Самодельный электростатический фильтр. Самодельный очиститель воздуха от пыли
В любом помещении скапливается слишком много пыли, которая поглощается мягкой мебелью, коврами, детскими игрушками и даже самым человеком. И как бы интенсивно не велась борьба за чистоту, частицы пыли все равно будут витать в воздухе помещения. Усовершенствовать процесс противостояния можно, использовав воздухоочиститель. Достаточно простым и высокоэффективным прибором является очиститель воздуха электростатического типа.
Угольные фильтры для очистителя воздуха
- Корпус с наличием прорезей для забора грязных и вывода чистых воздушных масс.
- Очищающий и ионизирующий фильтр.
- Пылесборник, состоящий из установленных электродов с разнополярными зарядами.
- Электронные управления для автоматического контроля.
- Блок питания для запуска устройства.
Принцип работы
Коронирующий заряд, созданный на электроде, производит заряженные ионы. В процессе движения они захватывают частички пыли и бактерии. Оседая на электроде такие ионы вместе с собой «приклеивают» и вредные компоненты воздуха. Чистый воздух подается обратно в помещение. Простой рабочий алгоритм позволяет использовать прибор в помещениях любого типа. Он пригоден для малогабаритных комнат, площадь которых не превышает 20 м2.
Достоинства
- Эффективное устранение пылевых частиц, размер которых не превышает 1 мкр. Спровоцировать появление большого количества пыли может простой ремонт.
- Минимальное потребление электрической энергии, так как мощность современных устройств не превышает 45 Вт.
- Установленный фильтр не нуждается в замене. При загрязнении он просто моется под проточной водой не реже 1 раза в 10 дней в случае интенсивного использования.
- Модели без вентилятора не создают звука, что позволяет их применять в детской комнате или в ночное время суток.
При этом совсем необязательно приобретать готовое устройство. Очиститель воздуха для помещения можно изготовить самостоятельно, приложив немного усилий и потратив чуть-чуть времени. В итоге это даст экономию средств.
Электростатический очиститель воздуха своими руками: вариант №1
Представленная ниже конструкция профессионального очистителя воздуха позволяет определить способ монтажа устройства своими руками. Соответствуя предложенной схеме, можно смастерить устройство своими руками. Составные элементы механизма приобретаются в специализированных магазинах, либо заменяются подручными средствами. К примеру, НЕРА-фильтр заменяется угольным элементов, фильтр грубой очистки – пористым материалом, ионизатор в конструкции можно не использовать.
Мойка воздуха своими руками: подробная инструкция по изготовлению
Схема устройства самодельного очистителя
Данная схема работает при искусственной подаче загрязненного воздуха. Для перемещения воздушных масс можно применять обычный вентилятор. Подключив к питанию такой очиститель, можно устранит пыль в течение 12 часов. Но, главным его недостатком является выработка озона, который в большом количестве вреден для человеческого организма.
Важно! Использование дополнительного фильтра на основе активированного угля, установка перегородки с силикагелем позволит более эффективно и быстро удалить пылевые частицы из воздуха.
Очиститель воздуха своими руками для дома: вариант №2
Необходимые конструктивные элементы
- Маленький вентилятор, напряжение которого составляет 12 В.
- Питание: батарейка «Крона».
- Клемма для подключения источника питания.
- Пластиковый контейнер, соответствующий габаритам вентилятора.
- Фильтрующий элемент: угольный.
Процесс изготовления
Очиститель в пластиковом контейнере
- На приготовленном контейнере нанести разметку для проделывания отверстий для поступления и вывода воздушных масс.
- На дне контейнера нанести линии пропила, которые соответствуют габаритам батарейки.
- С помощью клеммы подсоединить вентилятор к источнику питания – батарейке.
- Проверить работоспособность собранной конструкции.
- Готовую конструкцию установить в пластиковый контейнер.
- По размерам контейнера вырезать угольный фильтр.
- Уложить фильтрующий элемент поверх вентилятора.
Важно! Для повышения надежности конструкции батарейку к вентилятору лучше припаять. Это позволит устранить перебои с подачей питания, и соответственно повысит эффективность использования прибора.
Самодельный очиститель воздуха от пыли с увлажнением: конструкция №3
Для реализации задачи используются:
- объемная емкость из пластика с наличием крышки;
- блок питания в 12 В, который можно подключать к электросети;
- вентилятор незначительных габаритов;
- фильтрующий элемент.
Принцип конструкции аналогичный №2: в пластиковом баке выполняется отверстие под установку вентилятора и блока питания. В верхней части емкости с помощью болтов прочно фиксируется вентилятор для предотвращения его зануривания в воду. В нижнюю часть пластикового бака заливается вода. Жидкость должна не доходить до вентилятора как минимум на 3 см.
Данное устройство может быть оборудовано реле, с помощью которого можно автоматически управлять конструкцией: она будет включаться и отключаться через определенное время самостоятельно, что, согласитесь, очень удобно.
Как сделать очиститель воздуха своими руками для комнаты с повышенной влажностью
Фильтры можно сделать из плотной пористой ткани
Для выполнения проекта необходимы материалы:
- емкость из пластика глубиной не менее 20 см;
- маломощный вентилятор, крыльчатка которого вращается медленно;
- морская или поваренная соль;
- пористый материал: многослойная подушка по типу ватно-марлевой повязки, поролона;
- питание для работы вентилятора;
- крепежные элементы;
- надежный клей скоропалительного действия;
- заточенный нож для выполнения процесса монтажа.
Сделать самому очиститель воздуха можно, следуя инструкции:
- в пластиковом контейнере на разных стенках проделать два отверстия разного размера: отверстие под установку вентилятора должно быть таких же размеров как устройство для воздухообмена. Разместить его следует немного выше, нежели второе отверстие на противоположной стороне;
- зафиксировать вентилятор;
- сделать фильтр, размер которого будет немного превышать размер второго отверстия. Фильтр может быть изготовлен многошаровым способом: марля + вата;
- зафиксировать фильтр на коробе с помощью быстросохнущего клея;
- насыпать сухую соль таким образом, чтобы вещество закрывало отверстие с установленным фильтром, но не доставало до вентилятора;
- подсоединить конструкцию к источнику питания, и запустить механизм.
Важно! При создании очистителя для квартиры с высокими показателями влажности необходимо использовать вентилятор, который вращается очень медленно. В противном случае интенсивный воздушный поток «расшевелит» соль, которая стуча по стенкам контейнера будет раздражать слух. Такое устройства не пригодно для применения в ночное время суток.
Данный очиститель имеет 2 уровня фильтрации: пористый материал в виде марли устранит пылевые частицы; соль, которая впитает излишнюю влажность, бактерии и мелкофракционную пыль. Самодельный электростатический очиститель воздуха данного типа насытит воздух в комнате ионами хлора и натрия, делая воздух в помещении более благотворным для человека и комнатных растений.
Очиститель своими руками изготавливается с учетом показателей влажности в комнате. Для ее измерения применяется специальный прибор – гигрометр. Оптимальная влажность в помещении в соответствии с ГОСТ 30494-96 составляет 40-60%. При показателях гигрометра более 70 % следует использовать «сухой» очиститель. При показателях менее 30 % потребуется устройство с увлажнением воздуха.
Добавить комментарий
Leave this field empty
Популярные статьи
Какие использовать очистители воздуха от сигаретного дыма
Очистители воздуха от табачного дыма для дома — как работают…
Что использовать для очищения воздуха в квартире
Зачем и когда необходимо очищение воздуха. Выполняют очищение воздуха в…
Каким должен быть очиститель воздуха для детской комнаты
Очиститель воздуха для детской комнаты нужен обязательно — такое мнение…
Как сделать увлажнитель и
2ГИС Тюмень. Скачать Дубль ГИС бесплатно на компьютер
Гороскоп для Тигра на 2018 год Собаки
Декоративные изделия из гипса своими руками. Видео
Как сделать водосток из подручных материалов
Как сделать интимную стрижку своими руками — Мне 30
Как сделать подарок маме
Как я могу помочь своей стране и народу!
— простой русский человек
Когда высаживать овощную рассаду в грунт и в теплицы — Клуб
Магазин оригинальных и необычных
Похожие записи:
Очиститель воздуха своими руками
К сожалению, в наших домах воздух нельзя назвать совершенным. Более того, на улице он намного чище, поскольку очищается солнцем и естественной ионизацией, продувается ветром, увлажняется дождем. А разве в своей жилище мы можем создать такие условия для очищения воздуха? Одного проветривания и уборки пылесосом будет мало: они не способны уничтожить пыль и продукты распада: угарный газ, окислы азота, аммиак и многое другое. Выход, конечно, есть – купить такой прибор очиститель воздуха. Если говорить о том, как работает очиститель воздуха, то тут все просто. Воздух в комнате проходит через прибор, и пыль, аллергены, пух, табачный дым, химические вещества оседают на его фильтрах. Сейчас производители предлагают различные устройства: с угольным или HEPA-фильтром, плазменные, ионизирующие, фотокаталитические и мойки воздуха.
