Как сделать елку из светодиодов. Светодиодная новогодняя елка своими руками
Светодиодная елка своими руками, не требующая программирования!
В этом проекте показано как сделать новогоднее украшение в виде елки без особых усилий и знаний. Новогодняя елка имеет размер 120 х 80 см и выполнена из обычных светодиодов, но для их работы абсолютно не требуется микроконтроллер и его программирование. А это означает, что это под силу каждому.
Изготовление проекта занимает не так уж и много времени, хоть он и содержит почти 1500 отдельных светодиодов. Собирается он довольно быстро и просто, но это при учете, что вы будете придерживаться инструкций изложенных ниже, в которых будут даны предостережения от различных ошибок. Перед началом сборки, рекомендуется посмотреть видео представленное выше.
Шаг 1: Материалы и инструменты
Для изготовления этого проекта потребуется действительно не так много материалов и инструментов, как может показаться изначально. Это делает проект дешевым и простым в изготовлении. Итак, понадобится:
Материалы:
- Светодиоды 5 мм. В данном проекте использовалось почти 1100 зеленых, 300 желтых и 100 синих светодиодов. Причем желтые и синие светодиоды должны быть мигающими.
- Лист МДФ или ДВП
- Материалы для пайки
- Электрические провода, около 30 метров, предпочтительнее из тонкой, цельной медной жилы. В данном случае использовался разделанный телефонный кабель.
- Старое зарядное устройство от ноутбука в качестве источника питания, в данном случае использовали блок питания на 18,5 Вольт мощностью 4 Ампера.
Самый главный секрет в этом проекте заключается в том, чтобы светодиоды отдельных цветов были мигающими. В этом проекте, таковыми являются желтые и синие светодиоды. При проектировании, было сделано предположение, что они будут мигать в разных интервалах, вызывая случайный узор через некоторое время, и эта теория оказалась верной. В момент подачи питания, они начинают мигать с одинаковым интервалом, но через 10 – 15 секунд, они начинают мигать случайным образом. Если учесть эту особенность не одинаковости срабатывания, то получается, что для создания красивого эффекта не требуется ни микроконтроллера, ни программирования, ни резисторов, ни конденсаторов, ничего кроме светодиодов!
Из инструментов понадобится тоже совсем немного:
- Сверло диаметром 1 мм и 5 мм, дрель
- Паяльник
- Деревянный макет - матрица
- Изолента
- Инструмент для зачистки проводов (как оказалось самый важный, поскольку очень упрощает работу).
- Линейка, карандаш и прочие мелочи.
Шаг 2: Подготовка дизайна
Подготовка к работе занимает примерно около половины всего времени на изготовление этого проекта, и поверьте, оно того стоит.
Во-первых, надо нарисовать изображение на клетчатой бумаге (можно использовать миллиметровку), используя только те цвета светодиодов, которых вы сможете найти. Будьте осторожны с красным цветом, т.к. в данном случае было заказано 100 красных мигающих светодиодов, и оказалось, что когда они объединяются в серию, то они отключают всю серию одновременно и больше не загораются (это выглядит некрасиво, и вам не рекомендуется). Объединив красные светодиоды в серию по 9 шт. они практически не загорались. Синие и желтые светодиоды этой проблеме не подвержены, поэтому пришлось исключить красные светодиоды из всего проекта.
В данном проекте, изначально изображение создавалось в программе Photoshop, но это оказалось достаточно сложным моментом. После поисков подобных программ в интернете, было найдено много программных продуктов, которые раскладывают изображения на квадратные пиксели. Их очень много, и что удобнее – выбирать вам. Суть этого шага, разделить изображение по цветам на квадраты определенного размера. После чего распечатать его на бумаге.
Следующий шаг состоит в том, чтобы правильно ориентировать светодиоды, для уменьшения физических связей. Можно было бы просто ориентировать все катоды в одну сторону, а аноды в другую, создав при этом некое подобие квадратной маски, подключив питание всего лишь к двум полюсам, но на практике это оказалось очень неудобно. Поэтому, схема подсоединения в этом проекте выглядит как соединение прямоугольных областей, поскольку это не требует наличие большого количества дополнительных резисторов, чтобы снизить напряжение, подаваемое на светодиоды, а заодно и снижает потребляемый ток.
Из технического описания светодиодов, было выяснено, что каждый светодиод имеет падение напряжения около 2,5 Вольт. Для того чтобы полностью исключить использование резисторов, было решено объединять светодиоды в серию из расчета 18,5 Вольт / 7шт. = 2,6 Вольта (Падение напряжения на светодиоде). Таким образом, одна серия светодиодов должна содержать 7 светодиодов и при этом они будут светиться на максимальной яркости.
В нашем случае использовался шаблон с квадратами, в центре которого была точка определенного цвета. Затем, на бумаге, каждый цвет был объединен в серию по семь светодиодов. Это было очень утомительным занятием, но по-своему забавным, почти как решение головоломки. Как оказалось в итоге, серии из 7 светодиодов не достаточно, чтобы она могла выдержать напряжение 18,5 Вольт, поэтому в итоге пришлось увеличить серию до 9 светодиодов. Настоятельно рекомендуем вам узнать и точно рассчитать допустимые напряжения на одну серию. Это вас убережет от повторной переделки всей схемы.
