Хроматографический анализ газов. Хроматографы и их использование в электроэнергетике Выполнение хроматографического анализа трансформаторного масла
В этой статье мы расскажем о том, для чего нужен хроматографический анализ . В проблеме продления срока службы трансформаторных масел важную роль играют способы контроля их текущего состояния. Зная, как себя чувствует в данный момент изоляционная жидкость, можно своевременно принять решение о ее замене или восстановлении без опасных последствий для силового трансформатора и другого маслонаполненного оборудования.
Хроматографический анализ трансформаторного масла: как проводить?
Хроматографический анализ трансформаторного масла – один из самых эффективных методов ранней диагностики состояния изоляционных жидкостей. Он основывается на работе с растворенными газами, которые являются следствием разложения изоляции. Как правило, для проведения анализа необходимо определение таких газов, как водород, азот, кислород, этилен, ацетилен, оксид и диоксид углерода, метан. Чем качественнее выполнен хроматографический анализ, тем достовернее данные о состоянии изоляционной системы.
Впервые данный вид исследования был применен в 70-хх годах прошлого века в Англии. Первый опыт оказался успешным, поэтому далее хроматографический анализ начал использоваться в большинстве развитых стран.
Основные этапы хроматографического анализа трансформаторного масла:
- отбор проб;
- транспортировка отобранных проб в лабораторию;
- выполнение подготовительных работ;
- собственно хроматографический анализ;
- работа с полученными результатами, выводы.
К преимуществам такого анализа относят возможность диагностики с высокой степенью достоверности развивающихся в трансформаторе дефектов, которые вызываются локальными перегревами и (или) электрическими разрядами. Одновременно с этим метод имеет и свои недостатки, которые выражаются в относительно большом времени измерений, существенных материальных затратах и потребности в химических реактивах. Наличие перечисленных недостатков пока не позволяет включить хроматографический анализ в программу экспресс-анализа трансформаторного масла.
Для получения как можно более достоверных результатов необходимо корректно выполнять отбор проб, проводить хранение и транспортировку проб в место проведения анализа.
Диагностика маслонаполненного оборудования в процессе эксплуатации.
Периодический контроль состояния трансформатора под рабочим напряжением.
В первую очередь, состояние изоляции трансформаторного оборудования может быть оценено путем проверки качества трансформаторного масла. Для этого его физико-химические характеристики периодически измеряются и сравниваются с допустимыми (ОиНИЭ ). Анализ характеристик масла выявляет его электрическую прочность как диэлектрика, герметичность конструкции по влагосодержанию и общему газосодержанию (для герметичных конструкций), наличие в масле продуктов старения бумажно-масляной изоляции, продуктов окисления и разложения масла и многое другое.
Периодический анализ проб масла и его физико-химический анализ позволяют отслеживать динамику процесса старения изоляции и своевременно принимать необходимые меры по поддержанию его работоспособности. Поэтому полученные результаты, прежде всего, должны сравниваться с предыдущими измерениями и с предельно допустимыми значениями. Отбор проб масла, его периодичность и критерии оценки установлены заводскими инструкциями по видам оборудования, объемом и нормами испытания электрооборудования, методическими указаниями по эксплуатации трансформаторных масел или определяются техническим руководителем энергопредприятия с учетом конкретных условий и технического состояния оборудования.
Комплекс показателей, характеризующий качество масла, в отечественной практике подразделяется на "сокращенный" и "полный" анализ. Наиболее важными характеристиками масла являются: пробивное напряжение, кислотное число, температура вспышки (при регулярном хроматографическом анализе масла эта характеристика теряет свою актуальность), влагосодержание, тангенс угла диэлектрических потерь, наличие механических примесей, содержание антиокислительной присадки - ИОНОЛ, реакция водной вытяжки. Нормативы на эти параметры, принятые у нас в стране, основаны на многолетнем практическом опыте и закреплены в ОиНИЭ .
Для диагностики состояния трансформатора наиболее важную роль играет физико-химический анализ трансформаторного масла, и в первую очередь, хроматографический анализ масла (ХАРГ), на наличие семи растворенных газов и фурановых соединений.