Скажем сразу, стоимость такого прибора не низкая. И к тому же решить, лучший очиститель воздуха для дома, не так уж и просто. Поэтому при наличии умелых рук предлагаем вам создать прибор своими руками.
Как сделать очиститель воздуха от пыли?
Предлагаемый очиститель воздуха представляет собой мойку воздуха, где в качестве фильтра выступает вода, которая очищает воздух от аллергенов, пыли, грязи. В результате воздух не только очищается, но и увлажняется. К тому же вода – самый дешевый фильтр.
Для создания очистителя воздуха своими руками вам будут нужны:
- пластиковая емкость с крышкой;
- вентилятор, можно кулер от блока питания компьютера;
- блок питания для подключения к сети;
- винты.
Вот и все! Для пущего эффекта в воду можно положить серебряное изделие.
Статьи по теме:
Как сделать украшения своими руками? Ничто не заменит украшений, изготовленных собственноручно. Самодельный очиститель воздуха от пылиК тому же сейчас такой хенд-мейд стоит немалых денег. Ведь мало того, что каждое украшение индивидуально, так еще и сделано руками, а это значит, что в него вложена любовь и душевное тепло. Станьте и вы на мгновение мастерицей с помощью нашей статьи. |
Закладки для книг из ленточек Очень часто закладками для наших книг служит все, что попадается под руку: ненужные билеты, обрывки бумаги и прочее. Но гораздо симпатичнее будет смотреться закладка, сделанная своими руками, например, из лент. |
Валяние валенок Валенки – теплая и очень удобная зимняя обувь. Купить настоящие валенки бывает довольно трудно, а вот попытаться создать их своими руками можно. Конечно, если до этого вы не были знакомы с техникой валяния из шерсти, плотные сапожки у вас могут и не получиться. Но будьте уверены – домашнюю обувь по нашему мастер-классу смогут сделать все! Подробнее о том, как свалять валенки своими руками читайте в статье. |
Крейзи пэчворк Яркие и небанальные изделия в стиле пэчворк нравятся многим. Чаще всего отдельные мотивы в пэчворке делают одинаковой формы и они соединяют в определенном порядке. Но существует и более «радикальный» вариант – крейзи пэчворк, элементы в котором сшиваются хаотично. Подробнее о крейзи пэчворке — статье. |
Как надолго избавиться от надоедливой пыли в квартире
Каждая хозяйка хотя бы раз в жизни задавалась вопросом «как избавиться от злосчастной пыли в квартире надолго?». Частицы пыли постоянно витают в воздухе и уже через полчаса после уборки оседают на мебели и предметах интерьера. Навсегда избавиться от пыли в доме вряд ли получится, а вот уменьшить ее количество под силу любой хозяйке.
Читайте в этой статье:
Устраняем пылесборники
Пыль не только портит внешний вид жилища, но и наносит вред здоровью людей, в нем проживающих. Наибольшая концентрация пыли приходится на первые 1,5 м над уровнем пола, поэтому детский организм страдает от нее намного сильнее.
Для того чтобы устранить пыль, нужно постараться по максимуму избавиться от ее источников.
Самодельный воздухоочиститель для дома
Для этого:
- Откажитесь от напольных и настенных ковров, если у вас нет возможности пылесосить их хотя бы раз в два дня.
- Раздайте друзьям или выбросите вещи, которыми вы не пользуетесь. Старое пальто, которое вы ни разу не надевали, или сумка, которая уже третий год подряд висит в прихожей без дела – типичные пылесборники.
- Уменьшите количество декоративных элементов в интерьере. Всевозможные шкатулки, статуэтки, мягкие игрушки накапливают пыль и делают процесс уборки более сложным. Если вам сложно отказаться от каких-то памятных вещей, спрячьте их в шкаф или за стекло.
- Снимите громоздкие шторы и замените их более лаконичными. Оптимальный вариант – закрыть окна с помощью горизонтальных жалюзи, которые просты в уходе и не накапливают пыль.
- Уберите изделия из натуральной шерсти, замените натуральные покрывала и наполнители для подушек на синтетические.
Профилактика появления пыли
Если вы ломаете голову над тем, как избавиться от пыли в квартире, вам должно быть известно, что не допустить появления пыли гораздо проще, нежели удалять ее с ковров, мебели, ценных вещей и т.д.
Для того чтобы пыль была редким гостем в вашем доме, необходимо следовать простой, но действенной инструкции:
- Проветривайте помещение как можно чаще. Для того чтобы пыли было как можно меньше, а все члены семьи имели отменное здоровье, необходимо обновлять воздух в квартире, как минимум, каждый час.
- Обеспечьте хорошую вентиляцию помещений, установите вытяжку над газовой плитой. В идеале запахи из кухни и испарения из ванной комнаты не должны распространяться по всему дому.
- Температура в доме должна поддерживаться на уровне 18-20 градусов. В квартире не должно быть слишком сухо, но излишней влажности тоже допускать не стоит.
- Купите увлажнитель для воздуха. Не экономьте на данном устройстве. Помните, что качественный увлажнитель для воздуха, оборудованный фильтрами, способен поглощать до 75% пыли, находящейся в воздухе.
- Против клещей можно использовать и химические средства, которые наливают в увлажнители для воздуха. Внимание! Химические средства против пылевых клещей могут навредить некоторым видам домашних животных, например, земноводным и рыбкам. Поэтому перед приобретением жидкости в обязательном порядке посоветуйтесь с ветеринаром.
- Храните книги в шкафах за стеклом.
- Помните о том, что пылевые клещи боятся холода и тепла. С этой целью постельное белье рекомендуется как можно чаще проглаживать горячим утюгом.
- Проветривайте постель на свежем воздухе. Выставляйте ее на улицу: летом – в солнечную погоду, зимой – в сухую и морозную. Ультрафиолет уничтожает пылевых клещей и разлагает продукты их жизнедеятельности, которые являются опасными не только для аллергика, но и для здорового человека.
- Для того чтобы не допустить попадания пыли с улицы во время проветривания, покрывайте москитные сетки марлей, смоченной в воде.
Систематическая уборка
Постоянная уборка также помогает бороться с пылью. Для того чтобы дом буквально пах чистотой, придерживайтесь следующих правил:
- Не забывайте вытирать пыль в труднодоступных местах: на карнизах, решетках камина, плинтусах, экранах компьютеров и телевизоров, шкафах. Хотя бы раз в месяц проходитесь влажной тряпкой по стенам: на них тоже оседает пыль, хоть она и не так заметна, как на горизонтальных поверхностях.
- Выбивайте ковры и покрывала хотя бы дважды в год. Вместе с коврами можно выбивать и мягкую мебель. К счастью, диваны и кресла вам не придется выносить на улицу. Для того чтобы пыль не попала в воздух, перед тем, как выбивать мебель, покройте ее смоченной в воде марлей. В таком случае пыль не осядет на окружающих предметах, а останется на ткани.
- Если вам так и не удалось отказаться от любимых штор, обеспечьте им должный уход. Шторы удобно обрабатывать при помощи отпаривателя. Под воздействием данного устройства ткань разглаживается, исчезает пыль, погибают болезнетворные бактерии.
- Уделите внимание растениям и домашним животным. Ветеринары утверждают: домашнее животное – один из главных источников пыли в доме. Протирайте лапы питомцам после каждой прогулки, систематически вычесывайте животных, независимо от длины шерсти. Листья растений периодически протирайте влажной тряпкой и сбрызгивайте водой из пульверизатора.
- Гладкие поверхности мебели (шкафы, столы, тумбочки и т.д.) протирайте тряпкой, увлажненной антистатическим средством.Полироль с антистатическим эффектом не рекомендуется использовать в домах, где проживают аллергики.
- Пылесосьте ковры, покрывала, напольные покрытия и меховые изделия, как минимум раз в неделю. Во время работы пылесоса открывайте окна настежь. К несчастью, большая часть современных пылесосов устроена таким образом, что клещи, засасываемые вместе с пылью в трубу пылесоса, тут же выбрасываются обратно через выходное отверстие.
Для того чтобы избавить свое жилище от пылевых клещей, купите специальные фильтры для пылесоса, например, НЕРА. Неплохой покупкой станет и приобретение моющего пылесоса с аквафильтром.