Шаг 3: Координатная пайка (серии светодиодов)
Для того чтобы сделать жизнь проще, была изготовлена небольшая матрица. Используя те же размеры, что и при окончательной сборке, была сделана небольшая деревянная плата с шагом между точками 5 мм. Прикладывая эту матрицу к листу МДФ или ДВП, она должна точно соответствовать местам сверления отверстий. После отметки отверстий, рекомендуется отмечать номера строк и столбцов, это еще больше упростит вам дальнейшую сборку. Также, на этой матрице на следующем шаге будут собираться отдельные серии светодиодов, которые затем вставятся в основной шаблон.
Шаг 4: Создание индивидуальных серий светодиодов
Теперь, при наличии удобного шаблона для составления серий из светодиодов можно приступить к следующему шагу. Начинать надо с самого начала, т.е. с первой серии. Разместите светодиоды первой серии в требуемом порядке. Некоторые из ножек светодиодов должны быть сокращены, в противном случае они могут привести к короткому замыканию. Затем разогните ножки светодиодов так, что бы у вас получилось последовательное соединение (т.е. плюс предыдущего с минусом следующего и т.д.). Для маркировки серии, были наклеены небольшие кусочки липкой ленты с номером серии на аноде последнего светодиода, а минус никак не обозначался. После сборки серии, она проверяется на работоспособность, если все нормально, то можно переходить к следующей серии. В данном проекте получилось 150 серий светодиодов, работа очень утомительная и требует внимания. Не забывайте проверять соединения после пайки.
Шаг 5: Подготовка ДВП
Размер листа МДФ, который был приобретен для этого проекта, идеально подходил по размерам, поэтому не было необходимости в его обрезке. Если у вас возникает такая необходимость, то обрежьте лист до требуемых размеров.
Расчертите квадратную сетку по всему листу, но предварительно убедитесь, что она соответствует сетке, которую вы использовали для создания светодиодных секций, т.е. соответствует предварительной матрице. Будьте осторожны, если вы немного нарушите квадратную матрицу, т.е. прочертите линии не перпендикулярно, это может разрушить весь ваш проект!
Затем, используя шаблон с квадратами, начерченный на бумаге, определите круглые области, в которых надо просверлить отверстия. Это не точные области, они нужны лишь для понимания контура фигуры. После чего нанесите точные точки для сверления отверстий.
После этого, что бы отверстия сверлились проще, просверлите все отверстия сверлом диаметром 1 мм, а после этого пройдитесь по всем отверстиям сверлом 5 мм. Этот шаг достаточно долгий по времени, на сверление 1500 отверстий ушло примерно 7 часов времени!
Еще дополнительный час ушел на шлифование различных неровностей и удаление заусенец.
Шаг 6: Установка светодиодов в МДФ доску
Этот шаг довольно простой, но опять же если у вас точно совпадают размеры предварительной матрицы и отверстий, просверленных в листе МДФ. Если все точно, то просто вставьте секции светодиодов с тыльной стороны листа МДФ в просверленные отверстия, согласно бумажной карте. В идеале, вам не потребуется никакая фиксация светодиодов.
Будьте осторожны, вставляя светодиоды в отверстия, если расстояние немного не соответствует, то есть вероятность повредить линзу светодиода или пайку контактов. Также не торопитесь снимать ленту с номерами секций, она пригодится в дальнейшем!
Шаг 7: Создание положительных и отрицательных шин питания
Для создания шин питания, надо взять обычный провод, который используется для напряжения 230 Вольт (например, жилы провода ПВС), зачистить его от изоляции, и хорошо перекрутить во избежание расслоения мелких жил. На каждую сторону потребуется примерно 150 см провода. Затем каждую из жил закрепить с обратной стороны листа МДФ, например, пластмассовыми скобами, по обеим сторонам листа по вертикали. В местах пересечения линий квадратов, провод необходимо залудить для дальнейшей пайки (в данном случае получилось около 60 точек с каждой стороны).
Шаг 8: Соединение светодиодов
На этом шаге, когда все светодиоды установлены на место, четко определитесь, где у серии плюс, а где минус. Порядок подключения секций значения не имеет.
Начинайте с нижнего ряда. Припаяйте поочередно все секции к положительной и отрицательной шине питания. В целях экономии времени, провода и количества мест паек, продумайте возможность параллельного подключения секций – это существенно сэкономит ваше время и силы. Помните, что провода для подключения к шинам питания должны быть в изоляции, иначе произойдет короткое замыкание!
Рекомендуется выполнять подключение построчно, это вам значительно поможет, в случае если вы допустите ошибку. Также, по вашему желанию, вы можете добавить в схему обычный выключатель по питанию между зарядным устройством и светодиодной елкой, в нашем случае проект работает просто от подключения блока питания в розетку.
На этом изготовление проекта заканчивается, но помните, что данная идея подходит не только для изображения рождественской елки, вы можете реализовать и свои, абсолютно не схожие, идеи.
Этот instructable показывает как надо обращаться со светодиодами, чтобы сделать из них какую-либо светящуюся цепь, рассказывает об общих правилах применения светодиодов на примере изготовления светящейся Рождественской светодиодной ёлки . Зная и используя принципы изложенные здесь, вы без труда повторите другие конструкции с использованием светодиодов, такие как и
, раздел сайта, где представлены ВСЕ самодельные ёлки и ВСЕ варианты из чего можно сделать ёлку.