Хроматографический анализ газов.
Хроматографический анализ газов, растворенных в масле трансформаторов, в настоящее время широко применяется во всех развитых странах в качестве эффективного средства ранней диагностики медленно развивающихся дефектов. Существуют международные и отечественны нормы как по процедуре ХАРГ, так и по трактовке результатов анализа, которые довольно близки.
ХАРГ включает несколько этапов:
Отбор пробы масла в маслоотборное устройство (шприц),
Транспортировку и правильное хранение пробы,
Выделение растворенных газов по специальной методике,
Определение содержания газов в газовом анализаторе (хроматографе),
Диагностика дефекта по составу газов, скорости их роста.
Хроматографический анализ газов, растворенных в трансформаторном масле, проводится в специальных лабораториях и является узко профессиональной задачей. Для более детального изучения вопроса можно рекомендовать работу или другие специальные издания.
Первым этапом ХАРГ является выделение газов из масла. Наиболее распространен метод равновесного выделения газов в шприце. Для этого в шприц вместимостью 20 мл набирают масло и газ-носитель (гелий или аргон) в определенных, установленных принятой методикой соотношениях, затем полученную смесь барботируют. При этом происходит процесс газообмена и часть газов из масла переходит в газ в соответствии с известными коэффициентами растворимости. Полученная смесь газа-носителя и газов, растворенных в масле, анализируется на количественный состав в специальных приборах – хроматографах.
В хроматографах применяется газоадсорбционный метод разделения анализируемой газовой смеси в специальных колонках (рис.3), заполненных адсорбентом (пористые вещества представляющие собой "молекулярные сита"). Различия в физико-химических свойствах отдельных газов смеси приводят к различным скоростям их движения по разделительной колонке. Поэтому на выходе колонки они будут появляться в различные моменты времени:
C 2 Н 2 , C 2 Н 4 , C 2 Н 6 C 2 Н 4 C 2 Н 2
C 2 Н 6
смесь газов разделенные газы
Рисунок 3 - Принцип разделение газов в колонке хроматографа
По свойствам газов их количественные концентрации определяются специальными устройствами, получившими название детекторов, и регистрируются в виде хроматограмм на дисплее ЭВМ. Результаты обрабатываются на ЭВМ с помощью специальных программ, анализируются и хранятся в базе данных по маслонаполненному оборудованию.
Плановый отбор масла на ХАРГ с периодичностью 1 раз в 6 месяцев в большинстве случаев позволяет:
Следить за развитием дефектов,
Предвидеть повреждения, не обнаруживаемые традиционными методами,
Определять ориентировочный характер повреждения – разряды, горячая точка (образование замкнутых контуров тока через стяжные болты,
Обнаружить дефекты контактов избирателя РПН, дефекты межлистовой изоляции, перегревы твердой изоляции, частичные разряды вследствие недопропитки изоляции, ее чрезмерного увлажнения, дефекты потенциальных соединений экранирующих колец и других деталей с образованием плавающего потенциала и искрения, и т.д.
Однако не следует считать, что хроматография выявляет все виды дефектов. Существуют определенные виды дефектов, которые развиваются столь стремительно, что отбор проб масла с интервалом в несколько месяцев не позволяет своевременно обнаружить их развитие (мгновенно развивающиеся дуговые перекрытия, витковые и межкатушечные замыкания, ползущие разряды, внезапные пробои главной изоляции или каналов за счет концентрации примесей, влаги или оставленных при ремонтах посторонних предметов).
Основные газы (основным считается газ с наибольшей, относительно граничной, концентрацией), по опыту хроматографии, наиболее характерные для различных дефектов:
Н 2 (водород) – дефекты электрического характера (частичные разряды невысоких энергий, искровые дуговые разряды, горячая точка),
С 2 Н 2 (ацетилен) – разряды высокой энергии (искрения, дуга) нагрев выше 700 °С,
СН 4 (метан) – нагрев масла и изоляции в диапазоне температур 250-400°С (перегрузка трансформатора или дефект системы охлаждения), частичные разряды невысокой энергии,
С 2 Н 6 (этан) – термический нагрев масла и Б-М изоляции в диапазоне более 300 °С,
С 2 Н 4 (этилен)- высокотемпературный (более 600°С) нагрев масла и Б-М изоляции,
СО (оксид углерода) – старение и увлажнение масла (или твердой изоляции), перегрев изоляции по всей массе,
СО 2 (диоксид углерода) – нагрев и старение твердой изоляции (бумаги, картона).