Помощники в борьбе с пылью
Избавиться от пыли в квартире вам помогут специальные приборы и средства, которые можно купить в любом магазине. К ним относятся:
Увлажнитель воздуха
В помещении с увлажненным воздухом бороться с пылью значительно проще. Пыль перестает беспорядочно летать в воздухе, оседает на пол и на мебель, откуда ее можно быстро удалить с помощью тряпки или пылесоса.
Пылесос
Пылесос с аквафильтром позволит вам удалить пыль не только с обрабатываемой поверхности, но также из воздуха. Благодаря хорошему пылесосу, комната, свободная от пыли, заиграет новыми красками.
Хлорофитум
Растение, которое, по мнению знающих людей, способно уменьшать количество пыли в помещении.
Гигрометр
Гигрометр используется для контроля влажности в доме. Если уровень влажности превышен, обычная бытовая пыль может превратиться в опасный реагент, не говоря уже о появлении плесени.
Мембраны для окон
Устройства, защищающие жилище от проникновения в него с улицы частичек пыли и опасных аллергенов. Качественные мембраны для окон не допускают попадания в дом бактерий, пыльцы, смога, насекомых, плесневых грибков и т.д.
«Мойка воздуха»
Современный прибор, который пропускает через себя весь воздух, имеющийся в помещении, и очищает его от частиц пыли. «Мойка воздуха» особенно эффективна в домах, где от пыли сложно избавиться с помощью подручных средств, например, в недавно отремонтированных помещениях и новостройках.
При выборе «мойки воздуха» обращайте внимание на площадь помещения и цели, которые вы ставите перед собой.
Так некоторые приборы эффективно увлажняют воздух, другие помогают избавиться от бактерий и неприятных запахов, третьи ионизируют воздух в квартире и обеззараживают его. Если вы желаете избавиться от пыли, рекомендуется покупать те «мойки», которые эффективно справляются с задачами очищения и увлажнения воздуха.
Таким образом, избавление от надоевшей пыли в доме – достаточно кропотливый и долгий процесс. Однако выполнение всех перечисленных рекомендаций и систематическая уборка в конечном счете приведут вас к долгожданному результату – полному устранению пыли в квртире.
Как своими руками сделать воздухоочиститель
Воздух в квартире
Озонирование воздуха в помещении, польза и вред
Озонирование воздуха – процедура обработки окружающей среды активным кислородом – озоном. Озон ядовит и в больших концентрациях не только вредит здоровью, но так же может привести к летальному исходу.
Cухой воздух в квартире, последствия
Сухой воздух в помещениях может снизить иммунитет, от нехватки кислорода страдают все клетки, происходит их обезвоживание.
Ионизация воздуха в квартире: польза или вред?
Ионизированный воздух не имеет запаха, но создает в помещение ощущение свежего чистого воздуха, польза это или вред?
Каким образом осушить воздух в квартире самостоятельно
Чтобы высушить воздух, применяется осушитель. Он необходим в квартирах и домах, где процент влажности превышает показатель 60%.
Проверяем влажность воздуха в жилище
Определить в квартире влажность можно, используя несколько способов. Проще всего сходить купить измерительный прибор, который называется гигрометр.
Какая в жилом помещении должна быть влажность воздуха
Для комфортного проживания в квартире необходимо поддерживать влажность не менее 40−60%.
Каким образом увеличить влажность воздуха в квартире без увлажнителя
Если проветривание можно обеспечить в любой момент и совершенно бесплатно, то с увлажнением проблема обстоит несколько острее, поскольку увлажнители воздуха стоят денег, причем немалых.
Какой должна быть влажность воздуха в нашей квартире?
Норма влажности воздуха в квартире и к чему может привести ее нарушение, как добиться нормы
Сухой воздух в квартире, что делать?
Если в квартире сухой воздух, как увлажнить его в комнате и зачем нужно увлажнять воздух в помещении?
Увлажнение воздуха в квартире собственноручно
Почему увлажнение воздуха в квартире так важно?
Много чего плохого с организмом человека может случиться из-за сухого воздуха.
Как выбрать очистители воздуха для квартиры
Как выбрать лучший очиститель воздуха для квартиры, чистоту и безопасность воздушного пространства может обеспечить очиститель воздуха.
В основном, проблемы с чистым воздухом преобладают в больших городах. Воздух загрязняется выхлопными газами, различной гарью и пылью, выбросами предприятий и т.д. Этот воздух поступает в наши жилища, накапливается в помещениях, им дышат люди, порой даже не подозревая, что их здоровье постепенно начинает ухудшаться именно по причине загрязненной атмосферы. Большинство людей даже не знают, что данную проблему может решить простой воздухоочиститель, купленный или сделанный собственноручно.
Итак, чтобы избавиться от мелких частиц, присутствующих в воздухе, было придумано множество методов его очистки. Но всех их объединяет один принцип действия : поток загрязнённого воздуха засасывается в агрегат, проходит через фильтр (это может быть водный, электростатический, угольный или другой) и выдувается вентилятором наружу уже очищенным от загрязнений.
Ниже на рисунке показан принцип работы очистителя воздуха, в котором объединены несколько фаз очистки, где воздух проходит через фильтр грубой очистки, ионизатор и УФ-излучатель. Далее поток воздуха сталкивается с водой, которая забирает частички пыли, и выходит из агрегата уже увлажненным, чистым и с отрицательно заряженными ионами кислорода.
В продаже имеется большое количество аппаратов, как сложной конструкции, так и более простых, успешно очищающих воздух в помещениях. Но для некоторых потребителей цена на них может показаться сильно завышенной, и поэтому они склонны к импровизации и изготовлению подобных устройств своими руками. Сконструировать электронный аппарат в домашних условиях с применением высоких технологий вы вряд ли сможете. Но собрать некоторые простые модели воздухоочистителей домашнему мастеру вполне под силу.
Варианты исполнения очистителя воздуха
Прежде всего, следует понимать, что от того, в каких условиях и для каких целей придется применять очиститель воздуха, зависит и его конструкция. К примеру, если в помещении нормальная влажность, но в воздухе летает пыль, то убрать ее можно, изготовив очиститель из автомобильного фильтра , как в этом видео .
Очиститель воздуха для сухих помещений
В помещениях с пониженной влажностью, кроме очистки от пыли, требуется эту влажность поднять до значений, при которых человек будет чувствовать себя более комфортно, а именно до 40-60%.
Простой аппарат для этих целей легко собрать самому, и состоять он будет из пластикового контейнера и кулера от компьютера. Делается это просто.
Очиститель для влажных помещений
Повышенная влажность в помещении приносит также немало проблем: размножение болезнетворных бактерий, бурный рост плесневых грибков на стенах, порча мебели и музыкальных инструментов и т.д. Также повышенная влажность вредна для гаража, вернее для автомобиля, в котором вы его держите. Чтобы осушить и очистить воздух, потребуется применение материалов, способных впитывать излишнюю влагу. Самый простой материал – это обычная поваренная соль .
Перед применением для этих целей соль следует несколько часов прожаривать в духовом шкафу. Только в таком случае она будет наиболее эффективно впитывать влагу из воздуха.
Самодельный аппарат для очистки и сушки воздуха делается точно так же, как и для увлажнения, но с небольшими различиями:
- не требуются большие обороты вентилятора (соль будет разлетаться по контейнеру), поэтому будет достаточно зарядки от телефона с выходом 5В;
- вместо воды на дно емкости насыпается толстый слой соли 3-4 см.
Однако технический прогресс не стоит на месте, и найден более эффективный, впитывающий влагу материал – это силикагель . Вы его встречали, покупая обувь – это пакетики с мелкими шариками.
Силикагель – это нетоксичное вещество, состоящее из двуокиси кремния.
Следует проявлять осторожность, если в доме есть маленькие дети. Следите за тем, чтобы ребенок не съел данное вещество, поскольку в его составе может присутствовать хлорид кобальта – яд, если его принять внутрь.
Силикагель можно купить в разной расфасовке в китайских интернет-магазинах. Преимущество данного средства перед обычной солью в том, что для эффективной работы агрегата потребуется значительно меньшее его количество.
Некоторые виды двуокиси кремния имеют специальную окраску , как показано на следующем фото.
Данный краситель действует как индикатор: когда кристаллы сухие, он синего цвета, но, когда вещество напитывает максимум влаги – оно становится розовым. Чтобы восстановить кристаллы, их помещают в микроволновку минут на 8 при самой малой мощности. Исходя из этих данных, силикагель более эффективно работает в аппаратах, очищающих воздух от влаги.