Шаг 1. Детали
Эта светодиодная ёлка сделана из 17 красных, зеленых и желтых светодиодов – из самых дешевых, которые были в наличии в магазине электроники, (не знаю, кто изготовитель).
Их спецификация: (одинаковая для всех цветов)
прямое падение напряжения = 2,0 В
Макс непрерывный ток = 15 мА
Если вы можете, попытайтесь подобрать светодиоды, которые имеют те же характеристики - это облегчит создание дерева.
Блок питания от старого принтера обнаружился на улице - никакого источника питания постоянного тока больше не надо. В данном случае я имею напряжение 30 В, с током до 400 мА. Достаточная мощность для 300 светодиодов, но это излишне.
Шаг 2. Дизайн электрической схемы
Есть три возможности при проектировании схемы светодиодной ёлки, в зависимости от количества светодиодов, их прямого падения напряжения и напряжения питания.
1. На светодиодах будет падать меньшее напряжение, чем поставляет блок питания.
(То есть, например, если у вас есть 12 В питания, и у вас есть 5 светодиодов - каждый с прямым напряжением 1,8 В - то падение на светодиодах будет только 9 В)
При подключении светодиодов соединенных последовательно, непосредственно к источнику питания, будет течь слишком большой ток, и по крайней мере один из светодиодов перегорит (надеюсь разорвет цепь и защитит остальные).
В этом случае, вы должны включить резистор для ограничения величины тока до безопасного уровня. Для расчета общего сопротивления необходимо:
R = (Vs - Vf * N) / Is
Vs: - Напряжение питания
Vf: - Падение напряжения на 1 светодиод.
N: - Количество светодиодов
Is: - Безопасный ток для светодиодов.
Мой первоначальный дизайн был похож на схему А: R1 и R2 каждый по половине R_общего (для симметрии), резисторы добавлены для получения общего сопротивления.
2. На светодиодах падает точно такое же напряжение, что выдает блок питания. Отлично! Резисторы не нужны, просто подключите все индикаторы последовательно к провода клемм питания.
Будьте осторожны, если вы рассчитали неправильно, светодиоды сгорят.
3. На светодиодах падает больше, чем напряжение питания. Плохие новости - вы не можете подключить последовательно соединенные светодиоды. Однако, Вы можете разделить светодиоды в параллельные цепочки. Если вы посмотрите на схему B, вы можете видеть, что есть два пути для прохождения тока от Vcc (+) к GND (-). Путь по левой цепи имеет только 2 светодиода, поэтому она нуждается в токоограничительном резисторе, чтобы сохранить текущий ток на безопасном уровне (Сценарий 1). Путь по правой цепи имеет 15 светодиодов, падение напряжения каждого светодиода 2,0 В и блок питания 30В, это дает мне именно нужное падение напряжения, когда можно обойтись без резистора (Сценарий 2).
Если у вас есть известное напряжение питания и необходимое количество светодиодов с известным падением напряжения на каждом, можно прикинуть, какие сценарии у вас возможны, и разработать свою светодиодную ёлку!
Шаг 3. Дизайн эстетический
Пришло время художественных навыков!
При разработке дизайна дерева помните:
1. Должна быть определена электрическая цепь (см. предыдущий шаг), которая и определит ваши дальнейшие шаги.
2. Старайтесь не делать расстояние между соседними светодиодами больше чем два раза длина выводов светодиода, или вы должны будете использовать дополнительный провод.
Если вы посмотрите на дизайн B, можно увидеть, что есть два пути, по которому течет ток: выводы на нижних зеленых светодиодах подключаются к источнику питания и ток идет по ним вокруг всего контура дерева. Другой путь - два самых нижних зеленых светодиода подключены через резистор, и создают вторую параллельную цепь.
Шаг 4. Используйте кондуктор!
Этот проект не использует печатную плату, и любой, кто пытался паять компоненты вместе, знает, как это трудно! Дерево представляет еще более сложный вариант, так как провода и компоненты следует разместить эстетично - вы хотите, чтобы провода были прямыми, а дерево симметричным.
Чтобы преодолеть это, я использовал кондуктор - распечатайте свой план расположения или нарисуйте его от руки, и приклейте на кусочек дерева, по крайней мере, 5 мм (1/4 inch) толщиной. Если у вас есть гладкое дерево, как фанера или MDF, можно просто рисовать прямо на него.
Найти сверло такого же размера, как ваш светодиод (3 мм или 5 мм, как правило), и просверлить небольшие отверстия под каждый светодиод. В идеале каждый светодиод должен плотно прилегать в отверстии, без шевеления.
Шаг 5. Пайка светодиодов
На данном этапе необходимо выяснить, в каком направлении протекает ток по вашему дереву (по часовой стрелке или против часовой стрелки). От этого будет зависеть расположение контактов питания, и каким образом вы хотите, чтобы было ориентировано дерево (лицом вперед).
Разберитесь с этим – иначе или ёлочка не будет гореть, или будет развернута задом наперед.
