Японская компания создала лёгкий пластик, который имеет прочность стали. Выбор пластика Материал легкий и прочный пластик
Износостойкость - характеристика материала, демонстрирующая его сопротивление износу при различных условиях эксплуатации; при этом учитывается как скорость, так и интенсивность изнашивающих нагрузок.
Стойкость к износу определяется рядом факторов:
- структура материала;
- состав материала;
- базовые параметры твердости и шероховатости;
- предполагаемые и реальные условия эксплуатации.
Износостойкий пластик изначально обладает хорошей сопротивляемостью физическим повреждениям, во многих случаях значительно превышая аналогичные параметры у стальных изделий.
Зачастую для достижения требуемого уровня приходится идти на дополнительные меры, например, использование дополнительного износостойкого покрытия. Это позволяет серьезно улучшить эксплуатационные качества, но усложняет производство, повышает стоимость готового продукта.
Износостойкий пластик находит активное применение и в машиностроении. В частности, шестерни из полиамидов приобретают все большую популярность, заменяя стальные аналоги во многих технических узлах, предполагающих высокий износ задействованных деталей за счет постоянной нагрузки.
В нашем ассортименте представлены такие виды износостойкого пластика как:
- особо прочные виды .
Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!
25. Алмазы
Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.
24. Ловчие сети паука вида Caerostris darwini
Фото: pixabay
В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!
23. Аэрографит
Фото: BrokenSphere
Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.
22. Палладиевое металлическое стекло
Фото: pixabay
Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.
21. Карбид вольфрама
Фото: pixabay
Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.
20. Карбид кремния
Фото: Tiia Monto
Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.
19. Кубический нитрид бора
Фото: wikimedia commons
Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.
18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)
Фото: Justsail
Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.
17. Титановые сплавы
Фото: Alchemist-hp (pse-mendelejew.de)
Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.
16. Сплав Liquidmetal
Фото: pixabay
Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).
15. Наноцеллюлоза
Фото: pixabay
Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.
14. Зубы улиток вида «морское блюдечко»
Фото: pixabay
Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.
13. Мартенситно-стареющая сталь
Фото: pixabay
Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.
12. Осмий
Фото: Periodictableru / www.periodictable.ru
Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.
11. Кевлар
Фото: wikimedia commons
Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.
10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)
Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons
СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.
9. Графен
Фото: pixabay
Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!
8. Бумага из углеродных нанотрубок
Фото: pixabay
Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.
7. Металлическая микрорешетка
Фото: pixabay
Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.
6. Углеродные нанотрубки
Фото: User Mstroeck / en.wikipedia
Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.
5. Аэрографен
Фото: wikimedia commons
Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.
4. Материал без названия, разработка Массачусетского технологического института (MIT)
Фото: pixabay
Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.
3. Карбин
Фото: Smokefoot
Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!
2. Нитрид бора вюрцитной модификации
Фото: pixabay
Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.
1. Лонсдейлит
Фото: pixabay
Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.
применение
Для супертонких гаджетов
С момента открытия графена было принято считать, что именно он изменит электронные технологии ближайшего будущего. Это подтверждалось огромным количеством патентных заявок на право его использования, поданных технологическими компаниями. Однако в 2012 году в Германии синтезировали похожий, но более перспективный материал - силицен. Графен - это слой толщиной с атом углерода. Силицен - такой же слой из атомов кремния. Многие свойства у них схожи. Силицен тоже обладает отличной проводимостью, что гарантирует повышение производительности при меньших теплозатратах. Однако
у силицена есть ряд неоспоримых преимуществ. Во-первых, он превосходит графен по структурной гибкости, его атомы могут выпирать из плоскости, что увеличивает спектр его применения. Во-вторых, он полностью совместим с уже существующей электроникой, в основе которой - кремний. Это означает, что на его внедрение потребуется намного меньше времени и денег.
Лидером производства строительных, отделочных и упаковочных материалов из грибов является молодая компания Ecovative, основатели которой нашли золотую жилу в мицелии - вегетативном теле гриба. Выяснилось, что он обладает прекрасными цементирующими качествами. Ребята из Ecovative смешивают его с кукурузной и овсяной шелухой, придают смеси необходимую форму и выдерживают её в темноте несколько дней. За это время грибной питательный орган перерабатывает пищу и связывает смесь в гомогенную массу, которую затем для прочности обжигают в печи. В результате этих нехитрых манипуляций получается лёгкий, прочный, огне- и влагостойкий экологичный материал, внешне напоминающий пенопласт. На основе этой технологии в Ecovative сейчас разрабатывают материал для бамперов, дверей и приборных панелей автомобилей Ford. Кроме того, они наладили производство небольших домов Mushroom Tiny House, полностью созданных на основе мицелия.