Очиститель с угольным фильтром
Применение активированного угля для очищения воздуха показано, если требуется удаление из него неприятных запахов, например, когда нужно избавиться от табачного дыма. Также уголь эффективен для удаления некоторых токсичных веществ, растворенных в воздухе. Простой угольный очиститель можно сделать из пластиковых труб, но сначала необходимо приготовить необходимые материалы:
- две метровые канализационные трубы (сточные), диаметрами 200/210 мм и 150/160 мм;
- переходник (вентиляционный) – диаметром 150/200 мм;
- заглушки на 210 и 160 мм;
- металлическая сетка (можно использовать малярную, с маленьким размером ячейки);
- хомуты;
- агроволокно;
- алюминиевый скотч;
- около 2-х кг любого активированного угля;
- дрель с насадками;
- герметик;
- большая игла и капроновая нить.
На рисунке ниже показано, как выглядит переходник, заглушка и труба.
Ниже приведен алгоритм выполнения работ.
- Обрежьте наружную трубу (200/210 мм) до 77 мм, а внутреннюю (150/160 мм) – до 75 мм, удалите все заусенцы.
- Поверните внутреннюю трубу толстой стороной вверх и срежьте кантик, чтобы она лучше прилегала к заглушке.
- Необходимо на внутренней трубе насверлить как можно больше отверстий. В данном случае диаметр сверла 10 мм.
- Просверлите отверстия в наружной трубе с помощью коронки диаметром 30 мм.
- Оставшиеся после сверления кружочки не выбрасывайте, они еще пригодятся для распорок.
- Обе трубы следует обтянуть агроволокном, и сшить его капроновой ниткой.
- Далее следует обернуть наружную трубу малярной сеткой и сшить ее с применением 2-х хомутов 190/210 для удобства. Они обеспечат хорошее прилегание сетки к трубе. Натягивать сетку требуется вначале с толстой стороны трубы.
- Прошейте слегка изогнутой иглой с капроновой нитью сетку по всей длине, переставляя хомуты по мере сшивания.
- Выступающие концы сетки удалите кусачками, а излишки агроволокна – ножницами или лезвием.
- Внутреннюю трубу сначала следует обернуть металлической сеткой, а уже после этого – агроволокном.
- Края труб зафиксируйте алюминиевым скотчем.
- Вставьте внутреннюю трубу в заглушку строго по центру, используя распорки из кружочков, после чего зафиксируйте ее либо минеральной ватой, либо запеньте.
- Вставьте внутреннюю трубу в наружную.
Следующим этапом изготовления фильтра будет заправка его углем . Рекомендуется использовать уголь с фракцией 5,5 мм марки АР-В. Но можно и другой, например, тот что используется для очистки воды с фракцией 2,5 мм.
Перед заправкой уголь нужно просеять через сито, чтобы удалить из него мелкую пыль.
Уголь засыпается не спеша, чтобы не образовывались пустоты. На заполнение уйдет примерно 2 кг угля. При заполнении требуется время от времени стучать трубой о пол, чтобы наполнитель заполнил все пространство равномерно.
Когда пространство между трубами полностью заполнится, оденьте переходник, который послужит крышкой, удерживающей уголь. После этого, с помощью герметика, замажьте небольшую щель между переходником и внутренней трубой.
На данном этапе сборка воздухоочистителя закончена. После высыхания герметика, в переходник можно вставить канальный вентилятор таким образом, чтобы он втягивал воздух из фильтра и выдувал его в помещение. Также этот фильтр можно применить и для дома, встроив его в магистраль приточной вентиляции.
Благодаря ему в дом будет поступать чистый, без посторонних запахов, воздух.
Содержание:Современная экологическая обстановка во многих случаях далека от благоприятной. Окружающая среда находится, преимущественно, в загрязненном состоянии. Пыль и другие мелкие частицы попадают в помещения жилых домов и на другие объекты, где находятся люди. Решить проблему возможно с помощью воздухоочистителей. Они особенно незаменимы для использования в домашних условиях. Принцип работы воздухоочистителя может быть разным в каждой модели, поэтому данный фактор нужно обязательно учитывать при покупке прибора.
Назначение воздухоочистителя
Практически все люди ежедневно дышат домашней пылью. Она только кажется безопасной, постепенно создавая различные проблемы со здоровьем. Сама по себе пыль довольно часто приводит к осложнениям и сбоям функций дыхательной системы. Кроме того, воздействие пыли может вызвать воспалительные процессы в слизистых оболочках и привести к различным кожным заболеваниям. Вероятность заболеваний из-за пыли значительно повышается при ослабленной иммунной системе, не справляющейся с защитой организма.
Еще больший вред наносится не самой пылью, а всевозможными бактериями и другими микроорганизмами, содержащимися в ней. Многие из них являются болезнетворными и представляют серьезную опасность для здоровья.
Задача обеспечения чистого и свежего воздуха успешно решается путем использования очистителей воздуха. Все типы воздухоочистителей способствуют гарантированному и качественному очищению воздушного пространства помещений.
Принцип работы очистителей воздуха
Принцип действия воздухоочистителей достаточно простой. Схема работы представляет собой затягивание воздуха через входное отверстие, его дальнейшее прохождение через различные виды очистки и последующий выпуск в помещение в чистом виде.
Однако ни один вид воздухоочистителя не способен на полноценную замену влажной уборки или пылесоса. Данные устройства способны пропускать через себя пыль в небольших количествах и только ту, которая находится во взвешенном состоянии. Пыль, осевшая на поверхностях, остается на месте и не поддается действию очистителя воздуха. Большое значение для нормальной работы воздухоочистителя имеет дополнительная фильтрация воздуха. Рекомендуется использовать минимальную мощность прибора, во избежание сильных воздушных потоков, из-за которых может появиться пыль.
Принцип действия воздухоочистителя нашел свое отражение в конструкциях различных приборов. В работе увлажнителей очистка воздуха выполняется с помощью влажных фильтров, где и происходит оседание пыли. Приборы - воздухофильтры оборудованы несколькими фильтрующими ступенями, через которые загрязненный воздух циркулирует и возвращается в помещение уже очищенным. Для дополнительной очистки производится обработка фильтров специальными веществами - фотокатализаторами, уничтожающими бактерии и другие вредные элементы.
В ионизаторах используются особые анионы, способные притягивать частички пыли. В конструкциях комбинированных очистителей одновременно используется фильтрация, увлажнение и другие функции. Основной составляющей всех очистительных приборов являются фильтры. Именно на них возложена главная задача очистки. Наиболее простыми и дешевыми считаются механические фильтры, изготовленные в виде грубой сетки, выполняющей предварительную очистку воздуха. Как правило, они используются в сочетании с другими видами фильтров. Водяные фильтры также предназначены для грубой очистки. Для сбора пыли применяются влажные пластины, а затем она скапливается в емкостях с водой.
Тонкая очистка происходит с помощью угольных фильтров, применяемых в сочетании с устройствами для грубой очистки. В фотокаталитических фильтрах используется ультрафиолетовое излучение, окисляющее и разлагающее все виды вредных примесей. Под его воздействием происходит нейтрализация любых токсичных веществ.
Как выбрать очиститель воздуха
Эффективность очистки воздуха во многом зависит от правильного выбора воздухоочистителя. Специалисты рекомендуют, в первую очередь, учитывать размеры помещения. Чем больше объем и площадь, тем больше должна быть мощность устройства.
Следует помнить, что принцип работы воздухоочистителя, используемый в конкретной модели, напрямую влияет на качество очистки. Чем выше качественные показатели, тем более мощным и дорогим должен быть аппарат. Например, действие фотокаталитического фильтра значительно превышает возможности механического устройства, выполняющего фильтрацию только крупных частиц.
Полезными дополнительными функциями являются ионизация и увлажнение, значительно улучшающие качество очистки. Большое значение имеет , поэтому мощность воздухоочистителя нужно выбирать в соответствии с режимом и графиком его использования. Желательно, чтобы устройство работало тихо, особенно, если в семье имеются маленькие дети.
К сожалению, в наших домах воздух нельзя назвать совершенным. Более того, на улице он намного чище, поскольку очищается солнцем и естественной ионизацией, продувается ветром, увлажняется дождем. А разве в своей жилище мы можем создать такие условия для очищения воздуха? Одного проветривания и уборки пылесосом будет мало: они не способны уничтожить пыль и продукты распада: угарный газ, окислы азота, аммиак и многое другое. Выход, конечно, есть – купить такой прибор очиститель воздуха. Если говорить о том, как работает очиститель воздуха, то тут все просто. Воздух в комнате проходит через прибор, и пыль, аллергены, пух, табачный дым, химические вещества оседают на его фильтрах. Сейчас производители предлагают различные устройства: с угольным или HEPA-фильтром, плазменные, ионизирующие, фотокаталитические и мойки воздуха.