Положите каждый светодиод в отверстие кондуктора, убедившись, что они ориентированы так, что положительный вывод первого светодиода будет идти к источнику питания (возможно, через первый резистор), а отрицательный вывод каждого светодиода соединяется с положительным выводом следующего светодиода.
Осторожно согните выводы светодиодов по направлению к прилегающим светодиодам, и обрежьте излишки, так чтобы оставить только ~ 1 см перекрытия. Совместите их внимательно, и спаяйте вместе.
ПРЕДУПРЕЖДЕНИЕ:
Светодиоды чувствительны к температуре – если вы перегреете выводы - они сгорают.
Пайку производите так далеко от светодиодов, как только сможете.
Попробуйте расплавить припой и положить его на соединение, а не нагревайте провода, пока припой плавится на них.
Если у вас не получилась пайка в первые ~ 10 секунд, подождите, пока светодиоды остынут и повторите попытку. Если вы паяете два длинных провода вместе, риск небольшой, но если светодиоды очень близко друг к другу (например, желтые светодиоды в моей конструкции), то вы должны быть намного более осторожными.
Шаг 6. Почти готово...
(Если вы поспешите вынуть светодиоды, вы деформируете ваше дерево)
С помощью плоскогубцев, обойдите кондуктор и тщательно потяните каждый из светодиодов, а затем перейдите к следующему, затем следует вернуться и вытащить каждый немного дальше, пока дерево не освободится.
После удаления дерева из кондуктора, оно должно быть подключено к источнику питания. Если у вас есть хороший компактный блок питания, как у меня, то вы можете использовать его в качестве прочной базы, ... в противном случае вам может понадобиться небольшой деревянный брусок.
Вставьте дерево ногами в отверстия, или согните ноги под углом 90 градусов, и припаяйте к клеммам БП.
Теперь, когда ёлка прочно закреплена, вы можете исправить любые деформации, которые произошли, осторожно изгибая конструкцию. Убедитесь, что провода не касаются друг друга прежде, чем вы подключите питание.
Этот instructable не показывает проверки на каждом этапе строительства, как надо делать, чтобы гарантировать, что каждый светодиод подключен правильно, что электрическая схема будет работать, что напряжение питание достаточной величины, что прямое падение напряжения светодиодов соответствует спецификации, и что светодиоды не перегрелись во время пайки.
Проявляйте должное внимание, (Семь раз отмерь, один раз отрежь), и вы не будете иметь проблем, что что-то пошло не так.
Шаг 7. Светодиодная ёлка г отова!
Ура! Новогодняя светодиодная ёлка , которая не занимают кучу места, когда не используется, готова!
На смену традиционной большой елке пришли ее миниатюрные варианты, изготовленные из самых разных материалов. Наиболее празднично смотрится елочка из светодиодов. Способов, светодиодную елочку , существует несколько. Елочки при этом выглядят непохожими друг на друга и оригинальными.
Светодиодная елочка на стене
Самый простой и легкий вариант изготовления светодиодной елки не требует особых усилий. Для изготовления такой елки понадобится светодиодная гирлянда, канцелярские кнопки и фотографии или небольшие пластмассовые игрушки. Украшать елка будет стену.
Кнопки необходимо закрепить в районе верхушки ели, на концах ее лап и в их основании. Отметьте середину светодиодной гирлянды и закрепите ее на верхней кнопке. Дальше пропускайте оба конца гирлянды через кнопки, изображая елку. Такую елку вы можете украсить легкими шарами, игрушками или фотографиями. Включайте светодиодную гирлянду и любуйтесь новой елкой.
Светодиодная елка из бутылки
Оригинальная елка со светодиодами может получиться на основе пустой бутылки из-под шампанского. Помимо бутылки вам понадобится дрель, сверло, пластилин, клей, светодиодная гирлянда и бумага.
Бутылку нужно очистить от этикетки и сполоснуть. Подготовленную бутылку закрепите на рабочей поверхности при помощи пластилина. В нижней части бутылки место сверления оклейте пластилином. Начните сверлить отверстие. После того, как образуется небольшая выемка, в отверстие капните несколько капель воды. Это нужно, чтобы сверло сильно не нагревалось. Просверлите отверстие до конца. Удалите весь пластилин, ополосните бутылку и вытрите ее насухо.
Пропустите гирлянду через просверленное отверстие и заполните ею бутылку. Чтобы изделие больше напоминало елочку, сверните белую пергаментную бумагу конусом, края ее закрепите клеем. Включайте гирлянду. На этом ваша елочка готова.
Светодиодная елка из флористической сетки
Эта елочка по внешнему виду будет напоминать елку из-под , но будет смотреться эстетичнее. Для изготовления елки понадобится флористическая сетка, плотный картон, пищевая пленка, ножницы, клей ПВА, кисть, швейные иголки, светодиодная гирлянда и украшения для елочки.
Из картона нужно скрутить конус желаемой высоты. Флористическую сетку нарежьте полосами. В емкости разведите клей ПВА с малым количеством воды. Конус из картона обмотайте пищевой пленкой, излишки отрежьте. Куски флористической сетки смочите в растворе клея, и прикладывайте их к конусу, скрепляя швейными иголками. После того, как первый слой сетки подсохнет, выложите второй таким же образом. Оставьте конус до полного высыхания.
