Генератор ван де граафа учебный. Ускорители заряженных частиц

Главная / Ремонт

Генератор Ван де Граафа способен выдавать электростатические потенциалы в сотни тысяч вольт. Такие установки имеются во многих лабораториях и политехнических музеях, где их используют в самых различных опытах, связанных с электричеством. Правда, там используются генераторы высотой в два человеческих роста. Мы же попробуем построить компактную настольную установку.

Назван генератор по имени голландского физика Р. Дж. Ван де Граафа, который в 1931 году сконструировал его для своих опытов по электростатике. С той поры установки, сыплющие искрами, можно найти даже в школьном кабинете физики, и называются они иногда электрофорными машинами. Мы же с вами попробуем сделать своими руками примерно такой генератор, как его задумывал сам Ван де Грааф.

Для конструкции генератора Ван де Граафа потребуется:

  • пустая металлическая банка из-под газировки;
  • небольшой гвоздик;
  • кольцевая резинка шириной примерно 0,5 см и диаметром 8 - 10 см;
  • стеклянный электрический предохранитель размерами 5×20 мм;
  • электродвигатель постоянного тока (например, от игрушки);
  • зажим "крокодильчик";
  • держатель батареи;
  • чашка из пенополистирола или бумажный стаканчик;
  • клеящий термопистолет или тюбик клея для пластика;
  • два отрезка медного электрического провода;
  • два отрезка 3/4-дюймовой сантехнической трубы из ПВХ;
  • 3/4-дюймовая муфта из ПВХ;
  • Т-образный 3/4-дюймовый сантехнический тройник из ПВХ;
  • изолента и деревянная подставка.

Может показаться, что установка сложна, но если вы посмотрите на иллюстрации, то увидите, что смонтировать ее можно всего за один вечер. Главное - припасти все необходимые детали.

Монтаж генератора

Монтаж начните с деревянного основания. К нему приклейте 5 - 7-сантиметровый отрезок пластиковой трубы диаметром 3/4 дюйма. На этом фундаменте и будет монтироваться ваш генератор с тем расчетом, чтобы в случае надобности его можно было легко снять, если, например, надо заменить в нем резиновую ленту или внести изменения в конструкцию.

В одно из колен сантехнического тройника вставляется электродвигатель. Поскольку моторчик, как правило, небольшого диаметра, то его надо обернуть бумагой или изолентой, чтобы корпус входил в трубу с некоторым усилием. На вал двигателя натяните кусочек пластиковой трубки соответствующего диаметра.

Далее, просверлите небольшое отверстие в боковой части Т-образной трубки. Через него введите внутрь конец многожильного провода, "разлохмаченного" в виде кисточки или щетки таким образом, чтобы, расположив его вблизи резиновой ленты, можно было снимать с нее электростатический заряд.

Закрепить провод на месте можно с помощью скотча или изоленты. Кольцевую резинку накиньте внизу на шкив, а оставшуюся часть вытащите наверх, как показано на иллюстрации.

Далее, отрежьте от 3/4-дюймовой сантехнической трубы цилиндр 5 - 7-сантиметровой длины. Его надо будет закрепить в верхней части Т-образного разъема, как показано на рисунке. Протяните резинку до самого верха и закрепите положение гвоздиком.

При этом надо иметь в виду, что длина трубы должна быть такой, чтобы резинка не была растянута слишком сильно. Иначе из-за повышенного трения двигатель будет работать с излишней нагрузкой.

Отрежьте от пенополистироловой чашки нижнюю часть высотой 1,5 - 2 см, переверните ее вверх дном и вырежьте в дне отверстие с таким расчетом, чтобы оно плотно садилось на 3/4-дюймовую трубу.

Теперь просверлите три отверстия в верхней части муфты. Два из этих отверстий должны быть диаметрально противоположны друг другу, так чтобы через них прошел небольшой гвоздь, который будет выступать в качестве мостика для резинки. Третье отверстие расположено между двумя другими с таким расчетом, чтобы продетая в него проволочная кисточка-щетка, как и нижняя щетка, почти касалась резинки в натянутом состоянии.

Щетка вставляется в муфту, а сама муфта надевается на 3/4-дюймовую трубу, выше "воротника" из чашки. Резинка заправляется в муфту и удерживается на месте гвоздиком, как и раньше. Кстати, отдельные проводки "кисточки" надо скрутить почти по всей длине между собой, чтобы отдельные проводки не распались.

