Полная информация о биофильтрах для сточных вод. Биофильтры Какие же бывают биофильтры
Процесс изъятия и окисления органических загрязнений сточных вод в биологических фильтрах принципиально не отличается от аналогичных процессов, протекающих при очистке сточных вод в других сооружениях биологической очистки, однако ход процесса в биологических фильтрах во многом зависит от конструктивных особенностей этих сооружений. В частности, конструкцией биологического фильтра обусловлена специфика гидродинамических условий в нем, а следовательно, характер и скорость подвода органических веществ и кислорода воздуха к клеткам микроорганизмов биологической пленки, отвода от них продуктов биохимических реакций, что в свою очередь влияет на скорость процесса очистки сточных вод и эффективность работы сооружений.
Очистка осуществляется при контакте протекающей сточной воды через загрузку с неподвижно закрепленной на ее поверхности биологической пленкой. Ход массообменных процессов, происходящих в элементарном объеме биологаческого фильтра, схематично представлен на рис. 2.1 а. Перенос загрязнений определяется законами молекулярной и турбулентной диффузии вещества. При молекулярной диффузии массообмен происходит как за счет разности концентраций веществ на границе раздела фаз жидкость - воздух (максимальная концентрация загрязнений) и жидкость - биопленка (минимальная концентрация). Турбулентная диффузия происходит вследствие перемешивания жидкости при ее протоке через загрузку биологического фильтра. При этом скорость турбулентной диффузии может намного превышать скорость молекулярной диффузии.
t/почнал Soda
Эаеряонени*
воздух
Ppo?f/ктм реакций -
Лоробос
I HjP?/точмая I сТиоплснка
Оресничес/fue бещестба биогенные j/гсменты MP da, Mg, б и dp.
Рислород
А в I P I » I *u
биологическая
пленка
C0 Zl H;0, H0 2j Wj
Энергия
Прирост биомассы
Энергетические WMC
Нонструктиш обмен
Рис. 2.1. Схемы массообменных процессов, протекающих при очистке сточных вод на биологических фильтрах (а), и окислительных процессов , происходящих в биопленке (б)
Кислород воздуха, необходимый для протекания биологического процесса, поступает к биопленке из порового пространства загрузки биологического фильтра. Перенос и фиксирование (сорбция) органических веществ на поверхности клетки или в околоклеточном пространстве сопровождаются гидролизом сложных соединений под действием различных ферментов, а также в результате диффузии веществ через проницаемую мембрану клетки.
В ходе внутриклеточных процессов происходит окисление органических веществ (энергетический обмен) и синтез нового материала клетки (конструктивный обмен). Процесс окисления сопровождается выделением энергии, процесс синтеза идет с ее потреблением (рис. 2.16).
Продукты распада органических загрязнений выносятся из биогшенки в слой жидкости и отводятся с потоком жидкости (растворенные вещества) и с потоком воздуха (газообразные). Одновременно потоком жидкости вымывается избыточная (прирастающая) биопленка, которая выносится из биологического фильтра вместе с очищенной водой. Для отделения избыточной биопленки очищенные сточные воды после биологических фильтров отстаивают во вторичных отстойниках.
Характер протекания процесса очистки сточных вод на биологическом фильтре показан на рис. 2.2. Как видно из рисунка, концентрация органических загрязнений Ь н сначала быстро снижается при продолжительности процесса от г 0 До что свидетельствует о высоких скоростях изъятия загрязнений на этом участке. Одновременно резко увеличивается количество биопленки (кривая 2) по сравнению с начальным С н, причем скорость роста микроорганизмов биоиленки по мере уменьшения концентрации загрязнений в жидкости постепенно снижается. К моменту времени /1 количество биопленки становится стабильным, так как недостаток питания тормозит дальнейший рост клеток.
Рис. 2.2.
1 - концентрация органических загрязнений; 2 - общая масса биогшенки, закретенной на загрузке и циркулирующей; 3 -масса биопленки, закрепленной на загрузке биологического фильтра; 4 - концентрация нитритов и нитратов; 5 - зольность биомассы
Прирост биомассы в этот момент времени максимальный. При дальнейшем увеличении продолжительности процесса очистки сточных вод в биологическом фильтре концентрация органических загрязнений продолжает снижаться (кривая /), но скорость на участках б - / 2 и / 2 - Ь значительно ниже, чем в начале процесса. Ввиду низкой остаточной концентрации загрязнений в жидкости, отсутствия достаточного питания для жизнедеятельности микроорганизмов биопленки на этих участках начинается процесс отмирания (самоокисления) биомассы. Часть биопленки смывается с за1рузки биологического фильтра и поступает в очищаемую жидкость. Вследствие распада биомассы ее общее количество уменьшается (кривая 2), также уменьшается количество биопленки, закрепленной на загрузке (кривая 3), зольность биомассы повышается (кривая 5).
Участок I (см. рис. 2.2) при продолжительности процесса очистки сточных вод от /] до? 2 характеризует режим работы биологических фильтров при неполной биологической очистке. При работе в этом режиме концентрация загрязнений по ВПК снижается до 100...30 мг/л, наблюдается большой прирост биомассы, процесс идет без нитрификации.
При продолжительности процесса очистки от до Ь (участок II) биологические фильтры работают в режиме полной биологической очистки; ВПК жидкости снижается до Ь 0 - = 15...25 мг/л, в очищенной жидкости появляются нитриты и нитраты (кривая 4). Количество биомассы как закрепленной на загрузке биологического фильтра, так и выносимой с очищенной жидкостью, снижается вследствие процессов самоокисления.