После этого снимите конус из сетки с картонной конструкции, пленку также аккуратно удалите. Внутрь конуса положите светодиодную гирлянду и украсьте всю елочку игрушками.
"Как Новый год встретишь - так его и проведешь" - давно ставшая крылатой фраза, в какой-то степени заставляющая заранее готовиться к самому любимому празднику. И если такие традиционные атрибуты, как оливье и мандарины, незаменимы, то выбор различных инсталляций и украшений ежегодно заставляет ломать голову, радиолюбителям и электронщикам - в особенности.
Просмотренные в Интернете видео с поделками на "умных" светодиодах WS2812B сразу породили множество идей их применения. В конце ноября мне наконец-то пришла долгожданная, заказанная на eBay лента из 200 диодов. Доставка бесплатна, стоимость одного диода - около шести рублей. И так как до Нового года оставался всего месяц, я решил совместить приятное с полезным - и с подключением диодов разобраться, и к празднику подготовиться.
WS2812B - трехцветный светодиод с интегрированным драйвером и схемой, реализующей протокол управления. Имеет 4 вывода, как и "обычный" RGB-диод, однако их назначение отличается: два вывода отведены под питание схемы, один вывод под вход данных, и один - под выход (диоды можно соединять последовательно). Нет необходимости придумывать сложные алгоритмы для регулировки яркости и цвета каждого диода - разработчику достаточно передать в цепочку диодов последовательность байт и выдержать необходимые временные интервалы - после чего цепочка будет гореть заданным цветом либо до подачи другой последовательности, либо до отключения питания. При этом расходуется всего один вывод МК или ПЛИС!
В даташите на диоды (прикреплен в конце статьи) подробно расписаны все характеристики, здесь же приведу наиболее важные параметры:
- размер одного диода 5х5 мм, корпус - для поверхностного монтажа;
- напряжение питания - 3,5...5,3В;
- максимальное количество диодов в одной цепочке - 1024, при частоте обновления 30 кадров в секунду. Стоит заметить, что подключить такое число диодов возможно при идеальном следовании таймингам протокола, что бывает проблематично;
- светодиоды реализуют RGB-модель: каждый цвет кодируется одним байтом - теоретически возможно получить более 16 млн цветов. Однако на глаз разница между даже не столь близкими цветами незаметна.
Схема подключения диодов выглядит следующим образом:
При подаче питания диоды не инициализированы и горят синим цветом. Для инициализации цепочки диодов требуется выполнить следующие действия:
- Передать 8 бит G7..G0 для установки зеленого цвета первого диода;
- Передать биты R7..R0 для установки красного цвета;
- Передать биты B7..B0 для установки синего цвета;
- Повторить пункты 1-3 для второго, третьего и др. диодов. То есть, после инициализации первого диода, данные начинают проходить через него на следующий диод;
- Установить на входе логический "0" как минимум на 50 мкс, после чего все инициализированные диоды примут заданный цвет.
Передача единиц и нулей осуществляется не непосредственно, но выдержкой определенных временных интервалов; суммарное время передачи одного бита - 1,25 мкс, настройки одного светодиода - 30 мкс. На практике требуется соблюсти лишь длительность высокого уровня, длительность низкого может выходить из пределов в большую сторону.
Далее я подробно прокомментирую программу, которая инициализирует диоды, отвечает за управление и смену эффектов. Программа написана на языке ассемблера, проект в среде ATmelStudio 6.2 прикреплен в конце статьи. Будет рассмотрена только логика загрузки и переключения эффектов; очевидные вещи, вроде инициализации стека и настройки прерываний и портов, опущены. Также подразумевается, что цепочка диодов подключена к порту PD7 контроллера, рабочая частота - 8 МГц.
Идея программы заключается в следующем. Имеется некий набор эффектов, которые поочередно требуется выводит на светодиоды. Эффект характеризуется:
- частотой кадров;
- временем работы;
- "интеллектуальностью". "Умным" называется эффект, который проще запрограммировать (например, плавные переливы цветов, одинаковые для многих эффектов); "глупый" же эффект описывается покадрово, массивом.
Перед объяснением логики работы следует пояснить, для чего нужны следующие регистры и константы:
Def temp = r16 ;для всего, своего рода регистр-помойка.def counter = r17 ;регистр-счетчик светодиодов.def curFn = r18 ;счетчик кадров, прошедших с момента начала текущего эффекта.def curEf = r19 ;7..4 - число эффектов всего, 3..0 - номер текущего.equ LED_COUNT = 17 ;константа-общее число светодиодов.equ BUFFER_SIZE = LED_COUNT*12+1 ;размер буфера (будет пояснено позднее) .equ XTAL = 8000000 ;тактовая частота.equ DIV = 256 ;значение предделителя таймера.equ TPS = XTAL / DIV ;число тиков таймера за секунду.equ END = 0xFE ;маркер конца
Учитывая приведенные выше характеристики эффекта, он выглядит примерно следующим образом:
EffectName: .db high(TPS/15),low(TPS/15), 15*16,1 .db 7,7,9,7,7,9,7,7,9,7,7,9 .db 7,7,9,7,7,9,7,7,9,7,7,9 .db 7,7,9,7,7,9,7,7,9,7,7,9 .db 7,7,9,7,7,9,7,7,9,7,7,9 .db 7,7,9,END
В первой строке находятся 4 байта характеристик:
- два байта настройки прерывания таймера, определяющие частоты смены кадров. В данном случае частота - 15 кадров/сек;
- байт длительности эффекта (в кадрах). Данный эффект продлится 16 секунд;
- байт "умности" эффекта. Так как данный эффект (перелив) проще запрограммировать, байт равен единице.