Для иллюстрации (рис.4) ниже приведена качественная диаграмма динамики газов, содержащихся в трансформаторном масле, в зависимости от температуры "горячей точки"
|
|||||||||||||||||
Рисунок 4 - Диаграмма динамики газов при наличии "горячей точки»
В таблице 1, в качестве примера, приведены граничные значения газов нормально работающих трансформаторов принятые, как в России, так и за рубежом.
Таблица 1- Граничные концентрации газов для силовых трансформаторов
* Для трансформаторов с РПН, имеющих общий расширитель по опыту ОАО «Ленэнерго».
Для диагностики состояния маслонаполненного оборудования по результатам ХАРГ используются 3 критерия:
1. Критерий превышения граничных (предельных) концентраций. Граничные концентрации определяются путем статистической обработки результатов ХАРГ нормально работающих трансформаторов в энергосистеме по классам напряжения, типам защиты масла, срокам эксплуатации. При отсутствии таких данных ориентируются на граничные концентрации, приведенные в РД 153-34.46.302-00 (первая строка таблицы 1).
2. Критерий скорости нарастания газов используется для обнаружения тенденции роста газов. Увеличение скорости роста более 10% в месяц считается "сигналом тревоги" и трансформатор ставится на учащенный контроль, даже если концентрации еще не превысили граничных значений. При этом нужно тщательно проанализировать режим эксплуатации оборудования (рост нагрузки, температуры масла и атмосферы, рабочее напряжение, внешние к.з. и т.д.) Следует также учесть возможность случайной погрешности, особенно по водороду и СО, из-за потери газа при отборе и транспортировке пробы. Поэтому, в первую очередь, нужно повторить отбор пробы масла и убедиться в устойчивости (достоверности) результата.
3. Критерии отношений пар газов позволяет, в первую очередь, разделить на дефекты электрического характера когда С 2 Н 2 /С 2 Н 4 больше 0,1 (дополнительно СН 4 /Н 2 менее 1) и дефекты термического характера С 2 Н 2 /С 2 Н 4 много меньше 0,1 (подтверждение данного факта - СН 4 /Н 2 более 1). Отношение С 2 Н 4 /С 2 Н 6 характеризует температуру горячей точки. Критерий отношения газов используют только в случае, если хотя бы один газ, входящий в отношение, превысил граничную концентрацию. По соотношению СО 2 /СО судят о вовлечении в дефект твердой изоляции (при наличии признаков нагрева или разряда). ПриСО 2 /СО более десяти имеет место перегрев целлюлозы. Отношение меньше трех свидетельствует о старении целлюлозы под действием дефектов электрического характера. Более подробно вопросы уточнения видов дефекта изложены в РД 153-34.46.302-00.
На рис. 5 приведена структурно-логическая схема процесса анализа результатов ХАРГ и принятия решения. Вид развивающего дефекта можно ориентировочно определить и графически по "портрету" основных газов. Графики строятся следующим образом (рис.6 – рис.16):
- по результатам ХАРГ рассчитываются относительные концентрации (а i) газов (по отношению к граничным),
- за основной газ принимается компонент с наибольшей относительной концентрацией (а макс),
- определяют величину по углеводородным газам и водороду,
По оси Х откладывают пять равных отрезков и обозначают полученные точки в следующей последовательности: H2, СН4, С2Н6, С2Н4, С2Н2,
По оси Y откладывают соответствующее значение отношения (а i)/ (а макс) для каждого газа,
Полученные точки соединяют прямыми линиями,
Построенный график сравнивают с "типовыми портретами" и находят наиболее близкий.