Увеличение продолжительности процесса от и до / 4 сопровождается дальнейшим распадом и следовательно, уменьшением количества биомассы в биологическом фильтре (кривые 2 и 3), зольность ее повышается. Этот участок III характеризует режим стабилизации биомассы , аналогичный режиму продолженной аэрации при очистке сточных вод с активным илом. При работе биологических фильтров в этом режиме можно получить наименьший прирост биопленки, высокую степень минерализации выносимой из биологического фильтра избыточной биопленки, что позволяет облегчить дальнейшую ее обработку. Стабилизированная избыточная биомасса, выносимая из биологических фильтров, работающих в этом режиме, не требует дополнительного сбраживания и может быть сразу направлена на иловые площадки для подсушивания.
Концентрация загрязнений сточных вод на участке III не только не снижается по сравнению с концентрацией загрязнений на участке II, но и может даже несколько увеличиваться (кривая 1 ) за счет вторичного загрязнения очищенной жидкости продуктами распада биомассы. В конце участка III при продолжительности процесса Ц в биологическом фильтре развиваются микроорганизмы, адаптированные к остаточным трудноокисляемым загрязнениям сточных вод, что обусловливает дальнейшее снижение концентрации загрязнений.
Участок IV характеризует работу биологических фильтров в режиме доочистки сточных вод до величины остаточных загрязнений по ВПК Ь й = 15...5 мг/л. В этом режиме прирост биомассы крайне незначительный, зольность избыточной биомассы высокая, процесс нитрификации протекает интенсивно.
Рассмотренный ход процесса очистки сточных вод на биологических фильтрах на контакте иллюстрирует возможность работы этих сооружений в различных режимах, а их режим работы, принятый на основании местных условий и требуемого качества очищенных сточных вод, обусловливает выбор конструкции этих сооружений, технологических параметров их работы, схемы всей очистной станции.
Основные технологические параметры, определяющие режим работы биологических фильтров: нагрузка по органическим загрязнениям, окислительная мощность, гидравлическая нагрузка, средняя продолжительность протока сточных вод, коэффициент рециркуляции, расход подаваемого воздуха.
измеряется количеством органических загрязнений, подаваемых вместе со сточными водами на биологический фильтр в единицу времени, и является основным показателем, определяющим режим и условия биологического процесса (см. рис. 2.2). Обычно пользуются удельной нагрузкой по БПК полн, отнесенной к 1 м 3 объема биологического фильтра: N - Ь еп QJW, где N - удельнаянагрузка по БПК П0Л11 , г/сут-м 3 ; Ь еп - БПК полн исходных сточных вод, г/м 3 ; 0^, - расход сточных вод, м 3 /сут; ]Г- объем биологического фильтра, м 3 .
Для сравнения режимов работы биологических фильтров удельную нагрузку правильнее определять на единицу площади поверхности биопленки или площади поверхности фракций загрузки: Ы = Ь е „ 0,^ а, где - удельная нагрузка, г/сут-м 2 ; /в - площадь поверхности загрузки, м 2 .
Окислительную мощность, или производительность биологического фильтра по количеству изъятых органических загрязнений в процессе очистки сточных вод, выражают в граммах БПК полн на 1 м 3 загрузки в сутки: ОМ = (Ь еп ~ ()*/№, где ОМ - окислительная мощность, г/сут-м 3 ; А^-БПКполн очищенных сточных вод, г/м 3 .
- количество сточных вод, поступающих на биологический фильтр, отнесенное к 1 м 2 площади сооружения в плане: ц - ()„/Г, где q - гидравлическая нагрузка, м 3 /м 5 -сут; площадь биологического фильтра, м 2 .Средняя продолжительность протока сточных вод через биологический фильтр Г со зависит от гидравлической нагрузки, высоты биологического фильтра, способа подачи сточных вод на поверхность загрузки, типа загрузки и распределения в ней биопленки. Величина г ср является показателем продолжительности процесса очистки сточных вод в биологическом фильтре. При повышении гидравлической нагрузки увеличивается скорость движения жидкости через биологический фильтр и уменьшается продолжительность протока; с увеличением высоты биологического фильтра увеличивается продолжительность пребывания сточных вод в загрузке. Загрузка, а также закрепленная на ней биопленка, оказывая сопротивление движению протекающей жидкости, тем самым определяют путь, по которому движется поток жидкости, а следовательно, влияют на продолжительность протока.
Коэффициент рециркуляции - отношение расхода рециркулируемой очищенной жидкости к общему расходу исходных сточных вод, поступающих на биологический фильтр, п = (2и-
Рециркуляция, т.е. повторный пропуск части очищенной ЖИДкости через биологический фильтр, позволяет увеличить продолжительность процесса очистки, снизить начальную концентрацию загрязнений исходных сточных вод и повысить гидравлическую нагрузку, обеспечивающую промывку загрузки сооружения в процессе его работы. Коэффициент рециркуляции принимают в зависимости от предельно допустимой концентрации загрязнений по БПК полн смеси исходных и рециркулируемых сточных вод, которую можно направить на биологический фильтр без опасений заиливания пор загрузки в результате прироста биопленки. Коэффициент рециркуляции определяют по формуле п = (L en - L mix)/ (L mix - L ex ), где L mix -БПК п0ЛН смеси исходных и рециркулируемых сточных вод, г/м 3 .