- 51 байт цветовых характеристик каждого диода (в случае покадрового описания их было бы на порядок больше);
- маркер конца массива.
Под хранение буфера и некоторых констант в ОЗУ выделено следующее количество места:
Dseg BytesBuffer: .byte BUFFER_SIZE ;массив байт, который будет загружаться в диоды (пояснено ниже) ColorsTable: .byte LED_COUNT*3+1 ;3 - число цветоканалов(R,G,B), 1 байт под маркер конца MaxFrame: .byte 1 ;число кадров, которое необходимо проиграть, для конкретного эффекта CurEffectAddr: .byte 2 ;хранит в себе адрес текущего эффекта.equ CEA_H = CurEffectAddr + 1 .equ CEA_L = CurEffectAddr + 0
Хочется подробнее пояснить "программируемость" эффектов. Дело в том, что в массиве должны быть перечислены интенсивности каждого цвета (от 0 до 16). В свою очередь, данные значения умножаются на значения следующий регистров (заодно приведены константы-помощники в реализации перелива):
Def R = r20 ;динамическая интенсивность красного.def G = r21 ;зеленого.def B = r22 ;и синего.def F = r23 ;флаг для автомата переключения состояний;флаги состояний.equ G_HIGH = 1 .equ R_DOWN = 2 .equ B_HIGH = 3 .equ G_DOWN = 4 .equ R_HIGH = 5 .equ B_DOWN = 6 .equ MAX_FLAG = 7
Произведение констант из массива и соответствующих регистров формируют таблицу цветов (ColorsTable) для каждого из диодов. В случае, если эффект программируется, значения регистров R,G,B можно динамически менять. Описание всех кадров такого эффекта нецелесообразно (требует слишком много памяти контроллера).
В случае, если эффект не программируемый, все кадры перечислены в массиве, а интенсивности вместо значений регистров умножаются на 15.
После получения таблицы цветов необходимо получить последовательность байт, которая будет загружаться непосредственно в диоды. Это выполняет следующая функция:
ColorToBytes: ldi temp,0x88 sbrc R0,7 ;используется регистр R0 как стандартный аргумент команды lpm subi temp,-(1<<6) ;сложения в AVR нет, поэтому так извращенно sbrc R0,6 subi temp,-(1<<2) st Y+,temp ldi temp,0x88 sbrc R0,5 subi temp,-(1<<6) sbrc R0,4 subi temp,-(1<<2) st Y+,temp ldi temp,0x88 sbrc R0,3 subi temp,-(1<<6) sbrc R0,2 subi temp,-(1<<2) st Y+,temp ldi temp,0x88 sbrc R0,1 subi temp,-(1<<6) sbrc R0,0 subi temp,-(1<<2) st Y+,temp ret
То есть, данная функция преобразует один байт в четыре, которые будут загружаться в диоды.
LoadData: cli ;цикл загрузки битов в диоды. Очень быстрый, и дабы тут ничего не сломалось, на всякий случай запрещаю прер-ия. LoadData2: ld temp,Y+ cpi temp,END breq FromBegin ;все диоды инициализированы, прыгаем в бесконечный цикл Out1: out PortD,temp lsl temp nop out PortD,temp lsl temp nop out PortD,temp lsl temp nop out PortD,temp lsl temp nop out PortD,temp lsl temp nop out PortD,temp lsl temp nop cbi PortD,7 rjmp PC+1 ;выполняется 2 такта, но занимает 2 байта, в отличие от 2*nop, которые выполняются столько же, rjmp PC+1 ;но занимает 4 байта rjmp PC+1 rjmp PC+1 rjmp PC+1 rjmp PC+1 rjmp LoadData2 FromBegin: sei cbi PortD,7 Loop: ;пока что цикл абсолютно пуст, то есть можно разместить еще какие-либо действия/обработчики rjmp Loop
Откуда взялась волшебная константа 0х88? Нужная длительность низких и высоких уровней формируется путем выдерживания определенного значения на выходе порта. Команды lsl - nop - out выполняются за три такта, то есть за 375 нс, что укладывается в допустимую погрешность. Таким образом, передача нуля сводится к загрузке последовательности 1000, а единицы - 1100. То есть, в одном байте передаются два бита, а в двенадцати байтах - настройки одного диода (24 бита = 3 байта G,R,B), что сразу делает понятной данную строку:
Equ BUFFER_SIZE = LED_COUNT*12+1 ;размер буфера (будет пояснено позднее)
Именно поэтому в начале байт равен 0x88, функция ColorToBytes попросту выставляет единицы на позициях 6 и 2, если это необходимо, и загружает байт в выходной буфер.
В упомянутом выше прерывании таймера реализовано следующее:
Общий алгоритм работы представлен следующей блок-схемой:
Также в конце статьи прикреплен шаблон проекта, незначительная правка которого позволит очень быстро работать с WS2812B.