Теперь осталось поставить на место стеклянную трубочку. Проще всего взять ее от электрического предохранителя, какие используются в радиоприборах. Аккуратно нагрейте паяльником металлический колпачок на одном из концов предохранителя и снимите его плоскогубцами с трубки. Так же поступите с другим колпачком.

Затем вытащите конец гвоздика из одного отверстия в муфте и наденьте на него стеклянную трубку с таким расчетом, чтобы резинка оказалась на трубке. Снова введите гвоздь во второе отверстие.

Приклейте пенополистироловый "воротник" к трубе. Лучше всего сделать это с помощью термопистолета, так как клей при этом быстро застывает и не растворяет пластмассу.

Но, в принципе, то же самое можно сделать и при помощи иного подходящего клея для пластика.

Теперь вы готовы к установке алюминиевой банки. Она хороша для высокого напряжения потому, что имеет закругленные края, что минимизирует "коронный разряд". Остается лишь острым ножом аккуратно вырезать верхнюю крышку, загладить обрезанные края, например, с помощью отвертки и, перевернув банку вверх дном, насадить ее на полистироловый воротник, пропустив внутрь свободный конец верхней проволочной "кисточки"-щетки.

Последний шаг - подключение двигателя к батарейке с помощью проводов. При этом вольтаж питания должен соответствовать тому, на которое рассчитан взятый вами электромотор.

Если кисточки-щетки в верхней и нижней частях банки установлены правильно - очень близко к резинке, но не касаются ее, вы должны почувствовать легкий электрический укол, как только поднесете палец близко к алюминиевой банке.

Запуск и настройка генератора Ван де Граафа

Если вы не обнаружили признаков высокого электростатического напряжения при работающем двигателе (нет искр, банка не притягивает к себе бумажных полосок), то вам придется заняться наладкой генератора.

Для начала попробуйте другой тип резинки. Некоторые виды резины имеют некую проводимость, а потому и не могут дать высокого потенциала.

Убедитесь, что все детали установки чисты. Грязь и жир тоже могут сделать вашу установку неработающей.

Проверьте: надежно ли верхняя щетка контактирует с металлом банки. Некоторые банки имеют внутри пластиковое покрытие. Тогда лучше взять другую банку.

Проверьте, нет ли острых концов, выходящих за пределы установки. Они могут стать источником коронного разряда, и напряжение накапливаться не будет.

Убедитесь, что щетки не касаются самой резиновой ленты. Между ними должен быть некоторый зазор.

Схема генератора Ван де Граафа : 1 - вал электромотора; 2 - стеклянная трубка; 3 - гвоздик; 4 - проволочная щетка; 5 - сфера; 6 - резинка; 7 - проволочная щетка.

Проверьте правильность всего монтажа, сравнив то, что сделано нами, с принципиальной схемой установки.

После того как генератор налажен, посоветуйтесь с учителем физики, какие интересные опыты можно поставить с помощью сделанного вами генератора. Например, если навесить на алюминиевую банку при выключенном генераторе гроздь бумажных полосок, то по мере увеличения напряжения они образуют некий экзотический "букет".

А можно с помощью генератора Ван де Граафа попробовать получать электреты - вечные источники электрического напряжения, которые используются, например, в микроскопах.

Начнем с простого и дойдем до классики!
А не хотите ли Вы взять обычный тонкий полиэтиленовый пакет, обвязать его по середине ниткой и обрезать полиэтилен с двух сторон от нитки, соорудив бантик, привязанный к длинной ниточке.
Берем в руки школьную пластиковую линейку, трем ее о шерстяной шарф и подносим к бантику.
Теперь любуемся полетом бантика и стараемся как можно дольше удерживать его в воздухе.

Это самый простой опыт по электризации трением, он вызывает восторг зрителей, желание попробовать сделать тоже самое самому.
Ну, и пожалуйста, кто был бы против!

А теперь возьмем в руки то, что продается в магазине!
Просто-напросто берем волшебную палочку, поднимаем вверх вырезную фигурки из фольги и, как заправский фокусник, заставляем фигурку парит в воздухе над палочкой.
Ну это, скажу я вам, не бантик!

Фигурка распрямляется, становится объемной и вот она, полностью в вашей власти, выделывает в воздухе замысловатые кульбиты.

Где же скрыт секрет?
Чем «волшебна» эта волшебная палочка, и, как говорят малые дети, что там внутри?

Вспомните ваше первое знакомство с генератором статического электричества - это ваша кошка!
Погладь и «наслаждайся» затем дергающими нервы электрическими прикосновениями …. Пробовали?

