Тайны природы. Гибриды растений и животных

Главная / Отопление и водоснабжение

Испокон веку человек создает гибриды как растений, так и животных. Наиболее древними в практике животноводства являются гибриды лошади с ослом (мул, лошак) и зеброй (зеброид), одногорбого верблюда с двугорбым (нар), яка и зебу с крупным рогатым скотом. В свиноводстве практикуется гибридизация домашних свиней с диким кабаном для улучшения приспособляемости к местным условиям. XX век породил тьму новых гибридов: в птицеводстве, рыбоводстве и скотоводстве. А тут еще лигры с тигронами. И конца этому не видно…

Улитка или растение?

Не так давно в СМИ появилось сообщение о находке гибрида растения с животным. Речь шла о морской улитке, длина которой составляет три сантиметра, живущей на Атлантическом побережье Северной Америки. Обнаружившая этот чудо-организм группа ученых из университетов США и Южной Кореи назвала его Elysia chlorotica.

По данным журнала New Scientist, эти морские улитки «являются формой, живущей на солнечной энергии: они едят растения и обладают способностью к фотосинтезу». Найденный гибрид — своего рода желатиновый завод зеленого цвета. Он выглядит как кусок дерева и частично обладает его потенциалом, сохраняюмесяцев, благодаря генам водорослей, которые он потребляет. Мало того что улитка получает хлоропласты — внутриклеточные органоиды растительной клетки, где осуществляется фотосинтез, позволяющий растениям преобразовывать солнечный свет в энергию, — она еще хранит их в своих клетках, расположенных вдоль кишечника. Самое любопытное заключается в том, что если Elysia chlorotica в первое время (две недели) питается водорослями, то всю оставшуюся жизнь — в среднем продолжительность ее не превышает года — она может не потреблять пищи. Пока ученые не смогли раскрыть все тайны этого странного существа, ДНК хлоропластов которого содержит лишь 10% кодированного белка, необходимого для активной жизни улитки. Тем не менее, ряд наблюдений и выводов они опубликовали в журналах американской Академии наук.

Не может быть, потому что…

Обнаружение гибрида растения с животным вызвало в ученом мире сенсацию, однако идея скрещивать животных с животными близких видов осенила человечество еще много лет назад. Классическим примером гибридизации является мул — гибрид кобылы и осла.


Это сильное, выносливое животное, которое используют в значительно более тяжелых условиях, чем родительские формы. Этим мул обязан явлению, названному учеными гетерозисом и наблюдаемому как у домашних животных, так и у растений: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности.Кстати, гетерозис широко применяют в промышленном птицеводстве, например, при разведении бройлерных цыплят и в свиноводстве. В природе случаи скрещивания дикого животного с представителями других видов крайне редки. Скажем, газели Гранта и Томпсона счастливо сосуществуют в смешанных группах. Эти виды имеют очень много схожего, и отличить их друг от друга могут только эксперты. Несмотря на это, случаев скрещивания этих двух видов не отмечено.

Домашние собаки могут спариваться с другими видами без разбора, но дикие виды собачьих, такие как волки, лисы и койоты, размножаются только внутри своего вида. Помимо очевидных причин, этому мешает еще и то, что во многих группах животных и растений при межвидовых скрещиваниях образуются мощные, но стерильные гибриды, иллюстрацией чему служит упомянутый мул. Поскольку примеров стерильных гибридов множество, ученые пришли к выводу, что обмен генами между различными популяциями или популяционными системами ослабляется или предотвращается разного рода преградами, и коль скоро они мешают повсеместной гибридизации животных или растений близких видов, то в еще большей степени должны мешать появлению гибрида растения с животным.

Из многочисленных опытов ученые сделали вывод, что гибриды почти всегда появляются в неволе в результате неестественных условий обитания или искусственного осеменения. Гибриды забавные…Примером тому может служить величественный лигр — гибрид самца льва и самки тигра — самый крупный представитель семейства кошачьих. Равно как и тигролев — помесь самца тигра и самки льва. Впрочем, тиг-рольвы, или тигроны, наоборот, имеют склонность к карликовости и обычно по размерам меньше своих родителей. Самцы лигров и тигрольвов бесплодны. в то время как самки порой могут приносить потомство. Один тигрон жил с 1978 до 1998 года в Индии, другой в возрасте 24 лет в 2003 году умер в Пекинском зоопарке. В американском Институте охраняемых и редких видов в Майами живет лигр по кличке Геркулес, высота которого в холке составляет 3 м.

Первый лигренок появился в нашей стране в Новосибирском зоопарке в 2004 году, а потом родились еще двое лигрят. Леопардольвом называют результат скрещивания самца леопарда с самкой льва. Голова у него похожа на мамину, а тело — папино. А есть ведь еще и гибриды гибридов — это помеси между самцом тигра и самкой лигра/тигрольва или самцом льва и самкой лигра/тигрольва. Такие гибриды второго уровня чрезвычайно редки и находятся главным образом в частной собственности. Начало процесса скрещивания больших кошек восходит к тем дням, когда владельцы зоопарков хотели заполучить как можно больше странных существ для привлечения публики. Гибридизация берет свое начало в 1800-х, когда зоопарки представляли собой бродячие зверинцы, предназначенные для извлечения прибыли, а не для сохранения видов животных. В Индии, например, межвидовое скрещивание впервые было зафиксировано в 1837 году, когда принцесса индийского штата Джамнагар представила гибрид большой кошки королеве Виктории. Несмотря на то, что все эти гибриды великанов из породы кошачьих неизменно привлекают посетителей зоопарков, многие ученые полагают, что такой путь гибридизации бесперспективен и даже вреден. Во всяком случае, практической пользы от таких гибридов нет, в то время как сами они подвержены болезням и ранней смерти. …и полезные...

