Автоматический сверлильный станок с подсветкой схема. Сверлилка для печатных плат
Добрый вечер всем. Была у меня проблема со сверлением отверстий в печатных платах, то делал это при помощи электродрели, то шуруповерта или электромотора с цанговым зажимом. Понятное дело, неудобно, громоздко. В общем решил что-то с этим делать. Выбор сразу пал на регулировку оборотов при помощи ШИМ. Первое, что сразу же пришло в голову - классика NE555, как раз было в закромах пару микросхем в DIP корпусе. В интернете множество схем, поискав не длительное время, остановился на данной схеме, немного переделав под себя естественно.
Трансформатор с выпрямителем сделал на отдельной плате, трансформатор включен в сеть через плавкий предохранитель на ток 2А, трансформатор на 19В, 1 А. Ключ у меня был IRLZ44, его и применил.
Кстати, печатная плата с самим регулятором получилась достаточно компактная. Конечно если применить планарные детали, можно значительно уменьшить устройство. Но повторюсь - делал из того что было. Вот собственно сама печатная плата:
Устройство на микросхеме NE555 позволил реализовать регулятор мощности с широтно-импульсной модуляцией, который применяется совместно с устройствами, питающимися от постоянного тока. Обладает высоким КПД, большой нагрузочной способностью и широким диапазоном питающих напряжений. Может использоваться для регулирования скорости вращения коллекторных электродвигателей постоянного тока, мощности нагревательных приборов, ламп накаливания, с максимальным током, зависящим от источника питания и выходного ключа.
Технические характеристики
Устройство и работа электронной схемы:
Устройство собрано на интегральном таймере, включенным в режиме генератора импульсов с постоянной частотой и мощным МДП-транзисторе, работающем в ключевом режиме. Скважность и длина импульсов изменяется положением движка переменного резистора, это позволяет регулировать коэффициент заполнения ШИМ, и следовательно - среднюю мощность в нагрузке.
Напряжение питание устройства не должно превышать 27В постоянного тока. В качестве регулирующего элемента применен МДП транзистор, работающий в ключевом режиме. Так как в открытом состоянии сопротивление перехода сток-исток имеет очень низкое сопротивление, то на транзисторе, даже при коммутировании токов 10А, выделяется незначительное количество тепла. Но на всякий случай я установил радиатор площадью 50см2. Конструкцию смонтировал в корпус с ближайшего радиорынка:
На передней панели потенциометр с ручкой, для регулировки оборотов, индикатор питания, тумблер питания, держатель предохранителя, в котором установлен фьюз на 2А, защищающий выход регулятора от перегрузки или короткого замыкания. Клеммная колодка - для нагрузки и отдельно постоянное напряжение 20 В с выпрямителя, мало-ли, вдруг пригодится.
Теперь самое главное, электродвигатель… Разобрал старый советский мамин фен (мама спасибо за фен =)), изъял оттуда электродвигатель, купил на радиорынке набор латунных цанговых зажимов и попробовал по сверлить.
Answer
Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.
Автоматический регулятор оборотов работает следующим образом - на холостых оборотах сверло вращается со скоростью 15-20 оборотов/мин., как только сверло касается заготовки для сверления, обороты двигателя увеличиваются до максимальных. Когда отверстие просверлено и нагрузка на двигатель ослабевает, обороты вновь падают до 15-20 оборотов/мин.
Схема автоматического регулятора оборотов двигателя и светодиодной подсветки:
Транзистор КТ805 можно заменить на КТ815, КТ817, КТ819.
КТ837 можно заменить на КТ814, КТ816, КТ818.
Подбором резистора R3 устанавливаются минимальные обороты двигателя на холостом ходу.
Подбором конденсатора С1 регулируется задержка включения максимальных оборотов двигателя при появлении нагрузки в двигателе.
Транзистор Т1 обязательно размещать на радиаторе, греется довольно сильно.
Резистор R4 подбирается в зависимости от используемого напряжения для питания станка по максимальному свечению светодиодов.
Я собрал схему с указанными номиналами и меня работа автоматики вполне устроила, единственное конденсатор С1 заменил на два конденсатора по 470мкф включенных параллельно (они были меньше габаритами).
Кстати схема не критична к типу двигателя, я проверял ее на 4 различных типах, на всех работает отлично.
Светодиоды закреплены на двигателе для подсветки места сверления.
Печатная плата моей конструкции регулятора выглядит вот так.
Надоело, в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.
От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.
На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.
В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.
В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:
Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его (1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.
Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:
Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…
Продолжение процесса изготовления сверлильного станочка.
Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:
На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.
Поэтому изготовление сверлильного станочка было продолжено…
Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:
Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.
На фото – заготовки для основания станочка:
Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:
Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:
Рабочая зона станочка, виден белый светодиод подсветки:
Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:
Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной (в разумных пределах) длиной.
Замер размеров рабочей зоны:
На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.
Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:
Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:
Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.
Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:
Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.
Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей
была найдена еще одна схема регулятора частоты вращения вала электродвигателя:
Данный регулятор обеспечивает работу электродвигателя в двух режимах:
- При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
- При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.
Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.
Регулятор оборотов электродвигателя был собран на небольшой печатной платке:
Транзистор КТ815В снабжен небольшим радиатором.
Плата регулятора установлена в задней части сверлильного станочка:
Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.
Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.