Скажем сразу, стоимость такого прибора не низкая. И к тому же решить, лучший , не так уж и просто. Поэтому при наличии умелых рук предлагаем вам создать прибор своими руками.
Как сделать
Предлагаемый очиститель воздуха представляет собой мойку воздуха, где в качестве фильтра выступает вода, которая очищает воздух от аллергенов, пыли, грязи. В результате воздух не только очищается, но и увлажняется. К тому же вода – самый дешевый фильтр.
По PM2.5 среднегодовой концентрации 10мкг/куб.м и среднесуточной 25мкг/куб.м; превышение по PM10 среднегодовой 20мкг/куб.м и среднесуточной 50мкг/куб.м) повышает риск возникновения респираторных заболеваний, заболеваний сердечнососудистой системы и некоторых онкологических заболеваний, загрязнение уже отнесено к 1 группе канцерогенов . Высокотоксичные частицы (содержащие свинец, кадмий, мышьяк, бериллий, теллур, и др., а также радиоактивные соединения) представляют опасность даже при небольших концентрациях.
Самый простой шаг к снижению негативного воздействия пыли на организм – установка эффективного очистителя воздуха в спальном помещении, где человек проводит около трети времени.
Источники пыли
Крупными природными поставщиками пыли являются извержения вулканов, океан (испарение брызг), природные пожары, эрозия почв (например, пыльные бури: г.Забол , Ирак), землетрясения и различные обвалы грунта, пыльца растений, споры грибов, процессы разложения биомассы и др.К антропогенным источникам относятся процессы сжигания ископаемых (энергетика и промышленность), транспортирование хрупких/сыпучих материалов и погрузочные работы (см. порт «Восточный» г.Находка, порт «Ванино» Хабаровский кр.), дробление материалов (добыча ископаемых, производство стройматериалов, сельхоз промышленность), механическая обработка, химические процессы, термические операции (сварка, плавка), эксплуатация транспортных средств (выхлоп двигателей внутреннего сгорания, истирание шин и дорожного покрытия).
Наличие пылевых частиц в помещениях обусловлено поступлением загрязненного наружного воздуха, а также присутствием внутренних источников: разрушение материалов (одежда, белье, ковры, мебель, стройматериалы, книги), приготовление пищи, жизнедеятельность человека (частички эпидермиса, волосы), плесневелые грибы, клещи домашней пыли и др.
Доступные очистители воздуха
Для снижения концентрации частиц пыли (в том числе самых опасных – размером менее 10мкм) доступны бытовые приборы, работающие на следующих принципах:- механическая фильтрация;
- ионизация воздуха;
- электростатическое осаждение (электрофильтры).
- высокое гидравлическое сопротивление фильтрующего элемента;
- необходимость в частой замене дорогостоящего фильтрующего элемента.
Ионизатор воздуха при работе электрически заряжает взвешенные в воздухе помещения частицы пыли, из-за чего последние под действием электрических сил осаждаются на пол, стены, потолок или предметы в помещении. Частицы остаются в помещении и могут вернуться во взвешенное состояние, поэтому решение не выглядит удовлетворительным. Кроме того, прибор значительно изменяет ионный состав воздуха, при этом воздействие такого воздуха на людей на данный момент изучено недостаточно.
Работа электростатического очистителя основана на том же принципе: поступающие внутрь прибора частицы сначала электрически заряжаются, затем притягиваются электрическими силами к специальным пластинам, заряженным противоположным зарядом (все это происходит внутри прибора). При накоплении слоя пыли на пластинах выполняется чистка. Эти очистители обладают высокой эффективностью (более 80%) улавливания частиц разных размеров, низким гидравлическим сопротивлением, и не требуют периодической замены расходных элементов. Имеются и недостатки: выработка некоторого количества токсичных газов (озон, оксиды азота), сложная конструкция (электродные сборки, высоковольтное электропитание), необходимость периодической чистки осадительных пластин.
Требования к очистителю воздуха
При применении рециркуляционного очистителя воздуха (такой очиститель засасывает воздух из помещения, фильтрует, а затем возвращает в помещение) обязательно должны учитываться характеристики прибора (однопроходная эффективность, объемная производительность) и объем целевого помещения, иначе прибор может оказаться бесполезным. Американской организацией AHAM для этих целей был разработан показатель CADR , учитывающий однопроходную эффективность очистки и объемную производительность очистителя, а также способ вычисления необходимого CADR для заданного помещения. Здесь уже есть неплохое описание этого показателя. AHAM рекомендует использовать очиститель со значением CADR большим или равным пятикратному обмену объема помещения в час. Например, для комнаты площадью 20 кв.м и высотой потолка 2,5м показатель CADR должен составлять 20 * 2.5 * 5 = 250 куб.м/час (или 147CFM) или более.Также очиститель при работе не должен создавать какие-либо вредные факторы: превышение допустимых значений уровня шума, превышение допустимых концентраций вредных газов (в случае использования электрофильтра).
Однородное электрическое поле
Из курса физики мы помним, что вблизи тела, обладающего электрическим зарядом, образуется электрическое поле .Силовой характеристикой поля является напряженность E [Вольт/м или кВ/см]. Напряженность электрического поля – векторная величина (имеет направление). Графически изображать напряженность принято силовыми линиями (касательные к точкам силовых кривых совпадают с направлением вектора напряженности в данных точках), величина напряженности характеризуется густотой этих линий (чем более густо расположены линии – тем большее значение принимает напряженность в этой области).
Рассмотрим простейшую систему электродов, представляющую из себя две параллельные металлические пластины, находящиеся друг от друга на расстоянии L, к пластинам приложена разность потенциалов напряжением U с источника высокого напряжения:
L= 11мм = 1.1см;
U = 11кВ (киловольт; 1киловольт = 1000вольт);
На рисунке показано примерное расположение силовых линий. По густоте линий видно, что в большей части пространства межэлектродного промежутка (за исключением области вблизи кромок пластин) напряженность имеет одинаковое значение. Такое равномерное электрическое поле называется однородным . Значение напряженности в пространстве между пластинами для этой электродной системы можно вычислить из простого уравнения :
Значит, при напряжении 11кВ напряженность составит 10кВ/см. В данных условиях атмосферный воздух, заполняющий пространство между пластинами, является электрическим изолятором (диэлектриком), то есть не проводит электрический ток, поэтому в электродной системе ток протекать не будет. Проверим это на практике.
На самом деле воздух совсем немного проводит ток
В атмосферном воздухе всегда присутствует небольшое количество свободных носителей зарядов – электронов и ионов, образующихся в результате воздействия естественных внешних факторов – например, радиационного фона и УФ–излучения. Концентрация этих зарядов очень низкая, поэтому плотность тока составляет очень малые значения, такие значения мое оборудование зарегистрировать неспособно.
Оборудование для экспериментов
Для проведения небольших практических экспериментов будет использоваться источник высокого напряжения (ИВН), тестовая электродная система и «измерительный стенд».
Электродная система может быть собрана в один из трех вариантов: «две параллельные пластины», «провод-пластина» или «зубья-пластина»:
Межэлектродное расстояние для всех вариантов одинаковое и составляет 11мм.
Стенд состоит из измерительных приборов:
- вольтметр 50кВ (микроамперметр Pa3 на 50мкА с добавочным сопротивлением R1 1ГОм; 1мкА показаний соответствует 1кВ);
- микроамперметр Pa2 на 50мкА;
- миллиамперметр Pa1 на 1мА.
При высоких напряжениях некоторые непроводящие материалы внезапно начинают проводить ток (например, мебель), поэтому все смонтировано на листе оргстекла. Выглядит это безобразие так:
Конечно, точность измерений таким оборудованием оставляет желать лучшего, но для наблюдений за общими закономерностями вполне должно хватить (лучше, чем ничего!). Со вступлениями заканчиваем, приступим к делу.
Эксперимент #1
Две параллельные пластины, однородное электрическое поле;L = 11мм = 1.1см;
U = 11…22кВ.
По показаниям микроамперметра видно, что электрический ток действительно отсутствует. Ничего не изменилось и при напряжении 22кВ, и даже при 25кВ (максимальном для моего источника высокого напряжения).