Количество кислорода, требуемое для окисления органических загрязнений сточных вод микроорганизмами биопленки, должно обеспечиваться подачей в тело биологического фильтра соответствующего количества воздуха. Недостаток кислорода замедляет скорость биологического процесса. Однако влияние количества подаваемого воздуха на скорость процесса очистки сказывается только до тех пор, пока процесс не будет полностью обеспечен требуемым количеством кислорода. Если достаточный воздухообмен в поровом пространстве загрузки биологических фильтров не обеспечивается естественной вентиляцией, то предусматривают принудительную подачу воздуха.
Наиболее важным конструктивным элементом биологического фильтра является загрузка. Тип и характеристика загрузки существенно влияют на протекание процесса очистки сточных вод. Загрузка биофильтра характеризуется следующими основными параметрами: высотой слоя, удельной площадью поверхности, пористостью и плотностью загрузки. Высота слоя загрузки, или рабочая высота биологического фильтра, определяет наравне с другими параметрами продолжительность пребывания сточных вод в биологическом фильтре.
От удельной площади поверхности загрузки зависит и общая площадь поверхности закрепленной на ней биопленки, а следовательно, и площадь, через которую осуществляется перенос органических загрязнений из жидкости, обтекающей загрузку, к бактериальным клеткам. Как правило, процесс массо-переноса является фактором, лимитирующим скорость изъятия загрязнений, и потому от площади поверхности загрузки в значительной мере зависит окислительная мощность биологического фильтра.
Следует отметить, что для процесса очистки сточных вод важным является площадь поверхности биопленки, а не общее количество биомассы в загрузке. При накоплении биомассы увеличивается толщина биопленки, а активно работающим остается по-прежнему только наружный аэробный слой. Внутри, у поверхности загрузки, образуется анаэробная зона (рис. 2.1а), которая почти не участвует в процессе изъятия и окисления загрязнений. Увеличение количества биомассы уменьшает объем порового пространства загрузки, затрудняет воздухообмен в биологическом филыре, а также снабжение микроорганизмов кислородом воздуха. Пористость загрузки биологических фильтров должна быть такой, чтобы при установившемся режиме работы сооружения (когда количество биопленки в загрузке остается постоянным и ее прирост соответствует выносу) объехМ свободных пор был достаточен для снабжения биоплёнки кислородом воздуха.
Загрузку, применяемую для биологических фильтров, условно можно разделить на два вида: объемную и плоскостную. В качестве объемной загрузки используют щебень, гравий прочных горных пород, кокс, керамзит и другие материалы, характеризуемые определенной крупностью фракций, механической прочностью и стойкостью к разрушению . Такой материал имеет пористость 40...50 %, плотность 500... 1500 кг/м 3 , удельную поверхность в зависимости от размера фракций загрузки 30... 120 м 2 /м 3 .
В качестве плоскостной загрузки применяют листовой материал (пластмассу, асбестоцемент и др.), мягкие рулонные материалы (пластмассовую пленку, синтетические ткани), а также засыпные элементы (кольца, отрезки труб и др.). Загрузку из листовых материалов выполняют в виде различных блоков и кассет, которые укладывают в тело биологического фильтра, мягкие рулонные материалы закрепляют на каркасах или свободно подвешивают.
Пористость плоскостной загрузки из листовых материалов составляет 80...97 %, из рулонных материалов - 94...99, из засыпных элементов - 70...90 %. Удельная поверхность листовой и рулонной загрузки - 80... 130 м 2 /м 3 , засыпной - 70... 100 м 2 /м 3 , плотность листовой загрузки 40-100 кг/м 3 , рулонной - 5.. .60 кг/м 3 , засыпной- 100...600 кг/м 3 .
Применение плоскостной загрузки позволяет упростить конструкцию биологического фильтра, снизить строительные и монтажные расходы.
Биологический фильтр -- сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:
а)фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
б)водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;
в) дренажного устройства для удаления отфильтровавшейся воды;
г)воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.
Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.
Проходя через загрузку биофильтра, загрязненная вода оставляет в ней не растворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, абсорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.
Классификация биофильтров
Биофильтры классифицируются по различным признакам.
1. По степени очистки --на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.
2. По способу подачи воздуха -- на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.
3. По режиму работы -- на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках -- на неполную очистку.
4. По технологической схеме -- на биофильтры одноступенчатые и двухступенчатые. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.
Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.
5. По пропускной способности -- на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоко-нагружаемые).
6. По конструктивным особенностям загрузочного материала -- на биофильтры с объемной загрузкой и с плоскостной загрузкой.
Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20--30 мм и высоту слоя загрузки 1--2 м;
высоко нагружаемые биофильтры, имеющие крупность загрузочного материала 40--60 мм и высоту слоя загрузки 2--4 м;биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60--80 мм и высоту слоя загрузки 8--16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100--600 кг/м8, пористость 70--90%, высота слоя загрузки 1--6 м;биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40-- 100 кг/м3, пористость 90--97%, высота слоя загрузки 2--16 м. Плотность асбестоцементной загрузки 200--250 кг/м3, пористость 80--90%, высота слоя загрузки 2--6 м;биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5--60 кг/м3, пористость 94--99%, высота слоя загрузки 3--8 м.
К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6--3 м. Расстояние между дисками 10--20 мм, частота вращения вала с дисками 1--40 мин-1.
Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой-- до 50 тыс. м3/сутки, погружные биофильтры -- для малых расходов до 500 м3/сутки.