Другой известный со школы генератор статического электричества - это электрофорная машина.

И вот еще одно воплощение устройства для накопления электрических зарядов: в волшебной палочке находится миниатюрный электростатический генератор Ван де Граафа.

Генератор в волшебной палочке работает на батарейках, которые также расположены внутри палочки. При нажатии на кнопку, генератор начинает создавать на конце волшебной палочки электростатический заряд. Когда конец палочки дотрагивается до фигурки из фольги, она приобретает часть электростатического заряда палочки. Палочка и фигурка получают одноименные заряды, а такие заряды должны отталкиваться. Фигурка и палочка теперь будут отталкиваться друг от друга.
Фигурка из фольги становится объемной потому, что все её части имеют заряды одного знака. Получается эффект, словно мы из вырезанной бумажной фигурки надуваем воздушный шарик.
Через некоторое время, заряд на фигурке и палочке ослабевает, и нужно снова нажать на кнопку на палочке, чтобы накопить новый заряд статического электричества.

А настоящий большой генератор Ван де Граафа был создан американским физиком Робертом Ван де Граафом для серьезных научных исследований элементарных частиц в области атомной физики.

Большой мощный генератор Ван де Граафа был построен и установлен на рельсы в ангаре для дирижаблей.
Генератор состоял из двух столбов, на каждом из которых сверху были установлены полые алюминиевые, надежно изолированные от земли сферы диаметром 15 футов (1 фут равен 0, 3 м) каждая.

Вертикально установленная в колонне диэлектрическая бумажная лента, склееная в кольцо, вращалась на роликах. Верхний ролик был выполнен из диэлектрика, а нижний из металла и соединён с землёй. Нижний конец ленты получал электрические заряды от источника тока, а верхний конец находился внутри металлической сферы. Щеточный электрод внутри сферы касался ленты, снимал электрический заряд и подавал его на проводящую сферу, где он равномерно распределялся по всей внешней поверхности сферы.

Такие генераторы использовались для создания высокой разности потенциалов в линейных ускорителях частиц, поэтому требовались две сферы, накапливающие разноименные заряды. Одна сфера заряжалась положительно, другая отрицательно, при достаточном накоплении зарядов между шарами происходил электрический разряд, который и исследовался физиками.

Суммарное напряжение между сферами достигало миллионов вольт. Внутри каждой сферы огромного генератора располагались научные исследовательские лаборатории

Первоначально такие генераторы использовались в линейных ускорителях. Диаметр купола достигал несколько метров, а создаваемая разность потенциалов несколько миллионов вольт.
В настоящее время генераторы Ван де Граафа применяются в основном для моделирования процессов, например, для имитации природных грозовых разрядов.

Теперь генератор Ван де Граафа можно увидеть и в школе, выпускается миниатюрный учебный демонстрационный генератор, предназначенный для проведения демонстрационных опытов по электростатике: электризации тел и показов искрового газового разряда в воздухе.

Здесь резиновая лента приводится в движение электродвигателем, она проходит между электрически заряженными пластинами. Возникшие на внешней стороне ленты заряды переносятся на сферу, создавая достаточно сильные электростатические поля (высокие напряжения) в окружающем пространстве, а заряды с внутренней стороны ленты противоположного знака отводятся через заземление.

Генератор Ван де Граафа - это генератор статического электричества, он дает очень высокие напряжения при очень малых токах в микроамперах. Благодаря этому, используя генератор Ван де Граафа, можно демонстрировать интересные опыты, например, электризацию человеческого тела, когда волосы «встают дыбом», и опыты в темноте, показывая электрические разряды в виде маленьких молний.

Если человек встанет на изолирующую подставку, и дотронется до заряженной сферы генератора Ван де Графа, то его телу сообщится большой электрический заряд, и все волосы, получившие одноименный заряд, будут отталкиваться друг от друга и встанут дыбом.

Но «не дай бог», если человек в таком состоянии коснется заземленной батареи отопления и ощутит на себе перераспределение зарядов!

В начале 70-х "Van Der Graaf Generator" входили в пятерку сильнейших британских прог-групп. Эта команда была создана в 1967 году тремя студентами Манчестерского Университета: Питером Хэммиллом (гитара, вокал), Ником Пирном (орган) и Крисом Джаджем Смитом (ударные, духовые). По предложению последнего из них коллектив взял себе название, обозначавшее машинку по производству статического электричества. Первые записи "VDGG" попали к представителям "Mercury Records", и фирма предложила музыкантам контракт, который почему-то подписал один Хэммилл . В 1968-м Пирна сменил Хью Бэнтон, а менеджером команды стал Тони Страттон-Смит. С помощью Тони в коллективе появился бас-гитарист Кит Ян Эллис, а спустя некоторое время за ударные уселся Гай Эванс.