Материалы из грибов
применение
Для экологичного строительства
и производства мебели
Аэрогель
применение
Для теплоизоляции
Обычный гель состоит из жидкости, которой трёхмерный полимерный каркас сообщает механические свойства твёрдых тел: отсутствие текучести, способность сохранять форму, пластичность и упругость. В аэрогеле жидкость после высушивания материала до критической температуры заменяется газом. Получается вещество с удивительными свойствами: рекордно низкой плотностью и теплопроводностью. Так, аэрогель на основе графена - самый лёгкий материал в мире. Несмотря на то что 98,2% его объёма составляет воздух, материал обладает огромной прочностью и выдерживает нагрузку в 2 000 раз больше собственного веса. Аэрогель чуть ли не лучший на сегодня теплоизолятор, применяемый как в скафандрах NASA, так и в куртках для альпинистов толщиной всего 4 мм. Ещё одно его удивительное свойство - способность абсорбировать вещества в 900 раз больше собственного веса. Всего 3,5 кг аэрогеля могут абсорбировать тонну разлившейся нефти. Благодаря его эластичности и термической стойкости абсорбированная жидкость может быть выдавлена, как из губки, а остаток просто выжжен или удален испарением.
Феррофлюид - это жидкий материал, способный изменять свою форму под воздействием магнитного поля. Этому свойству он обязан тем, что в нём содержатся микрочастицы магнетита или других железосодержащих минералов. Когда к ним подносят магнит, они притягиваются к нему и толкают вместе с собой молекулы жидкости. Феррофлюид, вероятно, - самый доступный из всех представленных материалов: его можно купить в интернете или даже сделать самостоятельно. Феррофлюиды по теплоёмкости и теплопроводности превосходят все смазочно-охлаждающие материалы. Сейчас их используют в качестве жидких уплотнителей вокруг вращающихся осей жёстких дисков и в качестве рабочей жидкости в поршнях гидравлической подвески. В ближайшем будущем NASA планирует использовать их в зеркалах телескопов для того, чтобы те умели подстраиваться под атмосферные турбулентности. Плюс магнитные жидкости должны пригодиться при лечении рака. Их можно смешивать с противоопухолевыми препаратами и с помощью магнита точно вводить лекарство в поражённый участок, не вредя окружающим клеткам.
Жидкий металл
применение
Для лечения рака
Самовосстанавливающиеся материалы
применение
Для долгой жизни вещей
Самовосстанавливающиеся материалы изобретают в различных областях: строительстве, медицине, электронике. Среди самых интересных разработок - защищённый от физических повреждений компьютер. Инженер Нэнси Соттос придумала снабжать провода микроскопическими капсулами с жидким металлом. При разрыве капсула разбивается и заполняет трещину за секунды. Микробиолог Хэнк Джонкерс похожим способом продлевает срок службы дорог и зданий, подмешивая в цемент споры бактерий и питательные вещества для них. Как только в цементе появляется трещина и в неё попадает вода, бактерии пробуждаются ото сна и начинают перерабатывать корм в прочный карбонат кальция, который заполняет трещины. Новшество затронуло и текстильную промышленность. Американский учёный Марек Урбан создал прочный материал, который может самостоятельно заделывать полученные повреждения. Для этого на ткань необходимо направить концентрированный луч ультрафиолета.
В ближайшем будущем материя сможет изменять свою форму, плотность, структуру и другие физические свойства программируемым образом. Для этого необходимо создание материала, которому присуща способность обработки информации. На практике это будет выглядеть так: столик из IKEA будет собираться сам, как только его достанут из коробки, а вилка при необходимости будет легко превращаться в ложку. Уже сейчас в MIT создают предметы, которые могут менять форму. Для этого сверхтонкие электронные платы соединяются с запоминающими форму сплавами - металлами, меняющими конфигурацию под воздействием тепла или магнитного поля. Платы выделяют тепло в заданных точках, в результате чего объект собирается в задуманную учёными структуру. Так, из плоских металлических листов удалось собрать робота-насекомое. Важным направлением программируемой материи является клэйтроника, занимающаяся разработкой нанороботов, которые могут вступать в контакт друг с другом и создавать 3-D объекты, с которыми может взаимодействовать пользователь. Клэйтроника сможет предложить реалистичное чувство связности на больших расстояниях, называемое «парио». Благодаря ему можно будет услышать, увидеть и потрогать нечто, расположенное на другом конце света.
Клэйтроника
применение
Для производства вещей, способных
менять форму по требованию
Бактериальная целлюлоза
применение
Для экологичного производства одежды
Наша компания занимается поставками полуфабрикатов инженерных пластиков в форме листов, стержней, плит, втулок, труб, а также изготовлением из них промышленного емкостного оборудования, химстойких воздуховодов, гальванических ванн, бассейнов, купелей, садков и футеровок для различного вида задач.