1 – отбор проб по графику
2- учащенный отбор
Рисунок 5 - Структурно-логическая схема диагностики по результатам ХАРГ.
На рисунках (рис.6 – рис. 9) представлены «графические партреты» по результатам ХАРГ , соответствующие дефектам электрического характеравызванные разрядами (преобладает водород).
На рисунках (рис.10 – рис. 12) представлены «графические партреты», соответствующие дефектам термического характера в диапазоне средних температур (преобладает газ – метан) , переходящие в ЧР.
Рисунок 10. Дефект термического характера | Рисунок 11. Дефект термического характера |
На рисунках (рис.13 – рис. 15) представлены «графические партреты» газов, соответствующие дефектам термического характера в диапазоне высоких температур (преобладает газ - этилен).
Рисунок 12. Дефект термического характера | Рисунок 13. Высокотемпературный нагрев |
Рисунок 14. Высокотемпературный нагрев | Рисунок 15 - Высокотемпературный нагрев, переходящий в дугу |
Рассмотрим на примере определение дефекта по результатам ХАРГ. При построении графика учитывалось отсутствие эксплуатационных факторов, способствующих росту растворенных в масле газов (п.3.2 РД).
Граничные концентрации растворенных в масле газов РД.
В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:
Н 2 = 0.004%об, СН 4 = 0.084%об, С 2 Н 2 = 0%об, С 2 Н 4 = 0.02%об, С 2 Н 6 = 0.011%об,
СО = 0.05%об, СО 2 = 0.48%об.
1. Определяем относительные концентрации (а i) для каждого газа:
а н2 = 0.004/0.01=0.4, а СН4 = 0.084/0.01=8.4, а С2Н2 = 0, а С2Н4 = 0.02/0.01=2.0,
а С2Н6 = 0.011/0.005=2.2
2. По полученным относительным концентрациям определяем основной газ:
8.4 = а СН4 > а С2Н6 > а С2Р4 > а Н2 , т.е. основной газ - метан
3. Определяем величины отрезков по оси Y для каждого газа:
СН 4 = 1, Н 2 =0.4/8.4=0.05, С 2 Н 4 =2/8.4=0.24, С 2 Н 2 =0, С 2 Н 6 = 2.2/8.4 = 0.26
4. Строим график (рис.16).
5. По основному газу СН 4 находим график похожий на построенный график (рис.10). При сравнении делаем заключение: в трансформаторе, по данным АРГ прогнозируется дефект термического характера в диапазоне средних температур.
6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:
СО 2 /СО=0.48/0.05 = 9.6< 13 (см. П.5.3.РД), следовательно, твердая изоляция дефектом не затронута.
7. Для проверки диагноза (в последующих примерах эта проверка не приведена) определим прогнозируемый в трансформаторе дефект по критерию отношения (п.5.2, табл.3 РД):
Рассчитываем величины отношения концентраций газов:
На основании полученных данных прогнозируется дефект термического характера – "термический дефект в диапазоне средних температур (300-700)°С".
Так как СО 2 /СО=0.16/0.02=8 < 13 (см. П.5.3.РД), делаем вывод, что дефект не затрагивает твердую изоляцию и относится к группе 1 (п.2.1).
Таким образом, получили совпадение характера прогнозируемого дефекта, определенного графическим способом и по критерию отношения газов.
Рисунок 16 - График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя
Физико-химический анализ масла. Качество трансформаторного масла оценивается сравнением результатов испытаний с нормативными значениями в зависимости от типа, вида и класса напряжения электрооборудования, а также их динамикой. Нормативные значения показателей качества масла и периодичность испытаний регламентируются действующими ОиНИЭ и "Методическими указаниями по эксплуатации трансформаторных масел" (РД 34.43.105-89) . Особенностью новых нормативов, является: во-первых то, что ФХАМ поставлен на первый план при оценке состояния маслонаполненного оборудования , во-вторых, выделение двух областей эксплуатации масла:
- область "нормального состояния масла", когда состояние качества масла гарантирует надежную работу электрооборудования,
- область "риска", когда ухудшение даже одного показателя качества масла приводит к снижению надежности и требуется учащенный и расширенный контроль для прогнозирования срока службы или принятия специальных мер по восстановлению его эксплуатационных свойств или его замены.