Недавно в отечественных СМИ появились сообщения об успешной гибридизации волчицы и пса в питомнике кинологического факультета Пермского военного института внутренних войск. Значительная часть полученных там гибридных животных обладает хорошо выраженными признаками толерантности, то есть терпимости к человеку, а это значит, что едва ли не главный барьер на пути практического использования волчьей спермы в собаководстве в принципе может быть преодолен.Кроме того, все волкособаки в эмоциональном плане весьма сдержанны. Они обладают значительно большей, чем собаки, физической выносливостью. Быстро осваивают площадку с препятствиями, забор высотой более 2 метров легко перепрыгивают с места, выстрелы и взрывы их не пугают. При дрессировке они очень быстро понимают и усваивают, что от них требуется, и, помимо того, несомненно, обладают прекрасным чутьем. Так, скорость обнаружения условного правонарушителя в схронах при обыске объекта у них не превышает одной минуты, у собак же, 1,5-4 минуты при нормативе до 6 минут. Разумеется, волкособаки, холодоустойчивые гибриды карпов с амурским сазаном, овец с муфлоном и архаром не столь впечатляют, как лигры и тигрольвы, но пользы человечеству приносят не в пример больше. А что нам ждать в будущем от крохотной улитки — покажет жизнь.

Несколько интересных фото работ...




Является, по-видимому, дальнейшее совершенствование существующих культур, выращиваемых на уже освоенных землях. Гибриды - это то, что может сыграть ключевую роль в обеспечении продовольствием. Ведь большинство площадей, пригодных для земледелия, уже занято. При этом увеличение количества используемых на них воды, удобрений и других химикатов во многих местах экономически невозможно. Именно поэтому исключительное значение приобретает улучшение существующих культур. А гибриды - это растения, полученные как раз в результате такого улучшения.

Задача состоит не только в повышении урожайности, но и в увеличении содержания белка и других питательных веществ. Для человека очень важно также качество белков в съедобных (и люди в том числе) должны получать из пищи нужные количества всех незаменимых (т. е. тех, которые они не способны синтезировать сами) аминокислот. Восемь из 20 аминокислот, необходимых человеку, поступают с пищей. Остальные 12 могут быть выработаны им самим. Однако растения с улучшенным в результате селекции белковым составом неизбежно требуют больше азота и других биогенов, чем исходные формы, поэтому не всегда могут выращиваться на неплодородных землях, где нужда в таких культурах особенно велика.

Новые свойства

Качество включает не только урожайность, состав и количество белков. Создаются сорта, более устойчивые к болезням и вредителям, благодаря содержащимся в них более привлекательные по форме или окраске плодов (например, яблоки ярко-красного цвета), лучше выдерживающие перевозку и хранение (например, гибриды томатов повышенной лежкости), а также обладающие другими существенными для данной культуры свойствами.

Деятельность селекционеров

Селекционеры тщательно анализируют имеющееся генетическое разнообразие. Они в течение нескольких десятилетий вывели тысячи улучшенных линий важнейших сельскохозяйственных растений. Как правило, приходится получать и оценивать тысячи гибридов, чтобы отобрать те немногие из них, которые действительно будут превосходить по своим свойствам уже широко разводимые. Например, в США с 1930-х по 1980-е гг. повысилась почти в восемь раз, хотя селекционерами была использована лишь небольшая часть генетического разнообразия этой культуры. Появляются все новые и новые гибриды. Это позволяет эффективнее использовать посевные площади.

Гибридная кукуруза

Повышение продуктивности кукурузы стало возможным в основном благодаря использованию гибридных семян. Инбредные линии этой культуры (гибридные сами по происхождению) использовались в качестве родительских форм. Из семян, полученных в результате скрещивания между ними, развиваются очень мощные гибриды кукурузы. Скрещиваемые линии высеваются чередующимися рядами, и с растений одной из них вручную срезаются метелки (мужские соцветия). Поэтому все семена на этих экземплярах оказываются гибридными. И они обладают очень полезными для человека свойствами. Путем тщательного подбора инбредных линий можно получить мощные гибриды. Это растения, которые будут пригодны для выращивания в любой требуемой местности. Поскольку признаки гибридных растений одинаковы, их легче убирать. А урожайность каждого из них гораздо выше, чем у неулучшенных экземпляров. В 1935 г. на гибриды кукурузы приходилось менее 1% всей этой культуры, выращиваемой в США, а теперь фактически вся. Сейчас получение значительно более высоких урожаев этой культуры гораздо менее трудоемко, чем раньше.

Успехи международных селекционных центров

В течение последних нескольких десятилетий было приложено немало усилий для повышения урожайности пшеницы и других зерновых, особенно в зонах теплого климата. Впечатляющие успехи достигнуты в международных селекционных центрах, расположенных в субтропиках. Когда выведенные в них новые гибриды пшеницы, кукурузы и риса стали выращиваться в Мексике, Индии и Пакистане, это привело к резкому повышению продуктивности сельского хозяйства, получившему название Зеленой революции.

Зеленая революция

Разработанные в ходе нее удобрения и орошения были использованы во многих развивающихся странах. Каждая культура для получения высоких урожаев требует оптимальных условий произрастания. Внесение удобрений, механизация и орошение — необходимые составляющие Зеленой революции. Из-за особенностей распределения кредитов лишь относительно богатые землевладельцы были в состоянии выращивать новые гибриды растений (зерновых). Во многих регионах Зеленая революция ускорила концентрацию земли в руках немногих наиболее состоятельных собственников. Такое перераспределение имущества не обязательно обеспечивает работой или продовольствием большинство населения этих регионов.

Тритикале

Традиционные методы селекции иногда могут привести к удивительным результатам. Например, гибрид пшеницы (Triticum) и ржи (Secale) тритикале (научное название Triticosecale) приобретает все большее значение во многих районах и, по-видимому, является весьма перспективным. Он был получен путем удвоения числа хромосом у стерильного гибрида пшеницы и ржи в середине 1950-х гг. Дж. О’Мара в Университете шт. Айова с помощью колхицина, вещества, препятствующего образованию клеточной пластинки. Тритикале сочетает высокую урожайность пшеницы с неприхотливостью ржи. Гибрид относительно устойчив к линейной ржавчине — грибковому заболеванию, являющемуся одним из главных урожайность пшеницы. Дальнейшие скрещивания и отбор дали улучшенные линии тритикале для конкретных районов. В середине 1980-х гг. эта культура благодаря высокой урожайности, устойчивости к климатическим факторам и прекрасной соломе, остающейся после уборки, быстро завоевала популярность во Франции, крупнейшем производителе зерна в рамках ЕЭС. Роль тритикале в рационе человека быстро растет.