U, кВ | E, кВ/см | I, мкА |
---|---|---|
0 | 0 | 0 |
11 | 10 | 0 |
22 | 20 | 0 |
25 | 22.72 | 0 |
Электрический пробой воздушного промежутка
Сильное электрическое поле способно превратить воздушный промежуток в электрический проводник – для этого необходимо, чтобы его напряженность в промежутке превысила некоторую критическую (пробойную) величину. Когда это происходит, в воздухе с высокой интенсивностью начинают протекать ионизационные процессы: в основном ударная ионизация и фотоионизация , что приводит к лавинообразному росту количества свободных носителей зарядов – ионов и электронов. В какой-то момент времени образуется проводящий канал (заполненный носителями зарядов), перекрывающий межэлектродный промежуток, по которому начинает течь ток (явление называется электрическим пробоем или разрядом). В зоне протекания ионизационных процессов имеют место химические реакции (в том числе диссоциация молекул, входящих в состав воздуха), что приводит к выработке некоторого количества токсичных газов (озон, оксиды азота).Ионизационные процессы
Ударная ионизация
Свободные электроны и ионы различных знаков, всегда имеющиеся в атмосферном воздухе в небольшом количестве, под действием электрического поля будут устремляться в направлении электрода противоположной полярности (электроны и отрицательные ионы – к положительному, положительные ионы–к отрицательному). Некоторые из них будут по пути сталкиваться с атомами и молекулами воздуха. В случае, если кинетическая энергия движущихся электронов/ионов оказывается достаточной (а она тем выше, чем выше напряженность поля), то при столкновениях из нейтральных атомов выбиваются электроны, в результате чего образуются новые свободные электроны и положительные ионы. В свою очередь новые электроны и ионы будут также ускоряться электрическим полем и некоторые из них будут способны таким образом ионизировать другие атомы и молекулы. Так количество ионов и электронов в межэлектродном пространстве начинает лавинообразно увеличиваться.
Фотоионизация
Атомы или молекулы, получившие при столкновении недостаточное для ионизации количество энергии, испускают ее в виде фотонов (атом/молекула стремится вернуться в прежнее стабильное энергетическое состояние). Фотоны могут быть поглощены каким-либо атомом или молекулой, что может также привести к ионизации (если энергия фотона достаточна для отрыва электрона).
Для параллельных пластин в атмосферном воздухе критическую величину напряженности электрического поля можно вычислить из уравнения :
Для рассматриваемой электродной системы критическая напряженность (при нормальных атмосферных условиях) составляет около 30,6кВ/см, а напряжение пробоя –33,6кВ. К сожалению, мой источник высокого напряжения не может выдать более 25кВ, поэтому для наблюдения электрического пробоя воздуха пришлось уменьшить межэлектродное расстояние до 0,7см (критическая напряженность 32.1кВ/см; напряжение пробоя 22,5кВ).
Эксперимент #2
Наблюдение электрического пробоя воздушного промежутка. Будем повышать приложенную к электродам разность потенциалов до возникновения электрического пробоя.L = 7мм = 0.7см;
U = 14…25кВ.
Пробой промежутка в виде искрового разряда наблюдался при напряжении 21,5кВ. Разряд испускал свет и звук (щелчок), стрелки измерителей тока отклонялись (значит, что электрический ток протекал). При этом в воздухе ощущался запах озона (такой же запах, например, возникает при работе УФ-ламп во время кварцевания помещений в больницах).
Вольт-амперная характеристика:
U, кВ | E, кВ/см | I, мкА |
---|---|---|
0 | 0 | 0 |
14 | 20 | 0 |
21 | 30 | 0 |
21.5 | 30.71 | пробой |
Неоднородное электрическое поле
Заменим в системе электродов положительный пластинчатый электрод на тонкий проволочный электрод диаметром 0.1мм (т.е. R1=0.05мм), также расположенный параллельно отрицательному пластинчатому электроду. В этом случае в пространстве межэлектродного промежутка при наличии разности потенциалов образуется неоднородное электрическое поле: чем ближе точка пространства к проволочному электроду – тем выше значение напряженности электрического поля. На рисунке ниже представлена примерная картина распределения:Для наглядности можно построить более точную картину распределения напряженности - проще это сделать для эквивалентной электродной системы, где пластинчатый электрод заменен на трубчатый электрод, расположенный коаксиально коронирующему электроду:
Для этой электродной системы значения напряженности в точках межэлектродного пространства можно определить из простого уравнения :
На рисунке ниже представлена рассчитанная картина для значений:
R1 = 0.05мм = 0.005см;
R2 = 11мм = 1.1см;
U = 5кВ;
Линии характеризуют значение напряженности на данном удалении; значения соседних линий отличаются на 1кВ/см.
Из картины распределения видно, что в большей части межэлектродного пространства напряженность изменяется незначительно, а вблизи проволочного электрода, по мере приближения к нему, резко возрастает.
Коронный разряд
В электродной системе провод-плоскость (или подобной, в которой радиус кривизны одного электрода существенно меньше межэлектродного расстояния), как мы увидели из картины распределения напряженности, возможно существование электрического поля со следующими особенностями:- в небольшой области, приближенной к проволочному электроду, напряженность электрического поля может достигать высоких значений (значительно превышающих 30кВ/см), достаточных для возникновения интенсивных ионизационных процессов в воздухе;
- одновременно с этим, в большей части межэлектродного пространства напряженность электрического поля будет принимать невысокие значения – менее 10 кВ/см.
В межэлектродном промежутке с коронным разрядом выделяется две зоны : зона ионизации(или чехол разряда) и зона дрейфа :
В зоне ионизации, как можно догадаться из названия, протекают ионизационные процессы – ударная ионизация и фотоионизация, и образуются ионы разных знаков и электроны. Электрическое поле, присутствующее в межэлектродном пространстве, воздействует на электроны и ионы, из-за чего электроны и отрицательные ионы (при наличии) устремляются к коронирующему электроду, а положительные ионы вытесняются из зоны ионизации и поступают в зону дрейфа.
В зоне дрейфа, на которую приходится основная часть межэлектродного промежутка (все пространство промежутка за исключением зоны ионизации), ионизационные процессы не протекают. Здесь распределяется множество дрейфующих под действием электрического поля (в основном в направлении пластинчатого электрода) положительных ионов.
За счет направленного движения зарядов (положительные ионы замыкают ток на пластинчатый электрод, а электроны и отрицательные ионы - на коронирующий электрод) в промежутке протекает электрический ток, ток коронного разряда .
В атмосферном воздухе в зависимости от условий положительный коронный разряд может принимать одну из форм : лавинную или стримерную . Лавинная форма наблюдается в виде равномерного тонкого светящегося слоя, покрывающего гладкий электрод (например, провод), выше было фото. Стримерная форма наблюдается в виде тонких светящихся нитевидных каналов (стримеров), направленных от электрода и чаще возникает на электродах с острыми неровностями (зубья, шипы, иглы), фото ниже:
Как и в случае с искровым разрядом, побочным эффектом протекания любой формы коронного разряда в воздухе (из-за наличия ионизационных процессов) является выработка вредных газов – озона и оксидов азота.
Эксперимент #3
Наблюдение положительного лавинного коронного разряда. Коронирующий электрод – проволочный, положительное питание;L = 11 мм = 1.1см;
R1 = 0.05 мм = 0.005см
Свечение разряда:
Процесс коронирования (появился электрический ток) начался при U = 6.5кВ, при этом поверхность проволочного электрода начала равномерно покрываться тонким слабосветящимся слоем и появился запах озона. В этой светящейся области (чехле коронного разряда) и сосредоточены ионизационные процессы. При увеличении напряжения наблюдалось увеличение интенсивности свечения и нелинейный рост тока, а при достижении U = 17.1кВ произошло перекрытие межэлектродного промежутка (коронный разряд перешел в искровой разряд).
Вольт-амперная характеристика:
U, кВ | I, мкА |
---|---|
0 | 0 |
6,5 | 1 |
7 | 2 |
8 | 20 |
9 | 40 |
10 | 60 |
11 | 110 |
12 | 180 |
13 | 220 |
14 | 300 |
15 | 350 |
16 | 420 |
17 | 520 |
17.1 | перекрытие |
Эксперимент #4
Наблюдение отрицательного коронного разряда. Поменяем местами провода электропитания электродной системы (отрицательный провод к проволочному электроду, положительный провод – к пластинчатому). Коронирующий электрод – проволочный, отрицательное питание;L = 11 мм;
R1 = 0.05 мм = 0.005 см.
Свечение:
Коронирование началось при U = 7.5кВ. Характер свечения отрицательной короны существенно отличался от свечения положительной короны: теперь на коронирующем электроде возникали отдельные пульсирующие светящиеся равноудаленные друг от друга точки. При повышении приложенного напряжения возрастал ток разряда, а также увеличивалось количество светящихся точек и интенсивность их свечения. Запах озона ощущался сильней, чем при положительной короне. Искровой пробой промежутка произошел при U = 18.5кВ.