Начинают контроль масла с визуального осмотра масла: анализируют его цвет, наличие загрязнения, прозрачность. Свежее масло имеет, как правило, светло-желтый цвет, а его темный цвет указывает на старение и возможный перегрев в эксплуатации. На основании результатов визуального осмотра принимается решение о проведении дополнительных испытаний:
Электрическая прочность трансформаторного масла 40-70 кВ определяется по ГОСТ 6581-75 в стандартном разряднике с использованием аппаратов АИМ-80, АИМ-90 и, как правило, затруднений не вызывает. Электрическая прочность является основной изоляционной характеристикой масла, определяющей его работоспособность. Электрическая прочность снижается при значительном увлажнении масла (вода в виде эмульсии) и загрязнении его механическими примесями, особенно при повышенной влажности.
Наиболее значительное снижение электрической прочности с ростом влагосодержания наблюдается при содержании воды более 25-30 г/т. Механические примеси снижают электрическую прочность в зависимости от их фракционного состава и их проводимости. Наиболее заметное снижение прочности происходит при размерах частиц более 100 мкм.
Количественное содержание воды . Вода в масле, как уже отмечалось, может находиться в следующих состояниях: связанная, растворенная, эмульгированная, слоевая (осажденная). Связанная вода определяется фракционным составом масла и примесей, находится в сольватированной форме и, как правило, обычными методами анализа масла не выявляется.
Влажность масла в энергосистемах до настоящего времени определялась, в основном, гидрит-кальциевым методом с помощью прибора ПВН по ГОСТ7822-75, Принцип основан на реакции гидрида кальция с водой при которой выделяется водород:
СаН 2 + Н 2 О = Са(ОН) 2 + 2Н 2
По количеству выделившегося газообразного водорода рассчитывается содержания растворенной в масле воды.
В последние годы внедряются методы определения воды по методике публикации МЭК 814 (кулонометрическое титрирование в реактиве Карла Фишера). Влагосодержание жидких диэлектриков по данной методике определяется по количеству электричества, затраченного на генерацию йода, вступившего в реакцию с водой
Влагомер трансформаторного масла ВТМ-2, выпускаемый Ангарским ОКБА, реализует кулонометрический метод измерения влаги. Сущность метода заключается в поглощении влаги пленкой сорбента из потока газа носителя (воздуха), протекающего через масло, и извлекающего из масла влагу. Поглощенная пленкой влага подвергается электролизу и по количеству электричества определяется влагосодержание.
Во ВНИИЭ разработана методика хроматографического определения влагосодержания трансформаторного масла на газовых хроматографах. По методике ВНИИЭ, малая проба масла (25-100 мкл) вводится в испаритель. Температура испарителя порядка 180 градусов, поэтому вся вода, присутствующая в масле, переходит в газообразное состояние и вместе с выделившимися газами поступают в хроматографическую колонку, в которой происходит разделение газов. Затем детектор по теплопроводности регистрирует количество воды.
Кислотное число (КОН) определяется по ГОСТ 5985-79 методом титрирования спиртовым раствором. КОН – это количество едкого калия в миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г масла. Значение кислотного числа масла, превышающее 0,15 мг/г, является признаком его старения и окисления (содержания в нем кислых соединений) и служит основанием для оценки состояния масла: необходимости замены силикагеля в термосифонных (адсорбционных) фильтрах, регенерации масла, проверки содержания атиокислительной присадки ионол (агидол) в масле. Чем выше кислотное число масла, тем, как правило, выше его проводимость и диэлектрические потери. Кислотное число не должно превышать 0,15-0,25 мг/г.
Тангенс угла диэлектрических потерь масла характеризует свойства трансформаторного масла как диэлектрика. Диэлектрические потери свежего масла характеризуют его качество и степень очистки, а в эксплуатации - степень загрязнения и старения масла (повышение электропроводности, образования коллоидных образований, растворимых металлоорганических соединений (мыл), смолистых веществ). Ухудшение диэлектрических свойств (увеличение tgd м) приводит к снижению изоляционных характеристик трансформатора в целом.