Осталось продемонстрировать готовое устройство на "умных" светодиодах - новогоднюю елку. Схема елки достаточно проста и приведена ниже:
Основной компонент схемы - микроконтроллер ATmega8A в TQFP-корпусе. Также я оставил две кнопки для будущей доработки елки. Остальные компоненты почти полностью представлены резисторами и конденсаторами типоразмера 0805. Питается елка от 5 Вольт через разъем micro-USB, что позволяет разместить елку где угодно при подключении к внешнему ЗУ типа PowerBank. Файл с ПП елки находится в архиве (плата двусторонняя).
Фото вырезанной на ЧПУ-станке платы (одна сторона):
Впервые в жизни попробовал вырезать плату из тонкого (0.3мм) текстолита, так как планировал закрепить елку на листе бумаги формата А3. Для больших плат механическая прочность такого текстолита низка; советую брать текстолит от 1 мм толщиной. На фото даже видно просвечивающие дорожки другой стороны!
Пайка и прошивка схемы трудностей вызвать не должны, все необходимые файлы прикреплены в конце статьи. Фото елки в работе (эффект северного сияния, фрагменты гирлянд):
Небольшое видео работы (пример эффекта перелива):
В конце статьи прикреплен архив, где находятся:
- исходный проект новогодней елки в AtmelStudio 6.2;
- шаблон проекта в этой же среде;
- файл печатной платы елки;
- файл схемы елки;
- прошивка елки;
- FUSE-биты контроллера;
- схема подключения диодов;
- даташит на WS2812B.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
U1 | МК AVR 8-бит | ATmega8A-AU | 1 | TQFP32 | В блокнот | |
D1-D17 | Светодиод | WS2812B | 17 | В блокнот | ||
C1 | Конденсатор | 47 мкФ | 1 | TANT_A | В блокнот | |
C2 | Конденсатор | 100 нФ | 1 | 0805 |
Всем привет, новый год уже наступил, праздники все уже отпраздновали, а елка то осталась!) В этом обзоре я хотел бы рассказать про конструктор «Елочка», который нужно собрать самому. Подробнее под катом.
Решил я как то взять на обзор уже давно всем известный набор - конструктор «Елочка», чтобы украсить свой рабочий стол. Дело было в начале декабря, выбирая ее я думал что посылка все же прорвется сквозь новогодний завал на почте, но купонная лихорадка Али сделало свое черное дело. Абсолютно все посылки, не зависимо от того с трек номером они, или без трек номера, все попали в общий поток завала, так что свой пакет я забрал только после новогодних праздников. Собрать конструктор все же необходимо, не ждать же до следующего года =).
Ехала посылка обычным China post Registered Air mail, т.е. обычной почтой Китая с полным отслеживанием как ее территории так и по России. Упаковано было не плохо, все содержимое продавец обмотал в несколько слоев поролона, благодаря чем все доехало в целости.
Посылка была сборной, все что не относится к обзору показывать не буду. Пакет с набором это обычный zip-пакет, с какой то внутренней магазинной маркировкой, которая нам ничего полезного не скажет.
Особенности:
Модель: CTR-30C (Colorful light)
Рабочее напряжение: DC4.5-5В
Питание: 3хAA батарейки (пальчиковые) или USB зарядка (не входит в комплект)
Размеры: 60 x 136 x 60мм (Длина x Высота x Ширина)
Комплектация:
1 набор «Christmas Tree LED Flash Kit»
Содержимое:
Распаковав содержимое, я не обнаружил никакой инструкции. Забегая вперед скажу, что оказывается инструкция была доступна для скачивания на странице товара, но я заметил ее там только после того как все уже собрал)). На руках у меня не была даже простой схемы сборки, решил собирать начиная от самого легкого и плавно переходя к сложному.
В комплект входило следующее:
- Три печатные платы
- Холдер для батареек (или аккумуляторов) типа АА
- 13 резисторов
- Кнопка включения, вход для 5В
- 6 конденсаторов
- 6 транзисторов
- 37 диодов
- Кабель юсб
- Винтики, болтики
Подготовка к сборке
Перед тем как приступить к сборке, хотелось бы сказать пару слов про качество печатных плат, оно просто на высшем уровне. Я не ожидал от китайцев такой аккуратности в их изготовлении, никаких косяков печати, косяков самих форм нет. Все дорожки на платах там где они и должны быть.
Для сборки елки нам нужно будет подготовить рабочее место, достать и разложить необходимые инструменты. Пригодится конечно же паяльник (в моем случае паяльная станция), без него ничего мы не соберем; бокорезы, отвертка и у кого есть - мультиметр. Необходим и хороший свет, деталей много и все они мелкие, чтобы случайно не спаять соседние дорожки, нужно хорошо видеть что и куда мы паяем)).
Сборка
Приступим к ручному труду, начнем паять с самых простых элементов. Свою сборку этого конструктора я буду рассказывать от лица обычного обывателя, без больших знаний и умений в радиоэлектронике. В дополнительном пакете находятся диоды с транзисторами и конденсаторами, достанем их.
Первыми начнем паять конденсаторы, потому что это сделать легче всего. Их всего шесть штук, все с одинаковыми характеристиками - 16В, 47uF (микрофарад).
Сгибаем контакты конденсаторов под углом в 90 градусов.