Вольт-амперная характеристика:
U, кВ | I, мкА |
---|---|
0 | 0 |
7.5 | 1 |
8 | 4 |
9 | 20 |
10 | 40 |
11 | 100 |
12 | 150 |
13 | 200 |
14 | 300 |
15 | 380 |
16 | 480 |
17 | 590 |
18 | 700 |
18.4 | 800 |
18.5 | перекрытие |
Эксперимент #5
Наблюдение положительного стримерного коронного разряда. Заменим в электродной системе проволочный электрод на пилообразный электрод и вернем полярность электропитания в исходное состояние. Коронирующий электрод – зубчатый, положительное питание;L = 11 мм = 1.1см;
Свечение:
Процесс коронирования начался при U = 5.5кВ, при этом на остриях коронирующего электрода появились тонкие светящиеся каналы (стримеры), направленные в сторону пластинчатого электрода. По мере увеличения напряжения размер и интенсивность свечения этих каналов, а также коронный ток увеличивался. Запах озона ощущался примерно как при положительной лавинной короне. Переход коронного разряда в искровой разряд произошел при U = 13кВ.
Вольт-амперная характеристика:
U, кВ | I, мкА |
---|---|
0 | 0 |
5.5 | 1 |
6 | 3 |
7 | 10 |
8 | 20 |
9 | 35 |
10 | 60 |
11 | 150 |
12 | 300 |
12.9 | 410 |
13 | перекрытие |
Как было видно из экспериментов, геометрические параметры коронирующего электрода, а также полярность питания существенно влияют на закономерность изменения тока от напряжения, величину напряжения зажигания разряда, величину напряжения пробоя промежутка. Это не все факторы, влияющие на режим протекания коронного разряда, вот более полный список:
- геометрические параметры межэлектродного пространства:
- геометрические параметры коронирующего электрода;
- межэлектродное расстояние;
- полярность электропитания, подводимого к коронирующему электроду;
- параметры воздушной смеси, заполняющей межэлектродное пространство:
- химический состав;
- влажность;
- температура;
- давление;
- примеси (частицы аэрозолей, например: пыль, дым, туман)
- в некоторых случаях материал (значение работы выхода электрона) отрицательного электрода, так как с поверхности металлического электрода при бомбардировке ионами и при облучении фотонами может происходить отрыв электронов.
Электрическая очистка воздуха: принцип работы
Принцип электрической очистки заключается в следующем: воздух с взвешенными частицами загрязнений (частицы пыли и/или дыма и/или тумана) пропускается со скоростью Vв.п. через межэлектродный промежуток, в котором поддерживается коронный разряд (в нашем случае положительный).Частицы пыли сначала электрически заряжаются в поле коронного разряда (положительно), а затем притягиваются к отрицательно заряженным пластинчатым электродам за счет действия электрических сил.
Зарядка частиц
Дрейфующие положительные ионы, имеющиеся в большом количестве в межэлектродном коронирующем промежутке, сталкиваются с частицами пыли, из-за чего частицы приобретают положительный электрический заряд. Процесс зарядки выполняется в основном за счет двух механизмов – ударной зарядки дрейфующими в электрическом поле ионами и диффузионной зарядки ионами, участвующими в тепловом движении молекул. Оба механизма действуют одновременно, но первый более существенен для зарядки крупных частиц (размерами более микрометра), а второй – для более мелких частиц . Важно отметить, что при интенсивном коронном разряде скорость диффузионной зарядки значительно ниже ударной .Процессы зарядки
Процесс ударной зарядки протекает в потоке ионов, движущихся от коронирующего электрода под действием электрического поля. Ионы, оказавшиеся слишком близко к частице, захватываются последней за счет молекулярных сил притяжения, действующих на коротких расстояниях (в том числе сила зеркального отображения, обусловленная взаимодействием заряда иона и наведенного за счет электростатической индукции противоположного заряда на поверхности частицы).
Механизм диффузионной зарядки выполняется ионами, участвующими в тепловом движении молекул. Ион, оказавшийся достаточно близко к поверхности частицы, захватываются последней за счет молекулярных сил притяжения (в том числе силой зеркального отображения), поэтому вблизи поверхности частицы образуется пустая область, где ионы отсутствуют:
Из-за образовавшейся разности концентраций возникает диффузия ионов к поверхности частицы (ионы стремятся занять пустую область), и в результате эти ионы оказываются захваченными.
При любом механизме по мере накопления частицей заряда, на находящиеся вблизи частицы ионы начинает действовать отталкивающая электрическая сила (заряд частицы и ионов одного знака), поэтому скорость зарядки будет со временем снижаться и в некоторый момент прекратится совсем . Этим объясняется существование предела зарядки частицы.
Величина заряда, полученного частицей в коронирующем промежутке, зависит от следующих факторов:
- способность частицы к зарядке (скорость зарядки и предельный заряд, больше которого частица зарядиться не может);
- время, отпущенное на процесс зарядки;
- электрические параметры области, в которой находится частица (напряженность электрического поля, концентрация и подвижность ионов)
Дрейф и осаждение частиц
В межэлектродном пространстве коронирующей электродной системы присутствует электрическое поле, поэтому на частицу, получившую какой-либо заряд, сразу начинает действовать сила Кулона Fк, из-за чего частица начинает смещаться в направлении осадительного электрода – возникает скорость дрейфа W:Значение силы Кулона пропорционально заряду частицы и напряженности электрического поля в месте ее нахождения :
Из-за движения частицы в среде возникает сила сопротивления Fс, зависящая от размеров и формы частицы, скорости ее движения, а также вязкости среды, поэтому нарастание скорости дрейфа ограничивается. Известно : скорость дрейфа крупной частицы в поле коронного разряда пропорциональна напряженности электрического поля и квадрату ее радиуса, а мелкой – пропорциональна напряженности поля.
Спустя какое-то время частица достигает поверхности осадительного электрода, где удерживается за счет следующих сил :
- электростатических сил притяжения, обусловленных наличием заряда на частице;
- молекулярных сил;
- сил, обусловленных капиллярными эффектами (в случае присутствия достаточного количества жидкости и способности частицы и электрода к смачиванию).
Эти силы противодействуют воздушному потоку, стремящемуся сорвать частицу. Частица выведена из воздушного потока.
Как можно заметить, коронирующий промежуток электродной системы выполняет следующие необходимые для электрической очистки функции:
- производство положительных ионов для зарядки частиц;
- обеспечение электрического поля для направленного дрейфа ионов (необходимого для зарядки частиц) и для направленного дрейфа заряженных частиц к осадительному электроду (необходимого для осаждения частиц).
Некоторые факторы могут оказывать существенное влияние на процесс электрической очистки:
- высокая количественная концентрация частиц загрязнений; приводит к дефициту ионов (большая их часть осаждается на частицах), в результате чего снижается интенсивность коронирования, вплоть до прекращения (явление носит название запирание короны), ухудшению параметров электрического поля в промежутке ; это приводит к падению эффективности процесса зарядки;
- накопление слоя пыли на осадительном электроде:
- если слой обладает высоким электрическим сопротивлением, то в нем накапливается электрический заряд того же знака, что и заряд дрейфующих частиц (и полярность коронирующего электрода), в результате чего:
- снижается интенсивность коронного разряда (из-за деформации электрического поля в промежутке), что негативно отражается на процессе зарядки частиц и процессе дрейфа частиц к осадительному электроду;
- заряженный слой оказывает отталкивающее действие на осаждающуюся частицу , имеющую заряд того же знака, что негативно отражается на процессе осаждения;
- если слой обладает высоким электрическим сопротивлением, то в нем накапливается электрический заряд того же знака, что и заряд дрейфующих частиц (и полярность коронирующего электрода), в результате чего:
- электрический ветер (возникновение воздушного потока в направлении от коронирующего электрода в сторону осадительного электрода) в некоторых случаях может оказывать заметное влияние на траекторию движения частиц, особенно мелких.
Электродные системы электрических фильтров
По мере удаления от коронирующего электрода по направлению вдоль пластин, значение напряженности поля снижается. Условно выделим в межэлектродном промежутке активную область, в пределах которой напряженность поля принимает существенные значения; за пределами этой области необходимые для электрической очистки процессы неэффективны из-за недостаточной напряженности.Сценарий движения частицы загрязнения на практике может отличаться от описанного ранее: например, частица так и не достигнет осадительного электрода (а), или осажденная частица может по каким-то причинам оторваться (б) от осадительного электрода с последующим уносом воздушным потоком:
Очевидно, что для достижения высоких показателей качества очистки необходимо, чтобы выполнялись условия:
- каждая частица загрязнения должна достигнуть поверхности осадительного электрода;
- каждая частица, достигнувшая осадительного электрода, должна надежно удерживаться на его поверхности до момента ее удаления при чистке.