Союзводоканалниипроектом составлен экспериментальный проект биофильтров пропускной способностью 200--1400 м3/сутки с загрузкой из пеностекольных блоков 375X375 мм, из гофрированных листов полиэтилена размером 500X500 мм типа «сложная волна» и асбестоцементных листов размером 974X2000 мм.
Основные типы биофильтров
Капельные биофильтры. В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха происходит через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде; обычно она колеблется от 0,5 до 1 м3 воды на 1 м3 фильтра.
Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, отфильтровавшаяся через толщу биофильтра, попадает в дренажную систему и далее по сплошному непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых выносимая пленка отделяется от очищенной воды.
При нагрузке по загрязнениям больше допустимой поверхность капельных биофильтров быстро заиливается, и работа их резко ухудшается.
Проектируются они круглыми или прямоугольными в плане со сплошными стенками и двойным дном: верхним в виде колосниковой решетки и нижним -- сплошным.
Высота между донного пространства должна быть не менее 0,6 м для возможности периодического его осмотра. Дренаж биофильтров выполняют из железобетонных плит, уложенных на бетонные опоры. Общая площадь отверстий для пропуска воды в дренажную систему должна составлять не менее 5--8% площади поверхности биофильтров. Во избежание заиливания лотков дренажной системы скорость движения воды в них должна быть не менее 0,6 м/с.
Уклон нижнего днища к сборным лоткам принимается не менее 0,01, продольный уклон сборных лотков (максимально возможный по конструктивным соображениям) -- не менее 0,005.
Стенки биофильтров выполняются из сборного железобетона и возвышаются над поверхностью загрузки на 0,5 м для уменьшения влияния ветра на распределение воды по поверхности фильтра. При наличии дешевого загрузочного материала и свободной территории небольшие биофильтры можно устраивать без стенок; фильтрующий материал в этом случае засыпается под углом естественного откоса. Наилучшими материалами для засыпки биофильтров являются щебень и галька.
Все примененные для загрузки естественные и искусственные материалы должны удовлетворять следующим требованиям: при плотности до 1000 кг/м3 загруженный материал в естественном состоянии должен выдерживать нагрузку на поперечное сечение не менее 0,1 МПа, не менее 10 циклов испытаний на морозостойкость; кипячение в течение 1 ч в 5%-ном растворе соляной кислоты; материал не должен получать заметных повреждений или уменьшаться в весе более чем на 10% первоначальной загрузки биофильтров; загрузка биофильтров по высоте должна быть одинаковой крупности, и только для нижнего поддерживающего слоя высотой 0,2 м следует применять более крупную загрузку (диаметром 60--100 мм).
Высоко нагружаемые биофильтры . В начале текущего столетия появились биофильтры, которые у нас в стране получили название аэрофильтры, а за рубежом -- биофильтры высокой нагрузки. Отличительной особенностью этих сооружений является более высокая, чем в обычных капельных биофильтрах, окислительная мощность, что обусловлено незаиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря более крупному загрузочному материалу и повышенной в несколько раз нагрузке по воде.
Повышенная скорость движения сточной воды обеспечивает постоянный вынос задержанных трудно окисляемых нерастворимых примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела фильтра.
В СССР конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции.
Конструктивными отличиями высоко нагружаемых биофильтров являются большая высота слоя загрузки, большая крупность ее зерен и особая конструкция днища и дренажа, обеспечивающая возможность искусственной продувки материала загрузки воздухом.
Между донное пространство должно быть закрытым, и туда подается вентиляторами воздух. На отводных трубопроводах должны быть предусмотрены гидравлические затворы глубиной 200 мм.
Особенностями эксплуатационного характера являются необходимость орошения всей поверхности биофильтра с возможно малыми перерывами в подаче воды и поддержание повышенной нагрузки по воде на 1 м2 площади поверхности фильтра (в плане). Только при этих условиях обеспечивается промывка фильтров.
Высоко нагружаемые биофильтры могут обеспечить любую заданную степень очистки сточных вод, поэтому применяются как для частичной, так и для полной их очистки.
Как показали исследования, в одинаковых условиях (одинаковая высота и крупность загрузки, характер загрязнений, степень очистки сточных вод и т. д.) высоко нагружаемые биофильтры по сравнению с капельными имеют большую пропускную способность по объему пропускаемой через них воды, а не по количеству переработанных (окисленных) загрязнений. Повышенная же эффективность этих биофильтров по извлечению из сточных вод загрязняющих веществ достигается при увеличении высоты слоя загрузки, увеличении крупности зерен загрузки и лучшем воздухообмене.
Башенные биофильтры . Эти биофильтры имеют высоту 8--16 м и применяются для очистных станций пропускной способностью до 50 000 м3/сутки при благоприятном рельефе местности и при БПКго очищенной воды 20--25 мг/л. В отечественной практике они распространения не получили.
Вентиляция биофильтров
Естественная вентиляция в биофильтрах происходит вследствие разницы температур наружного воздуха и тела биофильтра.
Основная масса воздуха поступает в тело биофильтра через между донное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то устанавливается восходящий (от дренажа к поверхности) поток воздуха, при обратном соотношении---нисходящий; при равенстве температур вентиляция может совсем прекратиться. Интенсивность вентиляции биофильтров зависит также от высоты слоя фильтрующей загрузки, размеров ее зерен и высоты между донного пространства. Чем мельче загрузка, тем хуже условия вентиляции.