Сохранение и использование генетического разнообразия культур

Интенсивные программы скрещиваний и отбора ведут к сужению генетического разнообразия культурных растений по всем их признакам. По вполне понятным причинам в основном направлен на повышение урожайности, и среди весьма однородного потомства отбираемых строго по этому признаку экземпляров иногда теряется устойчивость к болезням. В пределах культуры растения становятся все более однообразными, так как определенные их признаки выражены сильнее, чем остальные; поэтому более уязвимыми для патогенов и вредителей оказываются посевы в целом. Например, в 1970 г. гельминтоспориоз, грибковое заболевание кукурузы, вызываемое видом Helminthosporium maydis (на фото выше), уничтожило примерно 15 % урожая этой культуры в США, принеся убытки приблизительно в 1 млрд долларов. Эти потери, по-видимому, связаны с появлением новой расы гриба, весьма опасной для некоторых из основных линий кукурузы, широко использовавшихся при получении гибридных семян. У многих коммерчески ценных линий этого растения цитоплазма была идентичной, поскольку при получении гибридной кукурузы неоднократно используются одинаковые пестичные растения.

Для предупреждения такого ущерба необходимо выращивать изолированно и сохранять различные линии важнейших культур, которые, даже если сумма их признаков не представляет экономического интереса, могут содержать гены, полезные в ходе продолжающейся борьбы с вредителями и болезнями.

Гибриды томатов

Поразительных успехов в повышении генетического разнообразия за счет привлечения дикорастущих форм добились селекционеры томатов. Создание коллекции линий этой культуры, осуществленное Чарльзом Риком и его сотрудниками в Калифорнийском университете в Дейвисе, позволило эффективно бороться со многими ее серьезными заболеваниями, в частности, вызываемыми несовершенными грибами Fusarium и Verticillum, а также некоторыми вирусами. Питательная ценность томатов была значительно повышена. Кроме того, гибриды растений стали более устойчивы к засолению и к другим неблагоприятным условиям. Это произошло главным образом за счет систематического сбора, анализа и использования линий дикорастущих томатов для селекции.

Как вы видите, межвидовые гибриды весьма перспективны в сельском хозяйстве. Благодаря им можно улучшить урожайность и качество растений. Следует отметить, что не только в земледелии, но и в животноводстве применяется скрещивание. В результате него, к примеру, появился мул (фото его представлено выше). Это тоже гибрид, помесь осла с кобылой.

В гетевские времена, как вспоминал сам Гете, в Карлсбаде - на карте не ищите, теперь это Карлови Вари - на водах отдыхающие любили определять в букетах растения по Линнею. Эти букеты пьющим в тени колоннады минеральные воды (гидрокарбонатно-сульфатно-хлоридно-натриевые - к сведению собирающихся в Karlovy Vary) доставлял ежедневно молодой красивый садовник, вызывающий у бледных одиноких дам повышенный интерес.

Правильное определение каждого растеньица было делом чести и успеха у садовника, поощрявшего за скромную плату невинные ботанические увлечения. Трудно сказать почему - из-за ревности ли к садовнику, или к Линнею, но поэт жестко разошелся с Линнеем в принципах систематики растений. Линней, как известно, искал в растениях различия, Гете же стал искать общее и этим, надо сказать, сделал первый шаг к генетической систематизации растений.

Увлечение женщин ботаникой можно было понять: система Линнея была до изумления проста и понятна. Это вам не «Определитель высших растений европейской части СССР» Станкова-Талиева более чем в тысячу страниц, приводящий студентов в предынфарктное состояние.

Линней, сроду не любивший арифметики, тем не менее заложил ее, можно сказать, в основу своей системы. Он подразделил растения на 24 класса, из которых 13 выделены по числу тычинок. Растения с одной тычинкой в каждом цветке помещены в первый класс, с двумя - во второй и так далее до десятого класса, к которому отнесены растения с десятью тычинками. Класс 11-й включал растения с 11-20 тычинками, 20 и более тычинок в цветке говорило о принадлежности к 12-му и 13-му классу. Эти два класса различали по уровню расположения основания тычинок относительно места прикрепления пестика. Растения 14-го и 15-го классов имеют тычинки неравной длины. В цветах классов 15-20-го тычинки у растений сращены между собой или с пестиком. В 21-й класс были помещены однодомные растения, имеющие частью тычиночные, частью плодущие (пестичные) цветки. В 22-й класс попали двудомные растения, развивающие на одних растениях лишь тычиночные, на других - только плодущие цветки. Класс 23-й включал растения с хаотичным разбросом мужских и женских цветков (в том числе порою и совместном) на растении. В 24-м классе были объединены «тайнобрачные» растения - все бесцветковые растения, начиная с папоротникообразных и кончая водорослями. Названы последние «тайнобрачными» по той причине, что ботаники не знали, как они размножаются. Это сейчас биологам известны их организация и размножение лучше, чем цветковых растений.

Линней отнес 20 из 23 классов к явнобрачным обоеполым цветкам. Именно их он посчитал правилом в растительном царстве, остальные - любопытным исключением. Оно вроде бы логично, для растений удобнее - тычинки и пестики рядом, значит, брак без заминки; итог любви - плод и семя появляются в результате самоопыления, зашифрованного биологами латинским словом autogamia.

Уже после Линнея выяснилось, что некоторые растения имеют лишь с виду обоеполые цветки. Хотя у них в цветках рядом и тычинки, и пестики, но пыльцевые клетки в пыльниках недоразвиты и все растение евнух евнухом - смотреть противно. Другие цветки сами себя не могут оплодотворить, но их пыльца способна к производству потомства при опылении пестиков чужих растений.

Поскольку повелось исстари у ботаников все называть латинскими именами, то совокупность тычинок цветка они наименовали андроцеем, а совокупность пестиков (или просто пестик) - гинецеем. Но так как ни один ученый на уже достигнутом однажды ни за что не остановится, то ботаники в дальнейшем в зависимости от строения цветков подразделили их на обоеполые (содержат андроцей и гинецей) и однополые (содержат либо андроцей, либо гинецей). Если мужские и женские цветки расцветают на одном растении, его называют однодомным (кукуруза), если же на разных - двудомным (конопля). У полигамных видов на одном растении бывают обоеполые и однополые цветки (дыня, подсолнечник). Однако, по-видимому, в пику ученым-ботаникам природа порой подставляет их пытливому оку все формы перехода от одного полового типа цветка и растений к другому, вплоть до пустоцветов, вовсе лишенных тычинок и с недоразвитыми пестиками.