Данный состав нарезал несколько демок для "Mercury", выпустил сингл "The People You Were Going To" и... распался. Поводом для роспуска группы послужили кража всего оборудования и непонятки с сольным контрактом Хэммилла . Тем не менее, когда Питер начал работать над первым альбомом, к нему вновь присоединились Бэнтон, Эванс и Эллис, и как-то так получилось, что "Mercury" выпустила пластинку под маркой "Van Der Graaf Generator".

В 1969 году Страттон-Смит организовал собственную фирму грамзаписи "Charisma Records" и первым делом пристроил на нее своих подопечных из "VDGG". Перед записью "The Least We Can Do Is Wave To Each Other" Эллиса, ушедшего в "Juicy Lucy ", сменил Ник Поттер, а, кроме того, в составе появился саксофонист Дэвид Джексон. Кадровые изменения повлияли и на музыку, и психоделические элементы уступили место мрачноватым джазово-классическим текстурам. "The Least We Can Do Is Wave To Each Other" был принят достаточно тепло, и группа приступила к работе над следующим (не менее успешным) альбомом. В самый разгар сессий "H To He Who Am The Only One" сбежал Поттер, однако это практически не отразилось на качестве пластинки. Басовые партии удачно сымитировал на своем органе Бэнтон, а дополнительные штрихи наложил гость из "King Crimson " Роберт Фрипп .

Состав группы, существовавший на тот момент, получил статус классического, что подтвердилось выпуском замечательного альбома "Pawn Hearts". Эта работа, на которой вновь появился Фрипп , рассматривается большинством поклонников "VDGG" лучшей в дискографии коллектива. Тем не менее, вскоре команда была распущена, а Хэммилл начал сольную карьеру. Расставание прошло в дружественной обстановке, поэтому впоследствии коллеги Питера время от времени участвовали в записи его альбомов.

В 1975 году классический квартет воссоединился и в течение 12 месяцев записал три новых диска. В отличие от первых альбомов, над которыми трудился Джон Энтони, эти работы вандерграафовцы продюсировали сами. После выхода "World Record" Бэнтон и Джексон подали в отставку, зато вернулся Поттер, а вместо Дэвида появился скрипач Грэхем Смит (экс-"String Driven Thing "). Название группы сократилось до "Van Der Graaf", а вместе с этим сократилась и продолжительность композиций, ставших более доступными. После выхода "The Quiet Zone/The Pleasure Dome" с участием виолончелиста Чарльза Дики был записан концертник "Vital". Когда пластинка увидела свет, группа уже вновь была распущена. Время от времени бывшие коллеги продолжали встречаться на сессиях и изредка давали совместные концерты.

Настоящий же реюнион состоялся в 2004 году, когда классический состав приступил к работе над новым студийным альбомом. Весной 2005-го вышел двойник "Present", и в его поддержку коллектив отыграл серию европейских концертов. На следующий год ряды "Van Der Graaf Generator" покинул Джексон, а в 2007-м на лейбле Хэммилла "Fie! Records" был выпущен концертник "Real Time" с записью выступления в "Royal Festival Hall".

Last update 31.03.07

Генератор Ван де Граафа был изобретен в начале двадцатого столетия. Его использовали для разных целей, в частности, для ядерных исследований. Позже применение сузилось. Сегодня можно купить его как игрушку и демонстрировать детям, левитацию различных объектов. Также генератор можно соорудить самостоятельно. Тогда он станет отличной учебной моделью, с которой проводят разные опыты.

Детские фокусы

Хотите сотворить «волшебство»? Возьмите пакет из полиэтилена, обрежьте оба конца и завяжите на ниточке, чтобы получился бантик. Затем обычную линейку из пластика хорошенько потрите о шерстяную вещь и поднесите ее к бантику: начнется полет…

Готовую «волшебную палочку» с фигурками, с которыми можно делать такие фокусы, можно и купить в магазине.

Но самый простой вариант увидеть «волшебство» - это просто погладить кошку. Тогда можно и почувствовать, и увидеть возникшее статическое электричество.