Исследования, проведенные Н.А. Базякиной, показали, что объем кислорода воздуха, используемого в биофильтрах, как и в других сооружениях биологической очистки, не превышает 7--8%.
Температура внутри биофильтра не должна быть ниже 6° С, иначе окислительный процесс практически прекращается.
В установках большой и средней пропускной способности необходимая температура поддерживается вследствие постоянного притока сточных вод, температура которых почти всегда выше 8° С. Поэтому такие фильтры обычно не требуют утепления. Небольшие фильтры, как уже отмечалось, приходится размещать в утепленных помещениях во избежание их переохлаждения, особенно в ночное время, когда приток сточной воды уменьшается.
Распределение сточных вод по биофильтрам
Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение производится распределительными устройствами, которые подразделяются на две основные группы: неподвижные и подвижные.
К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным -- качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители).
В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение при помощи подвижных оросителей.
Спринклерное орошение . Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров.
Спринклеры (спринклерные головки) -- специальные насадки, надетые на концы стояков, которые ответвляются от водораспределительных труб, уложенных на поверхности или в теле биофильтра. Отверстия спринклерных головок невелики -- обычно 19, 22 и 25 мм. Во избежание коррозии спринклеры изготовляют из бронзы или из латуни.
Достоинством головки этого типа является, то, что опора, к которой прикреплен отражательный обратный конус, находится в стороне от движущейся струи и не мешает ее действию.
Дозирующий бак автоматически подает воду в спринклерную сеть под постоянным напором. Продолжительность опорожнения бака (период орошения), зависящая в основном от вместимости бака и размеров выпускаемой трубы, всегда одинакова; продолжительность же наполнения бака зависит только от притока сточных вод, который колеблется в течение суток. Поэтому орошение биофильтра производится периодически, через неровные по продолжительности интервалы. Во избежание сильного охлаждения не обогреваемых биофильтров интервал между орошением не должен превышать 5--8 мин.
При большой площади биофильтры разделяются на секции с самостоятельными распределительными сетями и отдельными дозирующими баками.
В отечественной практике наибольшее распространение получил дозирующий бак с сифоном. Преимущество его перед другими состоит в том, что он совершенно не имеет движущихся частей.
Выпускная труба из дозирующего бака представляет собой сифон, верхний срез которого возвышается над дном бака. Внутри дозирующего бака расположен опрокинутый стакан, установленный на подставках и не доходящий до дна бака. К стакану в верхней его части присоединены две трубки: одна из них -- воздушная трубка -- заканчивается открытым концом в баке, другая трубка, представляющая собой вентиляционный затвор, или регулятор напора, заканчивается открытым концом, выведенным выше максимального уровня воды в баке. Кроме того, регулятор напора присоединен патрубком к главной выпускной трубе. В верхней части бака имеется переливная труба, диаметр которой принимается в соответствии с притоком воды в бак.
Действие автоматического сифона заключается в следующем. Вначале вода в баке стоит на низшем уровне А, соответствующем нижнему колену воздушной трубки. В сифоне вода в это время стоит на уровне выходного отверстия спринклеров; регулятор напора заполнен водой до уровня на котором он присоединен к стакану. По мере поступления воды горизонт ее в баке повышается, причем давление под стаканом и в отводной трубе остается равным атмосферному до тех пор, пока уровень ее не дойдет до отверстия воздушной трубки. После этого выход воздуха из-под стакана прекращается и воздушное давление в нем по мере заполнения бака начинает возрастать.
Когда горизонт воды в баке достигнет наивысшего уровня, а горизонт воды под стаканом достигнет верхнего края отводной трубы, уровень воды в регуляторе напора упадет до нижнего его колена В2, а в главном сифоне -- до уровня Б2> также почти у нижнего колена. При этом давление воздуха под стаканом, в главной трубе сифона и в регуляторе напора будет равно высоте столба воды. В следующий момент гидравлический затвор в регуляторе напора прорвется, давление под стаканом упадет до атмосферного, вследствие чего вода из бака устремится в главную трубу и будет вытекать из нее до тех пор, пока горизонт в баке не упадет до уровня А нижнего колена воздушной трубки. Как только через нее воздух проникнет под стакан, действие сифона приостановится, причем колено регулятора напора, засасывающего во время действия сифона воду из главной отводной трубы, останется заполненным водой.
Для регулирования наивысшего уровня воды в баке, при котором начинают действовать сифоны, верхнюю часть регулятора напора делают подвижной на сальниках; поднимая или опуская переливной патрубок регулятора напора, можно установить начало действия сифона как раз в тот момент, когда уровень воды под стаканом дойдет до края выпускной трубы. Отводную трубу от бака можно устраивать с гидравлическим затвором и без него. Диаметр сифона равен диаметру разводящей трубы. Внутренний диаметр колокола принимают равным двум диаметрам трубы сифона, но он может быть и больше.
По мере вытекания воды из бака радиус действия спринклера, зависящий от напора, постепенно уменьшается и таким образом орошается вся площадь круга вокруг спринклера. Для более равномерного распределения воды по орошаемой площади дозирующему баку придают такую форму, при которой площадь его горизонтальных сечений на различных уровнях пропорциональна расходу воды из бака в данный момент. Этому требованию с достаточным приближением удовлетворяет форма опрокинутой усеченной пирамиды. Площадь нижнего ее сечения назначают в зависимости от размера выходной трубы; площадь верхнего сечения (соответствующего уровню воды при максимальном напоре) определяется из указанного соотношения.