Чрезвычайно раздражающее огородников сорное растение мокрица, или топтун, имеет в двух пятичленных мутовках десять тычинок, из которых обыкновенно 5 внутренних с некоторым добавлением таковых же из внешней мутовки сморщены и лишены пыльцы. Цветковые головки черноголовника (Poterium polygamum) содержат кроме чисто плодущих и чисто тычиночных цветков еще и настоящие обоеполые цветки. Они представляют все примеры перехода от настоящих обоеполых к цветкам чисто материнского типа. Кстати, этот ботанический род исключителен среди розоцветных своей склонностью к ветроопылению.

Необычайно разнообразны также степени обособления среди ложнообоеполых плодовитых и тычиночных цветков. Бодяк, спаржа, хурма, виноград, некоторые скабиозы, камнеломки, валерьяны имеют цветки на первый взгляд обоеполые. В них хорошо развиты пестики, видны и тычинки, в пыльниках которых может быть или отсутствовать пыльца. В последнем случае это ложнообоеполые цветки. Что делать, и в природе «лжедмитрии» встречаются. То же самое можно сказать и о части цветков в кистях конских каштанов и некоторых видов щавеля, а также в цветках в центре корзинок мать-и-мачехи и ноготков, имеющих вид настоящих обоеполых цветков, но чьи завязи не дают всхожих семян, так как рыльце не способно пропускать через себя пыльцевые трубки.

В кистях явора (один из видов клена) можно заметить все возможные переходы от ложнообоеполых тычиночных цветков с хорошо развитыми крупными завязями к таким, в которых пестики недоразвиты или совершенно отсутствуют. Переходы от настоящих обоеполых цветков к пустоцветам можно встретить у нескольких видов степного гиацинта.

Известны также трехдомные виды: у них одни растения несут только мужские, другие - только женские, а третьи - обоеполые цветки (смолевка). Из курьезов растений можно отметить смену пола с возрастом или в отдельные годы. Виноград сердцевидный, относящийся на своей родине к типично двудомным, в Венском ботаническом саду представлен кустами с тычиночными цветками. Но в некоторые годы виноградные кусты приводят экскурсоводов в замешательство, поскольку образуют кроме тычиночных настоящие обоеполые цветки.

У многих растений самооплодотворению препятствует неодновременное созревание тычинок и пестиков в цветке - дихогамия (подсолнечник, малина, груша, яблоня, слива), при которой различают протерандрию, когда тычинки пылят раньше созревания пестиков, и протогинию, когда пестики созревают раньше тычинок.

Главным образом протерандричны сложноцветные, губоцветные, мальвовые, гвоздичные и бобовые; протерогиничны ситники и ожики, кирказоновые и дафниевые, жимолостные, глобуляриевые, пасленовые, розоцветные и крестоцветные. Протерогиничны все однодомные растения: осоки, рогозы, ежеголовники, ароидные с однодомными цветками, кукуруза, однодомная крапива жгучая, уруть, черноголовник, дурнишник, бешеный огурец, молочайные растения, ольха, береза, грецкий орех, платан, вяз, дуб, орешник, бук. У названных здесь деревьев и кустарников пыльники начинают пылить с опозданием в 2-3 дня. У альпийской зеленой ольхи эта разница равна 4-5 дням, а у мелкого рогоза - даже девяти.

Большей частью протерогиничны двудомные растения. В больших ивовых зарослях по не травленным химией берегам наших рек некоторые виды все еще представлены многочисленными кустарниками. Часть их несет тычиночные цветки, другая - пестичные. Они практически находятся в одних условиях, но, несмотря на одинаковые внешние условия в одной и той же местности, кусты с пестичными цветками всегда ловко опережают в цветении своих «мужчин» с тычиночными цветками. У белотала, пурпурного лозника, корзиночной вербы и ракиты рыльца в своем созревании на 2-3 дня опережают вскрытие тычиночных цветков. То же самое у альпийских ив - убедитесь, если доведется побывать в Альпах. Но тут разница во времени ограничена всего лишь одним днем, из чего правомерно заключить, что наши ивы - самые протерогиничные ивы в мире.

У растений конопли, растущих рядом, в начале цветения можно заметить рыльца, готовые к восприятию пыльцы, хотя ни единый тычиночный цветок еще не раскрыт - они раскроются лишь через 4-5 дней. У пролески, или кур-зелья, растущей по лиственным лесам и кустарникам, рядом расположены материнские и отцовские особи. Тем не менее пестичные цветки у них открываются за два дня до тычиночных. То же у хмеля и многих других двудомных растений.

У немногих растений самооплодотворение затруднено из-за такого расположения тычинок и пестиков, при котором пыльце трудно попасть на рыльце пестика своего цветка. Например, при гетеростилии одни особи имеют цветки с длинными пестиками и короткими тычинками, а другие - наоборот. К гетеростильным (разностолбчатым) относятся некоторые горечавковые (например, вахта, или трилистник), гречиха, различные виды ленца, многочисленные первоцветные (к примеру, проломник, турча, примула, или первоцвет), а также многие бурачниковые (незабудки, медуница и др).

Вахта обладает очень изящными мохнатыми белорозовыми цветками-звездочками, собранными кистью на безлистном стебле. Одни цветки обладают низким столбиком и укрепленным над ним пыльником, другие, напротив, - высокими столбиками и укрепленными под ними пыльниками. Рыльца у растения созревают раньше тычинок. Насекомые, посещающие цветки вахты, касаются одной и той же частью своего тела то пестиков, то тычинок, осуществляя строго перекрестное опыление. Однако в долгое ненастье цветок закрыт и вынужден самооплодотворяться.

Примула, среди детей более известная как баранчики, распускает цветки одной из первых среди весенних цветов. Отсюда и латинское название primus - первый. Опыляют растение только шмели и бабочки. Благодаря разностолбчатости пестики одних цветков могут быть опылены пыльцой только с других цветков. Если шмель садится на цветок с низким пестиком, он касается головой высокостоящих тычинок. Перелетая на цветок с высокостоящим пестиком, он касается головой рыльца и производит перекрестное опыление.

Явление разностолбчатости впервые было открыто на цветках турчи болотной, а потом и на других растениях. Первенство турчи в этом отношении кажется даже невероятным, если учесть, что все растение погружено в воду, и только в июле цветки появляются над водой. Другая примечательность турчи в том, что корней она не имеет, и всасывающие функции у нее исполняют клетки кожицы листьев.