Небольшой видеоролик о работе сверлильного станка.
Учебное пособие для подготовки
рабочих на производстве
Практикум по слесарным работам
Управление сверлильным станком
Ограничение хода шпинделя регулируют, перемещая его в вертикальном направлении при повороте рукоятки подъема и опускания пиноли (рис. 149). Поворачивать рукоятку следует плавно, без рывков, от верхнего до нижнего упора вертикального хода шпинделя. При подаче сверла вниз его вершина с режущими кромками не должна соприкасаться с плоскостью стола.
Рис. 149. Вертикальное перемещение шпинделя со сверлом
Кроме того, наладка сверлильного станка может осуществляться вертикальным перемещением хобота (станок НС-12), для чего следует отвернуть на один оборот рукоятку зажима хобота. Поворотом рукоятки подъема хобота его перемещают вверх по колонке станка и после установки на необходимую высоту закрепляют на ней.
Наладка сверлильного станка может осуществляться также подъемом и опусканием стола (у станков, где это предусмотрено конструкцией). При низком расположении стола станка увеличивается плечо шпинделя, что приводит к снижению точности сверления и большой затрате времени на подвод сверла к детали.
Наладку сверлильного станка на заданную глубину сверления осуществляют по втулочным упорам на сверле (рис. 150) или измерительной линейке, закрепленной на станке (рис. 151). Для наладки сверло подводят к поверхности детали, сверля на глубину конуса сверла, и отмечают по стрелке (указателю) начальное показание на линейке. Затем к этому показанию прибавляют заданную глубину сверления и получают отметку, до которой следует производить сверление.
Рис. 150. Сверление несквозных отверстий по втулочному упору на сверле
Рис. 151. Сверление по упору на линейке:
1 - упор
Например, необходимо просверлить глухое отверстие на глубину 10 мм. Для этого следует подвести сверло и засверлить деталь на глубину, равную высоте конуса сверла, затем отсчитать по указателю размер (например, 26 мм), тогда сумма полученного показания с заданной глубиной сверления составит 26 + 10 = 36 мм. При сверлении отверстия следует следить за перемещением линейки. Когда размер 36 совпадет с указателем, сверление необходимо прекратить. Глубина сверления будет равна 10 мм.
Некоторые типы станков, кроме линейки, имеют механизмы автоматической подачи с лимбами, которые определяют ход сверл на требуемую глубину.
При изготовление самодельных печатных плат такие тонкие отверстия не очень нужны, но типовые свёрла диаметром от 0,5 до 0,7 мм тоже достаточно хрупкие и это технологическое приспособление может существенно продлить срок их службы.
Основой конструкции данного станка является асинхронный двигатель переменного тока типа АДП-1262. Ротор этого двигателя представляет из себя пустотелый алюминиевый стакан с толщиной стенки приблизительно 0,5мм. Статор АДП-1262 занимает всё остальное свободное пространство. В нем имеется узкая цилиндрическая щель, в которой с очень маленьким зазором вращается ротор. Понятно, что вес такого ротора ничтожно мал, поэтому его инерционными свойствами в первом приближении можно пренебречь, особенно учитывая вес зажимного патрона. Кроме всего прочего, двигатель обладает очень мягкой характеристикой. При уменьшение оборотов двигателя, уменьшается и момент силы на валу. Всё это гарантирует долгий срок службы любым тонких свёрлам в случае заклинивания и при превышении допустимого максимального вращающего момента на режущей кромке.
В роли держателя свёрл я взял достаточно широко распространенный трёх кулачковый патрон типа 6В10, который позволяет зажимать свёрла диаметром до 6мм.
Станина сделана из двух основных частей. Стойка позиция 1 и реечный механизм позиция 2 взяты от оптического микроскопа МБС-1. Основание позиции три вырезано из стального листа толщиной 1 сантиметр.
Двигатель крепится помощью хомута, который закреплен к подающему механизму 4 винтами. Они показаны красными стрелками на рисунке выше. Отверстия сделаны в вершинах квадрата, поэтому двигатель можно разместить не только вертикально, но также и горизонтально.
Патрон крепится с помощью фасонной втулки, с наружной стороны которой протачивается конус №1, а внутри сделано отверстие под переходную посадку, равную диаметру вала двигателя около 6мм. Втулка изготовлена на токарном станке за один присест. То есть, во время проточки конуса и отверстия (не сверления), заготовка была закреплена в станке и лишь только потом отрезана.
Для отличной фиксации и выбора вполне вероятной несоосности, во втулке есть шесть резьбовых отверстий М3 для стопорных винтов. В валу двигателя имеется 6 углублений, в которые и встают данные стопорные винты. Отверстия проделываются в шахматном порядке, что позволяет гарантированно выбрать несоосность, если она даже появится в результате износа сопрягаемых поверхностей. Винты стопорятся стопорной краской или фиксатором резьбы.
На верхнем вылете вала двигателя имеется закрепленный фланец с небольшой прорезью, который вместе с планкой на корпусе двигателя есть ничто иное как классический стопорный механизм. Он позволяет в ручную затягивать патрон без применения ключа. Применение ключа асимметрирует зажимной механизм и приводит к сильному и неравномерному износу, что является основной причиной биения сверла. При использовании тонких свёрл, это вызывает ощутимый эксцентриситет рабочей части сверла.