Расчет водораспределительной системы сводится к определению расхода воды из каждого разбрызгивателя (спринклера), определению необходимого их числа, диаметра разводящей сети, емкости и времени работы дозирующего бака.
Распределительную сеть укладывают или на специальные столбы, или прямо на фильтрующую загрузку на глубине 0,7--0,8 м от поверхности биофильтра. Сеть укладывают с уклоном с тем, чтобы ее можно было опорожнить в случае необходимости. В конце каждой трубы целесообразно иметь пробку, через которую можно было бы промыть трубопровод чистой водой. Спринклерные головки устанавливают обычно на 0,15 м выше поверхности загрузки фильтра.
Реактивные вращающиеся водораспределители (оросители). Вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке.
Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг своей вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, распределитель вращается.
Такие реактивные оросители получили большое распространение за рубежом (в Англии, ФРГ и Чехословакии) и вполне себя оправдали. У нас они применяются на очистных станциях во многих городах (Харькове, Славянске, Шереметьеве, Владимире и др.).
Союзводоканалниипроектом разработаны типовые проекты вращающихся оросителей для биофильтров диаметром 15, 21, 27 и 29 м.
Для приведения в действие реактивного оросителя необходим сравнительно небольшой напор (0,2--1 м), что является одним из достоинств этого устройства. Кроме того, при реактивных оросителях отпадает необходимость в устройстве дозаторов.
Диаметр отверстий в радиально расположенных трубах обычно колеблется от 10 до 15 мм; расстояние между отверстиями увеличивается от периферии к центру, что обеспечивает более равномерное орошение биофильтра.
Биофильтры с загрузкой из пеностекла или пластмассы
Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло - это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших пор- 200 кв.м/куб.м. Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод. Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя. Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.
Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежания этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.
Биодисковые фильтры
Эти сооружения предназначены для расхода сточных вод до 1000 куб.м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла). Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой. Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30--45 %), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки. Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы. При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов. Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны. Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40 %, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка. Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.
Биофильтраторы
Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб.м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода.Биофильтратор состоит из аэрационной (сорбционной) зоны и зоны осветления. В сорбционной зоне установлены вращающиеся перфорированные диски из пенопласта или подобных материалов. Диски вращаются мотор-редукторм с частотой вращения 10-15 об/мин. За счет градиента давления жидкость и отторгнутая биопленка переливаются через отверстие, устроенное в разделительной перегородке. Укрупненные хлопья активного ила из зоны осветления опускаются вниз и через отверстия подсасываются в аэрационную зону за счет кинематики течения. Таким образом, происходит постоянный обмен биомассы между зонами сорбции и осветления. Очищаемая жидкость поднимается к лотку и отводится за пределы сооружения. Для интенсификации биотехнологии в биофильтре используется струйная аэрация, что позволяет исключить механическую систему привода мотор-редуктор. Такой метод очистки применяется дла расходов сточных вод от 0,5 до 1,5 куб.м в сутки и более, с загрузкой от низких до высоких значений концентрации биоразделяемых соединений (БПК). Струйный биофильтр работает следующим образом. Сточные воды, прошедшие механическую очистку, попадают в аэрационную зону, куда также поступает смесь осветленной жидкости и циркуляционного активного ила. Эта смесь из нижней части осветляется забирается по трубопроводу насосом и через струйный аэратор шахтного типа сбрасывается в аэрационную зону биофильтра. Струя потока вводится в межсекционное пространство (Рис. 4) ниже свободной поверхности на 15-30 см и отражается от специально спланированной поверхности дна. В результате возникают интенсивные воздушные восходящие потоки, которые приводят к движению биоротора. После контакта очищаемой жидкости в аэрационной зоне смесь или и сточной воды поступает на осветление. Зона осветления разделена на три отсека. В дегазационно-отстойной зоне при низходящем потоке отделяются выносимые из аэрационной зоне пузырьки газа малых размеров. Здесь укрупненные частицы ила осаждаются на дно отстойника и возвращаются в аэрационную систему. Далее смесь поступает во вторую зону отстаивания, где происоходит основной процесс разделения твердой и жидкой фаз с образованием взвешенного слоя, углубляющего процесс биофильтрации. Из этой зоны укрупненные хлопья активного ила также поступают в камеру аэрации. В последующем отделении обеспечивается окончательная очистка сточных вод. Вторая зона отстаивания работает в режиме отстойника. Осаждающиеся хлопья активного ила по стенке емкости сползают в зону их забора насосным агрегатом. Осветленные сточные воды через сбросный лоток отводятся на обеззараживание.
Биологический фильтр - резервуар, в котором стоки фильтруется через загрузочный материал, покрытый биологической пленкой, которая состоит из колоний микроорганизмов.
Микрофлора, обитающая в биопленке, разлагает органические вещества, применяя их как источник питания и получения энергии. Омертвевшая биологическая пленка отслаивается, смывается протекающей сточной водой и выносится из биофильтра. В качестве загрузки используются материалы с высокой пористостью, малой плотностью, высокой удельной поверхностью (щебень, гравий, шлак, керамзит, металл и пластиковые сетки, скрученные в рулоны).
Биопленка, в биофильтрах выполняет те же функции, что и активный ил, она адсорбирует и перерабатывает биологические вещества, находящиеся в сточных водах.
Окислительная мощность биофильтров ниже аэротенков .