- увеличение скорости дрейфа W;
- снижение скорости воздушного потока Vв.п.;
- увеличение длины S осадительных электродов по ходу движения воздуха;
- уменьшение межэлектродного расстояния L, что приведет к уменьшению расстояния A (которое необходимо преодолеть частице, чтобы достигнуть осадительного электрода).
Наибольший интерес, конечно, вызывает возможность повышения скорости дрейфа. Как было ранее отмечено, она в основном определяется величиной напряженности электрического поля и зарядом частицы, поэтому для обеспечения ее максимальных значений необходимо поддерживать интенсивный коронный разряд, а также обеспечить достаточное время пребывания (не менее 0,1с ) частицы в активной области промежутка (чтобы частица успела получить значительный заряд).
Величина скорости воздушного потока (при постоянном размере активной области) определяет время пребывания частицы в активной области промежутка, и, следовательно, время, отпущенное на процесс зарядки и время, отпущенное на процесс дрейфа. Кроме того, чрезмерное увеличение скорости приводит к возникновению явления вторичного уноса – к вырыванию осажденных частиц с осадительного электрода. Выбор скорости потока является компромиссом, так как снижение скорости приводит к падению объемной производительности аппарата, а значительное увеличение – к резкому ухудшению качества очистки. Обычно скорость в электрофильтрах составляет около 1 м/с (может находиться в пределах 0,5…2,5 м/с).
Увеличение длины S осадительного электрода не сможет оказать значительного положительного эффекта, так как в удлиненной части межэлектродного промежутка за пределами условной активной области (большое удаление от коронирующего электрода) напряженность электрического поля и, следовательно, скорость дрейфа частицы будет мала:
Установка дополнительного коронирующего электрода в удлиненной части значительно улучшит ситуацию, но для бытового устройства это решение может вызвать проблемы с выработкой токсичных газов (из-за увеличения суммарной протяженности коронирующего электрода):
Аппараты с таким расположением электродов известны как многопольные электрофильтры (в данном случае двухпольный электрофильтр) и применяются в промышленности для очистки больших объемов газов.
Уменьшение межэлектродного расстояния (L → *L) приведет к уменьшению пути (*A < A), который необходимо преодолеть частице, чтобы достигнуть осадительного электрода:
Из-за сокращения межэлектродного расстояния будет снижена разность потенциалов U, из-за чего уменьшится и размер активной области межэлектродного промежутка. Это приведет к сокращению времени, отпущенного на процесс зарядки и процесс дрейфа частицы, что в свою очередь может привести к снижению качества очистки (особенно для мелких частиц, обладающих низкой способностью к зарядке). Кроме того, уменьшение расстояния приведет к сокращению площади поперечного сечения активной зоны. Решить проблему сокращения площади можно параллельной установкой такой же электродной системы:
Аппараты с таким расположением электродов известны как многосекционные электрофильтры (в данном случае двухсекционный) и применяются в промышленных установках. У данной конструкции увеличена протяженность коронирующего электрода, что может вызвать проблемы с выработкой токсичных газов.
Гипотетический высокоэффективный электрический фильтр, наверное, содержал бы некоторое количество электрический полей и секций очистки:
Каждая поступившая в этот многосекционный многопольный электрофильтр частица успевала бы получить максимально возможный заряд, так как в аппарате обеспечивается активная область зарядки большой протяженности. Каждая заряженная частица достигала бы поверхности осадительного электрода, так как в аппарате обеспечена активная область осаждения большой протяженности и уменьшено расстояние, которое необходимо преодолеть частице, чтобы осесть на электроде. Аппарат без труда справлялся бы и с высокой запыленностью воздуха. Но такая компоновка электродов из-за большой суммарной длины коронирующих электродов будет вырабатывать недопустимо большое количество токсичных газов. Поэтому подобная конструкция совершенно непригодна для использования в устройстве, предназначенном для очистки воздуха, который будет использоваться людьми для дыхания.
В начале статьи была рассмотрена электродная система, состоящая из двух параллельных пластин. Она обладает очень полезными свойствами в случае ее применения в бытовом электрофильтре:
- электрический разряд в электродной системе не протекает (ионизационные процессы отсутствуют), поэтому токсичные газы не вырабатываются;
- в межэлектродном пространстве образуется однородное электрическое поле, поэтому пробойная прочность межэлектродного промежутка выше, чем эквивалентного промежутка с коронирующим электродом.
Заменим в двухпольной электродной системе второй коронирующий проволочный электрод на пластинчатый электрод:
Процесс очистки воздуха в модифицированной электродной системе немного отличается – теперь он протекает в 2 стадии: сначала частица проходит коронирующий промежуток с неоднородным полем (активная область 1), где получает электрический заряд, затем поступает в промежуток с однородным электростатическим полем (активная область 2), который обеспечивает дрейф заряженной частицы к осадительному электроду. Таким образом, можно выделить две зоны: зона зарядки (ионизатор) и зона осаждения (осадитель), поэтому данное решение и получило название - двухзонный электрофильтр . Пробойная прочность межэлектродного промежутка осадительной зоны выше пробойной прочности промежутка зоны зарядки, поэтому к ней приложено большее значение разности потенциалов U2, что обеспечивает большее значение напряженности электрического поля в этой зоне (активная область 2). Пример: рассмотрим два промежутка с одинаковым межэлектродным расстоянием L=30мм: с коронирующим электродом и с пластинчатым электродом; пробойное значение средней напряженности для промежутка с неоднородным полем не превышает 10кВ/см ; пробойная прочность промежутка с однородным полем составляет около 28кВ/см, (более, чем в 2 раза выше).
Увеличение напряженности поля будет способствовать повышению качества очистки, так как сила, обеспечивающая дрейфа заряженных частиц пыли, пропорциональна ее значению. Что примечательно, электродная система зоны осаждения почти не потребляет электроэнергию. Кроме того, так как поле однородное, по всей длине зоны (по ходу движения воздуха) напряженность будет принимать одинаковое значение. Благодаря этому свойству можно увеличить длину электродов осадительной зоны:
В результате увеличится длина активной области осаждения (активная область 2), что обеспечит увеличение времени, отпущенного на процесс дрейфа. Это будет способствовать повышению качества очистки (особенно для мелких частиц, обладающих низкой скоростью дрейфа).
В электродную систему можно внести еще одно усовершенствование: увеличить количество электродов в осадительной зоне:
Это приведет к уменьшению межэлектродного расстояния осадительной зоны, в результате чего:
- уменьшится расстояние, которое необходимо преодолеть заряженной частице, чтобы достигнуть осадительного электрода;
- увеличится пробойная прочность межэлектродного промежутка (видно из уравнения критической напряженности воздушного промежутка), благодаря чему будет возможно обеспечить еще более высокие значения напряженности электрического поля в зоне осаждения.
Протяженность активной области 2 по ходу движения воздуха при этом, что важно, не уменьшится. Поэтому увеличение количества электродов в осадителе тоже будет способствовать повышению качества очистки.
Заключение
В конечном счете, мы пришли к двухзонной электродной системе, обладающей высоким качеством очистки от взвешенных частиц, даже мелких, улавливание которых вызывает наибольшие трудности (низкая способность к зарядке и, следовательно, низкое значение скорости дрейфа) при низком уровне вырабатываемых токсичных газов (при условии использования положительной лавинной короны). Конструкция имеет и недостатки: при высокой количественной концентрации пыли возникнет явление запирания короны, что может привести к значительному снижению эффективности очистки. Как правило, воздух жилых помещений не содержит такого количества загрязнений, поэтому такой проблемы возникнуть не должно. Благодаря неплохому сочетанию характеристик устройства с аналогичными электродными системами успешно применяются для тонкой очистки воздуха в помещениях.По возможности в следующей части будут выложены материалы по конструкции и сборке в домашних условиях полноценного двухзонного электростатического очистителя воздуха.
Огромная благодарность Яне Жировой за предоставленную фотокамеру: без нее качество фото- и видеоматериалов было бы значительно хуже, а фото коронного разряда вообще бы отсутствовали.
Назаров Михаил.
Источники
- Электрофизические основы техники высоких напряжений. И.П.Верещагин, Ю.Н. Верещагин. – М.: Энергоатомиздат, 1993г.;
- Очистка промышленных газов электрофильтрами. В.Н. Ужов. – М.: Издательство «Химия», 1967г.;
- Техника пылеулавливания и очистки промышленных газов. Г.М.-А. Алиев. – М.: Металлургия, 1986г.;
- Промышленная очистка газов: Пер. с англ. – М., Химия, 1981г.
Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.