А вот игрушка, повторяющая конструкцию генератора Ван де Граафа, работает на аккумуляторной батарее. Когда нажимают на кнопку, на кончике создается электростатический заряд. Поэтому фигурка перенимает его, и одноименные заряды начинают отталкиваться друг от друга. Так как фигурка вырезана определенным образом, она «надувается» и получает объем. Если заряд ослабевает, то нужно просто еще раз нажать на «волшебную» кнопку.

Немного истории

Конечно, генератор Ван де Граафа — это не только детские игрушки. Сам физик создал свое детище для проведения серьезных исследований в разделе атомной физики. Первый демонстрационный образец был сделан в 1929 году. Он был небольшого размера. Более внушительные габариты получил генератор Ван де Граафа, установленный на рельсы для дирижаблей. Модель состояла из двух столбов, наверху которых расположили полые сферы из алюминия диаметром пятнадцать футов.

Сооруженные в 1931 и 1933 годах установки достигали мощности в семь миллионов вольт. А ведь лишь заряд до восьмидесяти киловольт обеспечивал первый генератор Ван де Граафа.

Принцип действия

Внутри вращается вертикально диэлектрическая лента из бумаги. Ролик, расположенный наверху, является диэлектриком, а нижний выполнен из металла и соединен с землей. Щеточный электрод в сфере снимает и подает заряд, который распределялся в сфере равномерно. Рядом с электродом, находящимся внизу, воздух ионизируется, полезные ионы оседают на ленте, и та ее часть, которая направляется вверх, заряжается.

Чтобы получалась высокая разность потенциалов в линейных ускорителях частиц (для чего и нужны были эти генераторы), использовались две сферы с разными зарядами. В одной из них накапливались положительные, и в другой — отрицательные. Когда концентрация достигала определенного уровня, между ними проскакивал электроразряд. Именно он и исследовался. Напряжение здесь доходило до миллионов вольт.

Ранее устройства применялись для ядерных исследований и ускорения частиц. После того как появились другие способы ускорения, их стали использовать в этой сфере гораздо реже. В настоящее время генератор Ван де Граафа в большей степени служит для моделирования. К примеру, с его помощью имитируют природные разряды газа. Вместо лент в установках часто используют цепи, состоящие из пластиковых и железных звеньев поочередно.

Что нужно для самостоятельной сборки прибора

Модель несложно соорудить самостоятельно из подручных средств. Генератор Ван де Граафа, своими руками собранный, состоит из следующих составляющих:

  • карандаша;
  • обрезка трубы ПВХ;
  • резинки;
  • скрепки;
  • фольги из алюминия;
  • двигателя от игрушки;
  • неработающей лампочки;
  • сухих паст от ручки;
  • батарейки на девять вольт;
  • скотча;
  • провода;
  • дощечки.

Все элементы должны быть сухими, так же, как и воздух в помещении. В противном случае работать конструкция просто не будет или будет, но очень слабо.

Вот какой получится генератор Ван де Граафа. Фото ниже показывает, как должна выглядеть модель.

Как генератор делается самостоятельно

Сначала сверлят отверстие на дощечке, которая станет основанием конструкции. Сверло подбирают подходящего диаметра, форма - в виде пера. Затем на трубке проделывают два отверстия: сверху и снизу, для паст. Делают еще два отверстия: одно чуть выше верхнего, а второе — перпендикулярно нижнему.

Далее пасты нужно полностью очистить от чернил. Вырезают кусок, соответствующий внутреннему диаметру трубы. Берут скрепку, выпрямляют и отрезают кусок достаточной длины, чтобы он на сантиметр выступал из трубки.

Из скотча изготавливают диэлектрическую ленту. Резинку обклеивают так, чтобы обе стороны тоже были липкими.

Подготовленные элементы собирают.

Добавляют щетки, собирающие заряд. Внизу кисть проходит через отверстие, а кончик делают распушенным. Кисти должны находиться близко к резинке, но не касаться ее. Верхнюю продевают через отверстие наверху.

После этого при помощи фольги из алюминия обклеивают неработающую уже лампочку. К фольге крепится верхний провод. Лампу вставляют сверху конструкции.

Генератор Ван де Граафа учебный готов.

Опыты

Если к верхнему электроду прикрепить несколько нитей и приблизить руки, то они «встанут дыбом» и обовьют пальцы. Попробуйте провести опыты в темноте.

Чтобы получить более мощное напряжение, соединяют два генератора.

Хорошим вариантом для опытов станет лейденская банка.