Для определения tgd м масло заливают в специальный сосуд (по ГОСТ 6581-75) с цилиндрическими или плоскими электродами. Отбор проб масла осуществляют в соответствии с требованиями ГОСТ 6433.5-84. Измерение производят с применением моста переменного тока Р5026 или другого типа.
Нормируется tgd м при температуре 20 о С и 90 о С. В эксплуатации целесообразно измерять его значение при температуре 70 о С как на подъеме, так и спаде температуры. "Гистерезисный" характер темперературной зависимости tgd м - признак глубокого старения масла (снижение tg d м при температуре 70 о С на спаде температуры после длительной выдержки при 90-100 о С может происходить либо из-за коагуляции и выпадении осадка, либо при сильном увлажнении масла).
Водорастворимые кислоты и щелочи , содержащиеся в масле (более 0,014 мг/г), свидетельствуют о низком качестве масла. Они могут образовываться в процессе изготовления масла при нарушении технологии производства, а также в результате окисления при эксплуатации. Эти кислоты вызывают коррозию металла и способствуют старению твердой изоляции. Для качественного обнаружения водорастворимых кислот (ВРК), по ГОСТ 6307-75, применяют 0,02% водный раствор метилоранжа, а для обнаружения щелочи и мыл – 1% спиртовой раствор фенолфталеина. Данные реактивы меняют свой цвет в присутствии нежелательных компонентов. Определение ВРК в масле заключается в их извлечении из испытуемого масла дистиллированной водой и определения реакции водной вытяжки рН- метром.
Температура вспышки масла в закрытом тигле характеризует степень испаряемости масла и насыщенности его легкими углеводородами. Для товарных масел температура вспышки должна находиться в пределах 130-150°С. Нормами допускается снижение температуры вспышки не более чем на 5°С, по сравнению с предыдущими испытаниями.
Определение содержания антиокислительной присадки (ИОНОЛ). В присутствии ионола процесс термоокислительного старения масла происходит относительно медленно и масло длительное время имеет показатели, соответствующие нормам. При эксплуатации масла идет процесс непрерывного расхода ионола и при снижении его ниже определенного предела (0,1%) начинается процесс интенсивного старения масла, сопровождающийся образованием шлама, ростом кислотного числа, ухудшением эксплуатационных характеристик масла . Замена силикагеля в термосифонных фильтрах, как правило, дает только кратковременный результат. Определение содержания присадки ионол осуществляется в настоящее время методами тонкослойной хроматографии на специальных пластинах (РД 34.43.105-89), методами жидкостной хроматографии на жидкостных хроматографах (РД 34.43.208-95), на газовых хроматографах по методике ВНИИЭ или методами ИК спектроскопии. В свежих товарных маслах содержание ионола составляет 0,25-0,3%. При снижении его в процессе эксплуатации ниже 0,1 % требуется регенерация масла и добавка ионола.
Количественное содержание механических примесей. Появление механических примесей в масле свидетельствует либо о грубых дефектах при производстве изоляции, либо о наличии истирания и расслоения материалов в процессе эксплуатации. Механические примеси приводят к сильному снижению электрической прочности масла. Поэтому их наличие определяются вначале визуально и при необходимости - количественно. При количественном анализе определяется количество частиц и производится распределение их по размерным диапазонам. Эти сведения позволяют определить класс чистоты масла по ГОСТ 17216-2001. Для количественного определения механических примесей применяются приборы АЗЖ-975 (г. Самара), ПКЖ-904 (г. Саратов), ГРАН-152 (Техноприбор). В ряде случаев наряду с количественным определением примесей, полезным бывает изучение под микроскопом качественного состава примесей для поиска источника их происхождения. Например, наличие металлических частиц свидетельствует о разрушении циркуляционных насосов трансформатора.
