мощность, вырабатываемая термоэлементом, есть разница теплот Пельтьеего горячего и холодного спаев. Эффективность термоэлементов для термоэлектрических генераторов оценивается соотношением Иоффе (4.13). Принципиальные преимущества ТЭГ (рис. 4.55) перед другими источниками электропитания состоят в следующем: длительный срок службы, не требующий специальногообслуживания, и практически неограниченный срок храненияпри полной готовности к работе в любое время; устойчивость в работе, стабильное напряжение, невозможность короткого замыкания и режима холостого хода, высокая надежность, стабильность параметров;
  • полная бесшумность в работе (из-за отсутствия движущихся частей)и вибростойкость. Благодаря перечисленным свойствам ТЭГ находят применение в областях, где необходимы сверхнадежные источникиэлектроэнергии, обладающие длительным сроком эксплуатации и не требующие обслуживания. Они используются для питания электричеством аппаратуры в труднодоступных объектах, которые монтируются в отдаленных районах Земли, - автоматических метеостанциях, морских маяках, космическихлетательных аппаратах. В перспективе такие объекты могутмонтироваться на Луне или на других планетах. В качествеисточников тепла для подвода к горячим спаям ТЭГ применяются радиоактивные изотопы (РИТЭГ), ядерные реакторы

Электрический ток представляет собой направленное движение электрических частиц. При столкновении движу­щихся частиц с ионами или молекулами кинети­ческая энергия движущихся частиц частично передается ионам или молекулам, вследствие чего происходит нагре­вание проводника. Таким образом, электрическая энергия

преобразуется в тепловую, которая тратится на нагрев провода и рассеивается в окружающую среду.

Скорость преобразования электрической энергии в теп­ловую определяется мощностью:

Р =UI

или, учитывая, что U = Ir , получаем:

P=UI=I 2 r.

Электрическая энергия, переходящая в тепловую,

W = Pt = Prt.

Q = I 2 rt.

Полученное выражение, определяющее соотношение меж­ду количеством выделенного тепла, силой тока, сопротивлением и временем, было найдено в 1844 г. опытным путем русским академиком Э. X. Ленцем и одновре­менно английским ученым Джоулем. Оно известно теперь под названием за­кона Джоуля-Лен­ца: количество тепла,выделенного током в провод­нике,пропорцио­нально квадрату силы тока,сопро­тивлению проводника и времени прохождения то­к а.

Преобразование электрической энергии в тепло находит полезное применение в разнообразных нагревательных и осветительных приборах и устройствах.

В остальных приборах и устройствах преобразование электрической энергии в тепловую является непроизводи­тельным расходом энергии (потерями), снижающими к. п. д. их. Кроме того, тепло, вызывая нагревание этих устройств,

ограничивает их нагрузку, а при перегрузке повышение температуры может повести к повреждению изоляции или сокращению срока работы установки.

Пример 1 -7. Определить количество тепла, выделенное в нагрева­тельном приборе в течение 15 мин, если сопротивление прибора 22 ом, а напряжение сети 110в.

Сила тока

I = U : r = 110: 22 = 5a

Количество тепла, выделенное в приборе,

Q = I 2 r t = 5 2 22 15 60 = 49 500 дж.

Статья на тему Преобразование электрической энергии в тепловую

Известные способы прямого преобразования тепловой энергии в электрическую

подразделяются на три вида:

Магнитогидродинамические,

Термоэлектрические,

Термоэмиссионные.

МГД-метод и МГД-генератор. Магнитогидродинамический способ прямого преобра-

зования тепловой энергии в электрическую является наиболее разработанным для получения

больших количеств электроэнергии и лежит в основе МГД-генератора, опытные и опытно-

промышленные образцы которого были созданы в Советском Союзе.

Сущность МГД-метода заключается в следующем.

В результате сжигания органического топлива, например, природного газа, образуются

продукты сгорания. Их температура должна быть не ниже 2500 °С. При этой температуре

газ становится электропроводным , переходит в плазменное состояние. Это означает, что

происходит его ионизация. Плазма при такой относительно низкой температуре (низкотемпе-

ратурная плазма) ионизирована лишь частично . Она состоит не только из продуктов иониза-

ции - электрически заряженных свободных электронов и положительно заряженных ионов,

но и из сохранившихся целыми, еще не подвергшихся ионизации молекул. Для того чтобы

низкотемпературная плазма продуктов сгорания имела достаточную электропроводность при

температуре около 2500 °С, к ней добавляют присадку - легкоионизирующееся вещество

(натрий, калий или цезий). Ее пары ионизируются при более низкой температуре.