У гречихи, по клятвенному заверению генетиков, длинностолбчатость контролируется рецессивной аллелью s, а короткостолбчатость - доминантной аллелью S (напоминаем, что аллель - одна из форм coстояния одного и того же гена). Поскольку опыления в пределах одного типа цветка не происходит, то в популяциях все время поддерживается равное соотношение растений с генотипами Ss и ss; это видно из решетки Пеннета, известной из школьного курса биологии:

то есть расщепление 1:1, как и у человека, на мальчиков (АТ) и девочек (XX) в потомстве.

По строению цветка гречиха приспособлена к перекрестному опылению преимущественно насекомыми (мухами, шмелями и особенно пчелами), которых привлекает нектар, и лишь отчасти - ветром. При нормальном (легитимном) опылении, когда пыльца коротких тычинок попадает на рыльца коротких столбиков и, соответственно, пыльца длинных тычинок - на рыльца длинных столбиков, завязывается наибольшее количество семян.

Плакун-трава (Lythrum salicaria) - одно из самых интересных наших растений. Дело в том, что цветки плакун-травы имеют пестики трех различных величин и 12 тычинок, расположенных поровну в два круга. В одних цветках пестик выше обоих кругов тычинок, в других - он находится между ними и в третьих - ниже обоих кругов. Следовательно, тычинки располагаются на различных высотах так же, как и пестики, что обеспечивает перекрестное опыление. Насекомое, прилетая за нектаром, вымазывается пыльцой и отдает ее на рыльце пестика, по длине соответствующего тычинке, с которой снята пыльца. Оплодотворение происходит нормально, когда пыльца переносится с тычинки, одинаковой по длине с пестиком. Зерна пыльцы с тычинок трех различных высот разнятся между собой по величине и отчасти по цвету, а соответственно этому длина сосочков на рыльцах трех различных высот также различная, - ведь рыльца должны улавливать разную пыльцу. Процесс опыления в деталях впервые исследован Ч. Дарвином.

У некоторых растений тычинки и пестики расположены в строгой очередности, подставляясь насекомым для «разгрузки» пыльцы или «погрузки» рыльца. У нашей руты обыкновенной, встречаемой на склонах и холмах в лесах Южного Крыма, цветок содержит десять пыльников, поддерживаемых прямыми, расположенными звездой нитями. Сначала поднимается одна нить, устраивая поддерживаемый ею пыльник в середине цветка по линии, ведущей к нектару, который выделяется мясистым кольцом у основания пестика. Она сохраняет такое положение около суток, затем возвращается в прежнее положение. В то время как первая тычинка отгибается, поднимается другая - и все повторяется. Это продолжается, пока все десять пыльников, один за другим, не постоят в середине цветка. Когда, наконец, и десятая тычинка отогнется назад, в центре цветка оказывается рыльце, ставшее в это время восприимчивым к опылению.

В обоеполых цветках постенницы из семейства крапивных рыльце развивается еще до распускания цветка и первым выдается из зеленоватого бутона цветка. Пыльники на согнутых ножках, словно на пружинах, закрыты смыкающимися мелкими зеленоватыми покроволистиками. Но прежде чем они позволят пыльникам подняться с «колен», выпрямиться и рассеять свою пыльцу в виде облачка в воздухе, рыльце вянет и столбик отделяется вместе с рыльцем от завязи. Так что ко времени освобождения пыльцы из пыльников завязь оканчивается острием - засохшим основанием отпавшего столбика.

Обычно у растений все это происходит иначе: сначала в цветке опадают пыльники и тычинки, и лишь после этого рыльце приобретает способность воспринимать пыльцу. В цветках бальзамина пыльники срощены между собой и образуют нечто вроде колпачка над рыльцем. После того как цветок раскрылся и сделался доступным прилетающим насекомым, пыльники тотчас растрескиваются, и перед нами предстает образованный вскрывшимися пыльниками колпачок. Но вот нити тычинок отделяются, и колпачок вываливается из цветка. Лишь теперь показываются рыльца, вполне уже созревшие. То же можно наблюдать у крупноцветковых видов журавельника и герани.

В обоеполых цветках традесканции, разводимой дома и по недоразумению называемой «бабьими сплетнями», пыльники вскрываются чуть раньше, чем рыльца станут восприимчивыми к пыльце. Но как только рыльце готово к опылению, тычинки свертываются в спираль, а вскоре за этим увядают покроволистики, покрывающие собой пыльники на свернувшихся нитях. Столбик же выдается, и рыльца восприимчивы к пыльце еще весь следующий день. Эти цветки навещают насекомые с короткими хоботками, чтобы полакомиться соком смятых покроволистиков, скрывающих тычинки, при этом они касаются рылец и опыляют их пыльцой, принесенной с других цветков. Опыление же пыльцой своих пыльников уже невозможно.

Дихогамии ботаники, опирающиеся в своих изысканиях лишь на морфоэкологические различия, без учета содержания геномов, обязаны изобилию видов осок, бесконечно вновь открываемых, а то и переоткрываемых. Тем более что так называемые «виды» осок легко скрещиваются друг с другом, выдавая множество промежуточных форм, охотно принимаемые за новые «виды» (авторов видов привлекает возможность увековечить свое имя в латинской транскрипции). Несовершенная (неполная) дихогамия у ботанических родов с однодомными цветками обеспечивает, например, у осок вначале так называемое межвидовое, а позднее внутривидовое скрещивание. Это понятно, так как рыльце самого первого расцветающего растения протерогиничного вида может быть опылено только пыльцой других, еще раньше зацветших «видов».

Лысенко считал, что «диалектический материализм, развитый и поднятый на новую высоту трудами товарища Сталина, для советских биологов, для мичуринцев является самым ценным, наиболее мощным теоретическим оружием в решении глубоких вопросов биологии, в том числе и вопроса о происхождении одних видов из других». Потому и дано им сверхдиалектическое определение вида на этой новой высоте: «Вид - это особенное, качественно определённое состояние живых форм материи. Существенной характерной чертой видов растений, животных и микроорганизмов являются определённые внутривидовые взаимоотношения между индивидуумами». Вот так-то.