Самым известным опытом является тот, при котором волосы становятся дыбом. Для этого нужно встать на деревянную доску или фанеру. Руку ставят на сферу (при этом генератор должен быть выключен, чтобы не ударило током). После включения прибора пройдет искра, в результате чего волосы встанут дыбом.

Генератор следует разряжать после каждого применения и работать с ним крайне осторожно, так как ток может стать смертельно опасным для человека.

Это генератор высокого напряжения, механизм работы его базируется на электризации движущейся диэлектрической ленты. Впервые был создан в 1929 г. в США физиком Робертом Ван де Граафом и давал разность потенциалов до 80 Квольт. В 1931 он же разработал устройства, вырабатывающее 1 млн, а два года спустя – 7 млн вольт.

Известно, что при трении разных материалов друг об друга можно получить электрический заряд, который притягивать всякие мелкие бумажки, пыль и даже отклонять струю воды. Например, используем канализационную ПВХ-трубу и носок, работает не хуже знаменитой эбонитовой палочки. Любое вещество состоит из положительно заряженных ядер атомов и отрицательно заряженных электронов, которые вращаются вокруг них. Обычно в веществе положительного и отрицательного заряда поровну, поэтому суммарный равен нулю, такое тело не заряжено. Но когда носок касается трубы, то электроны переходят с носка на нее, потому что электроны лучше притягиваются к её молекулам.

Трение – это способ привести в контакт как можно больше молекул, поэтому во время эксперимента лучше еще нажимать на носок силой. Но не все осознают, что таким простым способом достигается напряжение в 1000 В, чтобы убедиться в этом, рекомендовано проделать эксперимент в абсолютной темноте, например, заперевшись в комнате без окон. И пронаблюдать вспышки разрядов, возникающие при трении носка об трубу.


Генератор Ван де Граафа тоже получает заряд за счет соприкосновения двух материалов друг с другом, однако он умеет получать куда большее напряжение. При устроен он довольно просто. В нижней части генератора закреплен двигатель, он нужен, чтобы вращать специальную ленту, на оси двигателя нужно закрепить что-то, что при соприкосновении заряжать ленту. Перепробовали целую кучу материалов надевать на ось, а также несколько вариантов лент. В качестве ленты лучше всего работал медицинский бинт Мартенса, а на ось в итоге надели кусочки все той же ПВХ-трубы, которая хорошо притягивает электроны, заряжаясь отрицательно. А положительно зарядившаяся лента, вращаясь, несет свой заряд наверх, и он накапливаться на металлическом шаре все больше и больше. Если хочется, чтобы шар стал не плюсом, а минусом, просто просовываем свои пальцы в трубу, кожа при трении отдает электроны. Напряжение на шаре накапливается действительно большое, судя по размеру пробивающих молний 100000 В набирается. Крутые генераторы, созданные по технологии Ван де Граафа, умеют получать миллионы вольт и используют в физике, чтобы ускорять частицы до больших энергий.

Почему лента всегда только приносит заряд на шар, и никогда его оттуда не уносит? Чтобы ответить на вопрос, нужно разобраться в одном важном свойстве проводников, ведь шар в отличие от ленты специально сделан из металла, хорошо проводящего материала. Объяснение для обывателя, прошаренные чуваки сами прочитают про теорему Гаусса и экранировку.

Предположим, есть кусок металла, и внутрь него каким-то образом попал заряд, пусть это кучка отрицательных электронов, однако, если это металл, то не пройдет и доли секунды, как там уже не будет, потому что это кучка электронов, они все друг от друга отталкиваются. Быстро весь избыточный заряд окажется размазанным по внешней стенке металла очень-очень тонким слоем, т.е. всегда скапливается на внешней поверхности проводников. Поэтому лента и не может взять заряд с шара, внутри его просто нет. Это и есть основной принцип работы генератора изобретателя Ван де Граафа. Вся фишка в том, что подносим ленту изнутри шара, а не снаружи.

Шар сделали из двух салатниц, купленных в Икея. Внутри втулка из велосипеда, на которой держится, свободно вращаясь, лента. Заряд с ленты на шар попадает либо через втулку, либо с помощью дополнительного провода, поднесенного максимально близко к ленте. В конце он разделен на множество мелких острых проводников. Дело в том, что через воздух на острие намного лучше стекает заряд. Половник, в который бьет молния, заземлен через корпус самодельного генератора.

© 2020 reabuilding.ru -- Портал о правильном строительстве