В основе работы МГД-генератора лежит закон Фарадея об электромагнитной индук-

ции: в проводнике, движущемся в магнитном поле, индуцируется ЭДС . В МГД-генераторе

роль движущегося проводника выполняет движущийся поток низкотемпературной плазмы,

т. е. поток ионизированного токопроводящего газа. На рис. 2.12 приведена принципиальная

схема МГД-генератора: между полюсами постоянного магнита расположен расширяющийся

канал, на противоположных стенках которого размещены электроды, замкнутые на внеш-

нюю цепь. Плазма с небольшой добавкой легкоионизирующегося вещества при температу-

ре около 2700-2500 °С поступает в канал МГД-генератора и за счет уменьшения ее тепловой

энергии разгоняется там до скорости, близкой к звуковой и даже более высокой (до 2000 м/с и более). Протекая по каналу, электропроводная плазма пересекает силовые линии специально

созданного магнитного поля, имеющего большую индукцию. Если направление движения

потока перпендикулярно силовым линиям магнитного поля, а электропроводность плаз-

мы, скорость потока и индукция магнитного поля достаточно велики, то в направлении,

перпендикулярном движению потока и силовым линиям магнитного поля, от одной стенки

канала к другой возникнет ЭДС и электрический ток, протекающий через плазму. Взаимодействие этого электрического тока с магнитным потоком создает силу, тормозящую движение плазмы по каналу. Таким образом, кинетическая энергия потока плазмы превращается в электрическую энергию. На выходе температура плазмы равна примерно 300 °С. В

МГД-генераторе осуществляется следующая цепь преобразований энергии:

тепловая кинетическая энергия электрическая

Преобразование механической энергии в электрическую

Эффект Толмена. Толмен обнаружил явление инерции электронов в металлах. При движении проводника с ускорением, мы можем наблюдать разность потенциалов на концах проводника.

Трибоэлектричество - возникновение электрических зарядов при трении двух разнородных тел. При трении химически одинаковых тел, положительный заряд получает более плотное из них. При трении двух диэлектриков положительно заряжается диэлектрик с большей диэлектрической проницаемостью. Вещества можно расположить в трибоэлектрические ряды, в которых предыдущее тело электризуется положительно, а последующее отрицательно.

Акусто-электрический эффект - возникновение постоянного тока ЭДС в проводящей среде (проводник, полупроводник) под действием бегущей ультразвуковой волны. Появление тока связано с передачей импульса от УЗ волны электронам. Применяется для измерения интенсивности УЗ в твердых телах, большую роль играет в изучении структуры вещества.

Пьезоэлектрический эффект наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными знаки зарядов. Нашел широкое применение в датчиках давления, используются для измерения уровня вибраций, акустических антеннах, дефектоскопии, гидроакустики, мощные источники УЗ волн .

Преобразование тепловой энергии в электрическую и термоэлектрическую энергию

Пироэлектричество - возникновение электрических зарядов на поверхности пироэлектриков при их нагревании или охлаждении. Один конец пироэлектрика заряжается положительно, а другой отрицательно, при охлаждении наоборот. Пироэлектрики - диэлектрики, обладающие спонтанной поляризацией, используются в качестве индикаторов и приемников излучений.

Эффект Зеебека - термоэлектрический эффект, возникновение электродвижущей силы в электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах. Можно использовать, как датчик термоэлектрический преобразователь.

Эффект Пельтье - эффект выделения или поглощения тепла при протекании электрического тока через соединение двух металлов, сплавов или полупроводников. Используется в термоэлектрических охлаждающих устройствах, термоэлектрических преобразователях.

Эффект Томсона - состоит в выделении или поглощении теплоты в проводнике с током, вдоль которого имеется градиент температуры, происходит помимо выделения джоулевой теплоты. Если вдоль проводника, по которому протекает ток, существует градиент температуры, причем направление тока соответствует движению электронов от горячего конца к холодному, то при переходе из более нагретого участка в более холодный электроны тормозятся и передают избыточную энергию окружающим атомам (выделяется теплота); при обратном направлении тока электроны, переходя из более холодного участка к более нагретому, ускоряются полем термоЭДС и пополняют свою энергию за счёт энергии окружающих атомов (теплота поглощается).

Эффект Нернста-Эттингсхаузена - возникновение электрического поля в металлах и полупроводниках при наличии градиента (перепада) температуры и перпендикулярного к нему внешнего магнитного поля. Относится к числу термомагнитных явлений .

Гальваномагнитные эффекты

Эффект Холла - возникновение поперечного электрического поля и разности потенциалов в проводнике или полупроводнике, по которым проходит электрический ток, при помещении их в магнитное поле, перпендикулярное к направлению тока. На основе данного эффекта создают датчики измерения магнитных полей.

Ядерные взаимодействия

Эффект Штарка. Расщепление спектральных линий атома в постоянном электрическом поле для атомов, имеющих ненулевые дипольные моменты, сдвиг линий пропорционален напряженности поля Е, т.е. в зависимости от направления поля частота будет или возрастать, или убывать; для неполярных диэлектриков сдвиг линий пропорционален ЕІ . Это объясняется тем, что молекула или атом приобретают дополнительную энергию вращения. Это явление может быть использовано в целях измерений; например, в измерениях, связанных с определением (влажность, состав, структура и т.д.).

Ядерный магнитный резонанс (ЯМР). Качественно аналогичен ЭПР, но отличается количественно. На основе ЯМР разработаны методы измерения напряженности магнитных полей (магнитометры), методы контроля хода химических реакций.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

© 2020 reabuilding.ru -- Портал о правильном строительстве