Не все ботаники желают видеть, что в диалектическом единстве формы и содержания определяющим является содержание. Содержание же вида - это единство генетического строения популяций, его составляющих. Внешне оно проявляется в фенотипическом сходстве, свободной скрещиваемости, особенно же в способности давать плодовитое потомство при скрещивании. Наследственная информация - вот то, что качественно определяет вид и составляет его содержание. Трудно сказать, возникла ли жизнь одновременно с наследственностью (подозреваю, что одновременно), но одно не вызывает сомнений: с появлением дискретной наследственности на земном шаре появились виды.

С учетом известных науке формулировок определение вида может быть таким: вид - качественно обособленное на данном этапе эволюционного процесса, сложное и подвижное сообщество организмов, характеризующееся единством происхождения, общностью генетической конституции, наследственной устойчивостью и плодовитостью потомства . Большинство выделенных «видов» осок и ив этому определению не соответствуют.

При выделении «хороших», или настоящих, видов по скрещиваемости и образованию плодовитого потомства нельзя забывать о явлении самонесовместимости - невозможности самооплодотворения у некоторых гермафродитных организмов или перекрестного оплодотворения между особями вида с одинаковыми генетическими факторами несовместимости. Основная функция систем самонесовместимости - предотвращение самооплодотворения и содействие скрещиванию между неродственными особями.

Различают гаметофитную, спорофитную и гетероморфную самонесовместимость. Гаметофитная самонесовместимость - самая распространенная (злаковые, свекла, люцерна, плодовые, картофель и др.). Эта система характеризуется независимым действием в пыльце и столбике двух аллелей локуса несовместимости S. присутствующего в каждой особи. Например, пыльца растения с генотипом S 1 S 2 ведет себя как S 1 или S 2 в зависимости от того, какую аллель содержит пыльцевое зерно. Ни одна из аллелей не проявляет доминирования или иной формы межаллельного взаимодействия. Такая же полная независимость действия наблюдается и в столбике.

Реакция несовместимости проявляется в столбике пестика: рост пыльцевых трубок, несущих данную аллель, прекращается в столбиках, содержащих идентичную аллель. Если все аллели, участвующие в гибридизации, различны, например S 1 S 2 XS 3 S 4 , то все пыльцевые трубки совместимы, завязь получается нормальной и в потомстве образуются 4 перекрестно совместимых генотипа. У огромного большинства изученных видов гаметофитной несовместимостью управляют один-два локуса.

Спорофитная несовместимость впервые была описана у гваюлы. При спорофитной самонесовместимости поведение каждого пыльцевого зерна зависит от генотипа столбика. Так, если S 1 доминирует над S 2 , вся пыльца растения S 1 S 2 будет реагировать как S 1 и сможет проникать в столбики, несущие аллель S 2 , независимо от генотипа пыльцевой трубки - S 1 или S 2 .

Гетероморфная несовместимость возникает на основе гетеростилии, уже описанной нами ранее.

Одним из приспособлений растения для осуществления перекрестного оплодотворения служит мужская стерильность. В последние десятилетия мужская стерильность у культурных растений вызывает у селекционеров и семеноводов огромный интерес, так как позволяет в широких масштабах получать гетерозисные гибриды первого поколения, которые дают прибавки урожая до 40 процентов по отношению к обычным сортам, отличаются ранним и дружным созреванием, высокой выравненностью и устойчивостью к неблагоприятным факторам среды.

К настоящему времени описаны цитоплазматическая мужская стерильность (ЦМС) и генная мужская стерильность (ГМС), контролируемая генами ядра клетки. Цитоплазматическая мужская стерильность у растений обусловлена взаимодействием стерильной цитоплазмы (S) с 1-3 парами рецессивных генов ядра (rf). В присутствии доминантных генов ядра (RF) восстанавливается фертильность пыльцы. ЦМС широко используется для получения гетерозисных гибридов в промышленных масштабах у кукурузы, сорго, Сахарной свеклы, лука, моркови. Как правило,

для использования ЦМС в семеноводстве гибридов первого поколения (они обозначаются F 1) используют фертильные закрепители стерильности с генотипом Nrfrf (N - нормальная цитоплазма), их стерильные аналоги - Srfrf и восстановители фертильности - RfRf.

Генная мужская стерильность используется для получения гетерозисных семян у томатов, перца, ячменя. При производстве гибридных семян на основе одного рецессивного гена ГМС расщепление в Fi идет по Менделю в соотношении 3 фертильных: 1 стерильное растение, поскольку, в отличие от ЦМС, мужская стерильность передается как через женские, так и через мужские гаметы.

Скрещивания, как известно, широко применяются в селекции и семеноводстве растений. Возможность искусственного получения гибридов впервые предположил немецкий ученый Р. Камерариус в 1694 году, и, как это часто бывает, ему никто не поверил. Только в 1760 году немецкий ботаник и почетный член Петербургской академии наук Йозеф Кёльрёйтер получил гибрид перуанского табака метельчатого с махоркой. С этого года ученые начинают сознательную гибридизацию.

В зависимости от степени родства скрещиваемых форм различают внутривидовую и отдаленную - межвидовую и межродовую гибридизацию. Если в скрещивании участвуют две родительские формы, говорят о простой, или парной, гибридизации, если более двух - о сложной. Различают прямые (A×B) и обратные (В×А) скрещивания, носящие в целом название реципрокных. Скрещивание гибридов с одним из родителей, например (A×B)×A или (А×В)×В, называют беккроссом, или возвратным.

Для обозначения гибридов и родительских форм используют символы: Р - родительская форма; F 1 - гибрид первого поколения; F 2 - второго и т. д.; В 1 , или ВС 1 , - первое поколение беккросса; В 2 , или ВС 2 - второе и т. д. Материнскую форму обозначают значком ♀, отцовскую - ♂. Впрочем, чаще всего обходятся без последних, помещая в записи комбинации скрещивания материнскую форму на первое место, а отцовскую - на второе.

Методика и техника скрещивания зависят от биологии цветения и опыления, оплодотворения, особенностей строения цветков (обоеполые, раздельнополые), расположения последних на растении и в соцветии, от способа опыления, продолжительности сохранения жизнеспособности пестика и пыльцы и условий скрещивания.

Селекционеры используют принудительное, ограниченно-свободное и свободное скрещивания, для осуществления которых часто необходима кастрация растений. Кастрация заключается в удалении незрелых пыльников или их повреждении подрезанием, термической стерилизацией (горячим воздухом или водой) или химической кастрацией - применением специально подобранных гаметоцидов.