Основные показатели качества эксплуатационного масла приведены в табл. 2
Таблица 2 - Области эксплуатации (состояния) трансформаторного масла
Показатель качества масла (основные) | Область «нормального состояния масла | Область «Риска» | ||
от | до | от | до | |
Электрическая прочность Uпр, кВ Оборудов. до 35 кВ До 150 кВ 220-500 кВ | и выше | и ниже | ||
Кислотное число (КОН), в % До 220 кВ Выше 220 кВ | 0,02 0,01 | 0,1 0,1 | 0,1 | 0,25 |
Влагосодержание в Г/Т С защитой масла Без защиты | - | |||
Механические примеси в г/т (класс чистоты) До 220 кВ Выше 220 кВ | Отсутств. 10 (10) | (12) 20 (11) | Отсут. 20(11) | (13) 30 (12) |
Тангенс потерь при 90град, % До 220 кВ Выше 220 кВ | 0,7 | |||
Содержание «Ионола», % | 0,18 | 0,1 | Менее 0,1 |
Страница 5 из 9
Хроматографический анализ газов, растворенных в трансформаторном масле
Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.
Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.
Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.
Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.
С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.
1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.
Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.
Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.
2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.
При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.
3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.
После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.
Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.
Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.
Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.
На протяжении последних десятилетий при проведении диагностических исследований трансформаторов, обязательным становится использование хроматографического анализа масла. Прежде всего, это относится к определению наличия в нем растворенных газов.
Кто выполняет работу?
Крайне важно при этом провести правильный отбор проб, с последующей доставкой их в специализированные лаборатории для последующих испытаний. Наряду с персоналом, обслуживающим данное оборудование, такую процедуру (по забору проб) могут выполнять приглашенные специалисты. Тем более что сегодня, наряду с государственными структурами, данный вид услуг предлагают независимые компании.
Например, заключение договора на обслуживание с АНО «Центр химических экспертиз», позволит рассчитывать на своевременное проведение качественного хроматографического анализа масла.
Для чего проводятся испытания?
Это тем более важно, поскольку далеко не всегда удается получить полную и достоверную информацию путем обычных физико-химических испытаний. Зачастую только хроматография дает исчерпывающую информацию о степени и видах повреждений силового трансформатора:
- перегрев, как следствие ускорение процессов старения (относятся к дефектам твердой изоляции);
- перегревается металл, наблюдаются частичные разряды, др.
Избежать либо свести к минимуму возможность создания аварийной обстановки и призвано проведение дополнительного вида исследований хроматографического анализа масла. По его результатам станет гораздо проще выяснить причину появления дефектов, разработать своевременные, соответствующие обстановке, рекомендации по устранению.
Данное исследование необходимо для осуществления контроля над изменениями в составе масла в ходе эксплуатации трансформаторов. Во время использования трансформаторов используемое масло требует постоянного аналитического контроля за качественными и количественными показателями соединительных единиц в нем.
Самым оптимальным способом контроля за состоянием масла является хроматографический анализ трансформаторного масла в лабораторных условиях. Хроматографический анализ проводится на базе лаборатории АНО «Центра химических экспертиз». Сегодня эксперты обеспечены современным оборудованием и материалами для исследований, представляющих комплексный метод. Комплексность задачи заключается в отождествлении частиц и разделения сложных смесей на отдельные составляющие и вещества, оценке их качественного и количественного показателя.
Исходя из полученных химических исследований, эксперты подводят итоги и подготавливают независимое заключение о состоянии трансформаторного масла.
Что определяет хроматографический анализ
Хроматографический анализ трансформаторного масла позволяет определить наличие и виды сложных газов, растворенные в маслах, эти сведении помогут выявить дефекты в работе трансформатора в определенных его узлах, также установить характер и степень износа, нарушений работы.
Хроматографический анализ трансформаторного масла проводится на предоставленных образцах, отобранных пробах масла и доставленных в лабораторию. Полученные результаты помогут принять решение о дальнейшей эксплуатации трансформатора. Анализ выполняется на хронографе, аттестованными экспертами химической лаборатории.
За качественной оценкой на хроматографе трансформаторного масла, необходимо обращаться в АНО «Центр химических экспертиз».