Паять нужно соблюдая полярность, заштрихованная сторона это всегда минус. Так же можно посмотреть и на «ножки», длинная нога это всегда плюс. На самой плате так же есть подсказки в виде графических обозначений мест пайки - C1, С2, С3; указана плюсовая сторона и заштрихованная - минусовая. Правда вот значения для конденсаторов отмечены как 22uF, хотя в комплекте у нас на 47uF, думаю большой роли это не играет. Запаиваем контакты к плате и откусываем лишнее бокорезами. Для удобства можно отогнуть их в разные стороны чтобы элемент не выпал пока мы его не спаяем.
Дополнительное фото
Припой у меня оказался очень плохо качества, тугоплавкий, пришлось поднимать температуру до 350гр, да еще и толстый - 1мм, для таких работ как мы должны проделать лучше использовать максимально тонкий с меньшей температурой плавления.
Закончив с конденсаторами, перейдем к транзисторам, если кто не знает это те что с тремя ногами)). Их так же 6 штук и одной и той же маркировке - S9014 C331.
Паять нужно следуя маркировке на самой плате, во первых все места для транзисторов подписаны соответствующим образом (9014), во вторых есть и подсказка для правильной их установки.
Ножки от транзистора можно отогнуть в разные стороны для облегчения процесса пайки, после откусываем лишнее.
Далее транзистор сгибаем к плате, чтобы ничего не торчало и выглядело это более презентабельно.
Дополнительное фото
Все транзисторы на месте.
А теперь на очереди, как мне кажется самое сложное - это установка резисторов. Никаким образом они не помечены, какой из них какого номинала понять сразу невозможно. Представим ситуацию что у нас нет в хозяйстве мультиметра, даже самого простого, как же тогда быть? Ответ прост, каждый резистор имеет цветовую маркировку (кольца), по которой можно определить его номинал.
Просмотрев внимательно весь набор, я выделил их трех видов:
- коричневый, черный, красный, золотой 1КОм
- красный, красный, красный, золотой 2.2КОм
- коричневый, черный, оранжевый, золотой 10КОм
Получившие значения я проверил и с помощью мультиметра и все сошлось, можно идти паять. Первым делом устанавливаю резисторы номиналом 10КОм, потому что только для них на платах имеется маркировка (R1, R3, R5 как на одной так и на второй плате). Какой стороной их паять разницы нет, резисторы не имеют полярности.
Замер мультиметром
Резисторы на 10КОм установлена на их места.
Но вот дилемма, для оставшихся резисторов не подписаны их посадочные места, куда какой паять?.. Решил на места R2, R4, R6 установить резисторы номиналом в 1КОм, а на R7 - 2.2КОм.
Перейдем к светодиодам, все они внешне одного цвета, что облегчаем нам задачу и не нужно отсеивать по группам цветов.
Места под них помечены как D1-D18. При установке надо быть внимательным, светодиоды имеют полярность, длинная нога это плюс. Теперь смотрим на плату, там есть сразу две подсказки, первая это форма места пайки, плюсовой контакт всегда квадратный, вторая подсказка это ключ рядом с минусовым (см. фото ниже).
Процесс установки светодиодов оказался очень утомительным, было затрачено больше получаса на всю работу. И нужно быть особенно внимательным. чтобы не получилось конфуза с полярностью, не думаю что кому то потом захочется перепаивать и исправлять свои ошибки.
Все светодиоды на месте
Отложив в сторону готовые макеты елочки, подготовим основание для ее установки. Представляет оно из себя небольшой квадрат из текстолита с прорезями для двух других плат с формой елочки.
Кроме того на основание нужно впаять кнопку включения и вход 5В для питания от юсб зарядки.
После того как установил кнопку и вход решил проверить будет ли работать моя сборка и тут произошло непонятное, от батареек все работало, а вот от юсб зарядки нет.
Оказалось что я впаял их не на ту сторону платы, нужно было все устанавливать на ту что имела надписи, это можно видеть на фото ниже.
Установим плату с нашими светодиодами, для нее в основании есть специальные прорези, а так же площадка для спайки. Не забываем про полярность, на всех платах есть подсказки в виде графического обозначения + и -.
Вторая половинка макета на месте и наш конструктор почти собран!
Дополнительно для увеличения жесткости конструкции спаиваем половинки между собой, для этого есть специальные площадки (помечены стрелками).
Холдер под батарейки (аккумуляторы) размещаем под основанием елки, скрепляем двумя винтами.
Провода от холдера выводим сверху платы и впаиваем следуя подсказке (+ - красный провод, - черный).
Конструктор елка собран и готов к первому официальному включению! =)
Первое включение
Как видим результат оправдав все ожидания, все светодиоды горят и меняют цвет, к слову каждый может светит красным, зеленым и синим цветом поочередно. На весь процесс ушло примерно часа 3-3,5, конечно можно было бы собрать быстрее, но каждый этап нужно было фиксировать на фото, а это дополнительно затраченное время.
Набор хорошо подойдет тем кто только учится паять, кто хочет научится быть усидчивым и терпеливым!
Потребляет совсем ничего, замер показал результат от 0.019 до 0.02 ампер.
На этом все, всех с китайским новым годом =))
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +12 Добавить в избранное Обзор понравился +19 +36