При принудительном скрещивании кастрированные и изолированные материнские растения опыляют пыльцой отцовского растения. При свободном скрещивании родительские формы высевают чередующимися рядками. Кастрированные, мужскистерильные или биологически женские материнские растения опыляются пыльцой произрастающих рядом отцовских растений.

5 073

Испокон веку человек создает гибриды как растений, так и животных. Наиболее древними в практике животноводства являются гибриды лошади с ослом (мул, лошак) и зеброй (зеброид), одногорбого верблюда с двугорбым (нар), яка и зебу с крупным рогатым скотом. В свиноводстве практикуется гибридизация домашних свиней с диким кабаном для улучшения приспособляемости к местным условиям. XX век породил тьму новых гибридов: в птицеводстве, рыбоводстве и скотоводстве. А тут еще лигры с тигронами. И конца этому не видно…
Улитка или растение?

Не так давно в СМИ появилось сообщение о находке гибрида растения с животным. Речь шла о морской улитке, длина которой составляет три сантиметра, живущей на Атлантическом побережье Северной Америки. Обнаружившая этот чудо-организм группа ученых из университетов США и Южной Кореи назвала его Elysia chlorotica. По данным журнала New Scientist, эти морские улитки «являются формой, живущей на солнечной энергии: они едят растения и обладают способностью к фотосинтезу».

Найденный гибрид - своего рода желатиновый завод зеленого цвета. Он выглядит как кусок дерева и частично обладает его потенциалом благодаря генам водорослей, которые он потребляет. Мало того что улитка получает хлоропласты - внутриклеточные органоиды растительной клетки, где осуществляется фотосинтез, позволяющий растениям преобразовывать солнечный свет в энергию, - она еще хранит их в своих клетках, расположенных вдоль кишечника.

Самое любопытное заключается в том, что если Elysia chlorotica в первое время (две недели) питается водорослями, то всю оставшуюся жизнь - в среднем продолжительность ее не превышает года - она может не потреблять пищи. Пока ученые не смогли раскрыть все тайны этого странного существа, ДНК хлоропластов которого содержит лишь 10% кодированного белка, необходимого для активной жизни улитки. Тем не менее, ряд наблюдений и выводов они опубликовали в журналах американской Академии наук.

Не может быть, потому что…

Обнаружение гибрида растения с животным вызвало в ученом мире сенсацию, однако идея скрещивать животных с животными близких видов осенила человечество еще много лет назад. Классическим примером гибридизации является мул - гибрид кобылы и осла.

Это сильное, выносливое животное, которое используют в значительно более тяжелых условиях, чем родительские формы. Этим мул обязан явлению, названному учеными гетерозисом и наблюдаемому как у домашних животных, так и у растений: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности.

Кстати, гетерозис широко применяют в промышленном птицеводстве, например, при разведении бройлерных цыплят и в свиноводстве. В природе случаи скрещивания дикого животного с представителями других видов крайне редки. Скажем, газели Гранта и Томпсона счастливо сосуществуют в смешанных группах. Эти виды имеют очень много схожего, и отличить их друг от друга могут только эксперты. Несмотря на это, случаев скрещивания этих двух видов не отмечено.

Домашние собаки могут спариваться с другими видами без разбора, но дикие виды собачьих, такие как волки, лисы и койоты, размножаются только внутри своего вида. Помимо очевидных причин, этому мешает еще и то, что во многих группах животных и растений при межвидовых скрещиваниях образуются мощные, но стерильные гибриды, иллюстрацией чему служит упомянутый мул.

Поскольку примеров стерильных гибридов множество, ученые пришли к выводу, что обмен генами между различными популяциями или популяционными системами ослабляется или предотвращается разного рода преградами, и коль скоро они мешают повсеместной гибридизации животных или растений близких видов, то в еще большей степени должны мешать появлению гибрида растения с животным.

Из многочисленных опытов ученые сделали вывод, что гибриды почти всегда появляются в неволе в результате неестественных условий обитания или искусственного осеменения. Гибриды забавные…Примером тому может служить величественный лигр

Гибрид самца льва и самки тигра - самый крупный представитель семейства кошачьих. Равно как и тигролев -

помесь самца тигра и самки льва. Впрочем, тиг-рольвы, или тигроны, наоборот, имеют склонность к карликовости и обычно по размерам меньше своих родителей. Самцы лигров и тигрольвов бесплодны. в то время как самки порой могут приносить потомство. Один тигрон жил с 1978 до 1998 года в Индии, другой в возрасте 24 лет в 2003 году умер в Пекинском зоопарке. В американском Институте охраняемых и редких видов в Майами живет лигр по кличке Геркулес, высота которого в холке составляет 3 м. Первый лигренок появился в нашей стране в Новосибирском зоопарке в 2004 году, а потом родились еще двое лигрят.

Леопардольвом называют результат скрещивания самца леопарда с самкой льва. Голова у него похожа на мамину, а тело - папино. А есть ведь еще и гибриды гибридов - это помеси между самцом тигра и самкой лигра/тигрольва или самцом льва и самкой лигра/тигрольва. Такие гибриды второго уровня чрезвычайно редки и находятся главным образом в частной собственности.

Начало процесса скрещивания больших кошек восходит к тем дням, когда владельцы зоопарков хотели заполучить как можно больше странных существ для привлечения публики. Гибридизация берет свое начало в 1800-х, когда зоопарки представляли собой бродячие зверинцы, предназначенные для извлечения прибыли, а не для сохранения видов животных. В Индии, например, межвидовое скрещивание впервые было зафиксировано в 1837 году, когда принцесса индийского штата Джамнагар представила гибрид большой кошки королеве Виктории. Несмотря на то, что все эти гибриды великанов из породы кошачьих неизменно привлекают посетителей зоопарков, многие ученые полагают, что такой путь гибридизации бесперспективен и даже вреден. Во всяком случае, практической пользы от таких гибридов нет, в то время как сами они подвержены болезням и ранней смерти.

…и полезные

Недавно в отечественных СМИ появились сообщения об успешной гибридизации волчицы и пса в питомнике кинологического факультета Пермского военного института внутренних войск.

Значительная часть полученных там гибридных животных обладает хорошо выраженными признаками толерантности, то есть терпимости к человеку, а это значит, что едва ли не главный барьер на пути практического использования волчьей спермы в собаководстве в принципе может быть преодолен.