В состав биофильтра входят следующие составные части:
а) фильтрующая загрузка (тело фильтра), состоит из щебня, шлака, керамзита, гравия, пластика, асбестоцемента, помещенная обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;
б) водораспределительное устройство, обеспечивает равномерное орошение сточными водами поверхности загрузки биологического фильтра;
в) дренажное устройство для удаления профильтровавшейся воды;
г) воздухораспределительное устройство, с помощью которого поступает кислород, необходимый для окислительного процесса.
Принцип работы биофильтра.
Сточные воды, пройдя первичную механическую очистку в отстойнике, где были удалены крупные тяжелые фракции загрязняющих веществ, поступают на биологическую очистку. Очистка в биофильтре осуществляется следующим образом. Загрязненная вода, проходя через фильтрующую загрузку, оставляет в ней нерастворенные примеси, которые не ушли в осадок в первичном отстойнике, а также коллоидные и растворенные органические вещества, сорбируемые биологической пленкой. Колонии микроорганизмов, питаясь веществами органического происхождения, получают энергия для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как материал для увеличения своей численности. Таким образом, происходит одновременно и очищение сточных вод и рост колонии. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.
На эффективность очистки сточных вод в биофильтрах влияют:
- БПК (биологическая потребность в кислороде), очищаемой сточной воды
- Природа загрязнения веществ
- Скорость окисления
- Интенсивность дыхания микроорганизмов
- Толщина биопленки
- Состав, обитающих в ней микроорганизмов
- Температура сточных вод в биофильтре
Биофильтры классифицируют на:
1. Двухступенчатые биофильтры. Они применяются для достижения высокой степени очистки, когда нельзя увеличить высоту биофильтра.
2. Биофильтры с капельной фильтрацией. Они имеют низкую производительность, но обеспечивают полную очистку. Их используют для очистки вод, до 1000 м3/сутки, при БПК не более 200 мг/л.
Б.1. ОБЩИЕ СВЕДЕНИЯ
Биологический фильтр (биофильтр) - сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой (биопленкой), образованной колониями микроорганизмов (рис. Б.1).
Биофильтр состоит из следующих частей:
Фильтрующей загрузки, помещенной в резервуаре круглой или прямоугольной формы в плане;
Водораспределительного устройства, обеспечивающего равномерное орошение сточной водой поверхности загрузки биофильтра;
Дренажного устройства для удаления профильтрованной воды;
Воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.
Рис. Б.1.Схема биологического фильтра: 1 - подача сточных вод; 2- водораспределительное устройство; 3 - фильтрующая загрузка; 4 - дренажное устройство; 5 - профильтрованная сточная вода; 6 - воздухораспределительное устройство
Процессы окисления в биофильтре аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.
Рис. Б.2. Схема обмена веществ в элементарном слое биофильтра: 1- анаэробный слой биопленки; 2 - аэробный слой биопленки; 3 - слой сточной воды
Проходя через загрузку биофильтра, загрязненная вода оставляет в ней нерастворимые примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, сорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда получают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и, в то же время, увеличивается масса активной биологической пленки в теле биофильтра.
Отработавшая и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра (рис. Б.2).
Биофильтр, как и любой другой биоокислитель, представляет собой открытую экологическую систему, ограниченную в пространстве, включающую живую (биоценоз биопленки) и неживую (конструктивная часть биофильтра, компоненты движущихся жидкой и газовой фаз) среду, обеспеченную источниками энергии и питания. Экосистема - биофильтр отличается устойчивым равновесием, т.е. способностью за счет саморегулирования возвращаться в исходное состояние по производительности и эффективности работы после отклонений от стабильного режима в результате воздействия окружающей среды и условий функционирования. Многообразие видового состава биоценозов является показателем жизнестойкости системы. Эффективность работы биофильтров зависит от многих факторов: влияния окружающей среды, состава сточных вод, режима эксплуатации, конструкции биофильтров, состава биоценозов биопленки и др.
→ Очистка сточных вод
Классификация биофильтров
Классификация биофильтров
Биофильтры могут работать на полную и неполную биологическую очистку и классифицируются по различным признакам, основными из которых являются конструктивные особенности и вид загрузочного материала.
По виду загрузочного материала биофильтры делятся на: биофильтры с объемной загрузкой (гравий, шлак, керамзит, щебень и др.) и биофильтры с плоскостной загрузкой (пластмассы, асбестоцемент, керамика, металл, ткани и др.).
Биофильтры с объемной загрузкой подразделяются на следующие виды: – капельные, имеющие крупность фракций загрузочного материала 20-30 мм и высоту слоя загрузки 1-2 м; – высоконагружаемые, имеющие крупность загрузочного материала 40-60 мм и высоту слоя загрузки 2-4м; – биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60-80 мм и высоту слоя загрузки 8-16 м.
Объемный загрузочный материал имеет плотность 500-1500 кг/м3 и пористость 40-50%.
Биофильтры с плоскостной загрузкой подразделяются на следующие виды: – с жесткой засыпной загрузкой. В качестве загрузки могут использоваться керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100-600 кг/м3, пористость 70-90%, высота слоя загрузки 1-6 м; – с жесткой блочной загрузкой. Блочные загрузки могут выполняться из различных видов пластмассы (гофрированные и плоские листы или пространственные элементы), а также из’ асбестоце-ментных листов. Плотность пластмассовой загрузки 40-100 кг/м3, пористость 90-97%), высота слоя загрузки 2-16 м; – с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5-60 кг/м3, пористость 94-99%, высота слоя загрузки 3-8 м.