Кроме того, все волкособаки в эмоциональном плане весьма сдержанны. Они обладают значительно большей, чем собаки, физической выносливостью. Быстро осваивают площадку с препятствиями, забор высотой более 2 метров легко перепрыгивают с места, выстрелы и взрывы их не пугают. При дрессировке они очень быстро понимают и усваивают, что от них требуется, и, помимо того, несомненно, обладают прекрасным чутьем. Так, скорость обнаружения условного правонарушителя в схронах при обыске объекта у них не превышает одной минуты, у собак же, 1,5-4 минуты при нормативе до 6 минут.

Разумеется, волкособаки, холодоустойчивые гибриды карпов с амурским сазаном, овец с муфлоном и архаром не столь впечатляют, как лигры и тигрольвы, но пользы человечеству приносят не в пример больше. А что нам ждать в будущем от крохотной улитки - покажет жизнь.

Скифы. Загадки одного народа...

Опасные древние заклятья

Что там, за пределами нашей вселенной?...

Спрашивает Олег
Отвечает Елена Титова, 01.12.2013


Олег спрашивает: "Здравствуйте, Елена! Скажите, пожалуйста, скрещивание учёными различных видов растений, овощей и фруктов не является ли вмешательством в творение Божье и грехом? Успешные подобные скрещивания не ставят ли под удар Креационизм? Ведь если получилось скрестить различные растения, то со временем получится скрестить и различных животных, кошку с собакой, например. А значит есть вероятность того, что из одного более простого живого существа появилось более сложное и так вплоть до появления человека?".

Приветствую, Олег!

Ученые-селекционеры в основном проводят внутривидовые скрещивания (гибридизацию) для появления желательных признаков (для человека, конечно) у животных, растений и микроорганизмов, чем добиваются создания новых или улучшенных пород, сортов, штаммов.

Внутри вида скрещивание особей идет относительно легко из-за сходства их генетического материала и анатомо-физиологических особенностей. Хотя это не всегда так, например, в естественных условиях невозможно скрещивание крохотной собачки чихуахуа и огромного мастифа.

А вот уже на пути скрещивания особей разных видов (а тем более разных родов) встают молекулярно-генетические барьеры, препятствующие развитию полноценных организмов. И выражены они тем сильнее, чем дальше отстоят друг от друга скрещиваемые виды и роды. В силу значительно различающихся геномов родителей у гибридов могут возникать несбалансированные наборы хромосом, неблагоприятные сочетания генов, нарушаться процессы деления клеток и образования гамет (половых клеток), может произойти гибель зиготы (оплодотворенной яйцеклетки) и др. Гибриды могут быть частично или полностью стерильны (бесплодны), с пониженной жизнеспособностью вплоть до летальности (хотя в некоторых случаях в первом поколении наблюдается резкое усиление жизнеспособности – гетерозис), могут появляться аномалии развития, в частности, репродуктивных органов, или так называемые химерные ткани (генетически разнородные) и т.д. Видимо, поэтому Господь предупреждал Свой народ: "... скота твоего не своди с иною породою; поля твоего не засевай двумя родами [семян]" ().

В естественных условиях случаи межвидового скрещивания крайне редки.

Примеры искусственной отдаленной гибридизации есть: мул (лошадь+осел), бестер (белуга+стерлядь), лигр (лев+тигрица), тайгон (тигр+львица), леопон (лев+самка леопарда), плумкот (слива+абрикос), клементин (апельсин+мандарин) и др. В некоторых случаях ученым удается снять негативные последствия отдаленной гибридизации, например, получены плодовитые гибриды пшеницы и ржи (тритикале), редьки и капусты (рафанобрассика).

А теперь Ваши вопросы. Является ли искусственная гибридизация вмешательством в Божье творение? В определенном смысле – да, если человек создает вариант, отличный от природного, что можно сравнить, скажем, с использованием женщинами декоративной косметики для улучшения своего внешнего вида. Является ли искусственная гибридизация грехом? А потребление мясной пищи является грехом? Господь по жестокосердию нашему допускает умерщвление живых существ ради пищи. Вероятно, также по нашему жестокосердию он допускает и селекционное экспериментирование ради улучшения потребительских свойств нужных людям продуктов. В этом же ряду – и создание лекарственных препаратов (при этом используются и умерщвляются лабораторные животные). Как ни печально, все это реальная действительность общества, где царит грех и правит «князь мира сего».

Ставят ли успешные скрещивания под удар креационизм? Ни в коей мере. Напротив.

Вы знаете, что все размножается «по роду своему». Библейский «род» не есть биологический вид современной систематики. Ведь богатое разнообразие видов появилось после Потопа вследствие произошедшей изменчивости признаков наземных организмов из Ноева ковчега и водных обитателей, выживших вне ковчега, при адаптировании их к новым условиям окружающей среды. Сложно очертить библейский «род», генетический потенциал которого значителен и был задан изначально при сотворении. Он может включать такие современные таксоны, как вид и род, но, вероятно, не выше (под)семейства. Возможно, например, что большие кошки из современных систематических родов семейства кошачьи восходят к одному исходному «роду», а мелкие кошачьи – к одному или двум другим. Понятно, что выделившиеся из библейского «рода» виды и роды включают свой в некоторой степени обедненный и измененный (по отношению к исходному) генетический материал. Сочетание этих не вполне комплементарных частей (в межвидовых и межродовых скрещиваниях) встречает препятствия на молекулярно-генетическом уровне, а значит, не позволяет дать начало полноценному организму, хотя в редких случаях в пределах библейского «рода» такое может получиться.

О чем это говорит? О том, что никаких скрещиваний «кошки с собакой» и «вплоть до человека» не может быть в принципе.

Еще момент. Сравните 580 тысяч нуклеотидных пар, 482 гена в ДНК одноклеточной микоплазмы и 3,2 миллиарда нуклеотидных пар, порядка 30 тысяч генов в ДНК человека. Если вообразить гипотетический путь «от амебы до человека», задумайтесь, откуда появлялась новая генетическая информация? Естественным путем ей взяться неоткуда. Мы знаем, что информация возникает только из разумного источника. Так кто же Автор амебы и человека?

Божьих благословений!

Читайте еще по теме "Творение":

© 2020 reabuilding.ru -- Портал о правильном строительстве