Пропускная способность биофильтров зависит от конструктивных особенностей того или иного типа сооружения и объясняется содержанием активной биомассы на единицу объема биофильтра.
Биофильтры с объёмной загрузкой (капельные биофильтры). В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха осуществляется через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде – обычно 0,5-2 м3 на 1 м3 объема загрузочного материала в сутки. Капельные биофильтры впервые появились в Салфорде (Великобритания) в 1893 г., их рекомендуется применять при расходе сточных вод не более 1000 м3/сут. Они предназначаются для полной биологической очистки сточных вод.
Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, профильтровавшаяся через толщу загрузки, проходит через дренажную систему, а далее по непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых отмершая биоплёнка отделяется от очищенной воды. При нагрузке по органическим загрязнениям больше допустимой, загрузочный материал быстро заиливается, и работа капельных биофильтров резко ухудшается.
Высоко нагружаемые биофильтры. В начале XX столетия появились биофильтры, которые у нас в стране получили название – аэрофильтры, а за рубежом – биофильтры высокой нагрузки.
Отличительной особенностью этих сооружений является более высокая, по сравнению с капельными биофильтрами, окислительная мощность, что обусловлено меньшей заиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря крупным фракциям загрузочного материала и повышенной в несколько раз нагрузке по воде. Высокая скорость движения сточной воды в биофильтре обеспечивает постоянный вынос задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела биофильтра. Конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции. Они предназначаются для неполной и полной биологической очистки сточных вод.
Башенные биофильтры. Эти биофильтры имеют высоту 8-16 м и применяются для очистных станций пропускной способностью до 50 тыс.м3/сут при благоприятном рельефе местности и при БПК очищенных сточных вод 20-25 мг/л. В отечественной практике они распространения не получили.
Биофильтры с плоскостной загрузкой. Появление в 50-х годах XX века плоскостных – блочных, мягких и засыпных загрузочных материалов позволило значительно повысить производительность биологических фильтров (рис. 12.3).
Рис. 12.3. Биофильтр с плоскостной (пластмассовой) загрузкой:
1 – корпус из облегчённых листов по металлическому каркасу; 2 – пластмассовая загрузка; 3 – решетка; 4 – бетонные столбовые опоры; 5 – подводящий трубопровод; б – реактивный ороситель; 7 – отводящие лотки
Как видно из таблицы, плотность плоскостных загрузочных материалов (12,2-140 кг/м3) значительно меньше, чем традиционных из гравия или щебня (1350-1500 кг/м3), что позволяет упростить и облегчить фундамент и ограждающие конструкции биофильтров. Пористость плоскостных загрузочных материалов (87-99%) более чем вдвое выше, чем у объемных загрузок (40-50%), что позволяет отказаться от принудительной вентиляции и сэкономить значительное количество электроэнергии. Удельная поверхность плоскостных загрузочных материалов 80-450 м /м, против 50-80 м /м3 у объемных. Однако, даже при одинаковой удельной поверхности активная поверхность плоскостных загрузочных материалов значительно больше за счет отсутствия мертвых зон, образующихся при соприкосновении фракций засыпного загрузочного материала.
Установлено, что на производительность биофильтра большое влияние оказывает конфигурация загрузочного материала. В загрузочных материалах, где жидкость движется строго вертикально по гладкой поверхности, гидравлический режим ламинарный (идеальный вытеснитель), а в загрузочном материале со сложной формой поверхности, где поток отклоняется по вертикали (Флокор, Пласдек и др.), режим движения жидкости турбулентный. По данным зарубежных ученых, производительность сложных загрузочных материалов, по сравнению с гладкими (при одинаковой площади удельной поверхности и в одинаковых условиях работы), на 67% выше.
Биофильтры насчитывают столетнюю историю использования их в качестве биологических окислителей. Но с конца 50-х годов XX столетия число строящихся станций биофильтрации в нашей стране по субъективным и объективным причинам стало уменьшаться. Среди этих причин можно выделить следующие: неиндустриальность строительства; отсутствие загрузочного материала; малая пропускная способность; изменение состава поступающих на очистку сточных вод; ненадежность работы при перегрузках (особенно по органическим загрязнениям) и ряд других. Из общего числа проектируемых и строящихся биологических окислителей на долю биофильтров приходится не более 10%.
Вместе с тем при наличии дешевых местных материалов и дефиците электроэнергии, а также в тяжелых грунтовых условиях и сейсмичных районах предпочтение отдается биофильтрам. Например, в Киргизии из 31 действующей станции биологической очистки – 28 с биофильтрами. Следует отметить, что в ряде отраслей промышленности (гидролизно-дрожжевая, пищевая, и др.), где сточные воды обладают значительной пе-нообразующей способностью, целесообразно применять биофильтры.
В настоящее время сотни построенных станций биофильтрации работают в режиме, превышающем их расчетную пропускную способность, как по расходу сточных вод, так и нагрузкам по органическим загрязнениям. Весьма актуальной стала проблема модернизации таких станций биофильтрации, что явилось стимулом для разработки новых высокопроизводительных загрузочных материалов. Следствием этого и стало появление новых биофильтров с плоскостной загрузкой. Они имеют высокую индуст-иальность строительства, включая заводское изготовление блочного загрузочного материала или комплекса сооружений небольшой пропускной способности. Им свойственна высокая пропускная способность, как по расходу сточных вод, так и по снижению органических загрязнений, превышающая соответствующие показатели биофильтров с объемной загрузкой в 3-8 раз.