Кроме этого, с помощью ЧПУ, формовки и литья под давлением мы изготовим как штучные, так и серийного выпуска изделия из пластика, любой сложности!
Данная статья призвана познакомить наших посетителей с возможностями компании и рассказать о наших возможностях, услугах, а также помочь в выборе материала под Вашу задачу.
Итак, что из себя представляют полимеры и в каких случаях они применяются.
Если Вам нужно выбрать пластик под какую-либо задачу, необходимо определить наиболее важные эксплуатационные характеристики:
- температура - постоянная рабочая, минимальная и максимальная
- среда, воздействующая на пластик
- механические воздействия на него
- требования экологичности
Обозначив требования к условиям эксплуатации можно определить еще один немаловажный параметр - цена на пластик! Цена на материалы может отличаться в десятки или даже сотни раз, так как условия эксплуатации влияют не только на вид пластика, но и на выбор толщины . Толщина в свою очередь влияет на количество материала которое будет необходимо купить, так как стоимость листов, стержней и плит измеряется исходя из веса за килограмм.
В зависимости от верхней границы рабочей температуры можно провести условное деление пластиков на несколько групп:
- Промышленные (стандартные) пластики - до 100°С
- Инженерные (конструкционные) пластики - от 100°С до 130°С
- Пластики высокого уровня, высокотемпературные - от 130°С до 300°С
Чем выше рабочая температура материала, тем совершеннее молекулярная структура материала и прочнее межмолекулярные связи, тем выше будет его стоимость и одновременно уменьшается его объем потребления. Скажем, объем потребления поливинилхлорида (ПВХ, PVC) на три-четыре порядка больше, чем объем потребления полиэфирэфиркетона (PEEK) , удельная стоимость которого на два порядка больше чем ПВХ.
Рабочая среда влияет на выбор химстойкости материала. В химическом производстве используются компоненты, которые требуют как надлежащего хранения в резервуарах или емкостях, непосредственно участвуя в технологическом процессе, так и надлежащей утилизации.
И в зависимости от критериев эксплуатации, упомянутых выше, для создания емкостного оборудования используются термопласты - PP (полипропилен) , PE (полиэтилен) , PVC (поливинилхлорид или винипласт) , PVDF (поливинилиденфторид) . Каждый из этих полимеров имеет свои достоинства и возможности применения, а также обладает способностью в полной мере заменить емкостное оборудование из металла или нержавеющей стали, они просто незаменимы в производстве современного гальванического оборудования и систем химстойких воздуховодов. Замена металлических емкостей на пластиковые позволяет увеличить срок годности оборудования, снизить его стоимость и вес, а в большинстве случаев и вовсе является единственно возможным решением.
Говоря о воздействии окружающей среды на пластик нельзя не упомянуть и о таком важном параметре, как радиационная стойкость . Эксплуатация на атомных станциях, рентгенологическое оборудование, медицинское оборудование, спутники, военная техника и техника специального назначения - это и многое другое оборудование требует от пластика устойчивости к Рентген и Гамма излучениям. И тут широкое применение получили такие материалы, как PVDF (ПВДФ, поливинилиденфторид) , PEEK (полиэфирэфиркетон) , PEI (полиэфирэмид) , PAI (Торлон, Полиамид-имид) , PI (Полиимид) .
Механические воздействия состоят из нескольких характеристик:
Прочность имеет значение при статических напряжениях, т.е. под постоянной растягивающей нагрузкой (например, в емкостном оборудовании). Пластики с высокой прочностью к растяжениям и разрывам, как правило, имеют низкие показатели эластичности и наоборот. Это позволяет делить пластики на «прочные» (жесткие), которые выдерживают высокие механические нагрузки, но быстро ломаются при наступлении деформаций; и эластичные (гибкие), которые не так прочны, однако способны сохранять свои прочностные свойства при деформациях.
Ударопрочность характеризует стойкостью материалов к динамическим нагрузкам.
Твердость и износостойкость означают сопротивление материала проколам, порезам и т.д., устойчивость к истиранию, что имеет значение, в частности, для футеровок технологического оборудования.
В одних случаях выбираются прочные и твердые пластики, способные выдерживать нагрузки в десятки тонн, такие как PA (полиамид) , POM (полиоксиметилен) , PET (полиэтилентерефталат) .
В других случаях - гибкие и в то же время ударопрочные, такие как полиэтилен (PE) и полипропилен (PP) .
Рассмотрим еще некоторые наиболее востребованные на рынке свойства пластиков.
Термостойкость , как говорилось выше, зависит от рабочей температуры материала. Наиболее - термостойкие пластики из категории высокотемпературных, они же в силу своей высокотехнологичности имеют самую высокую стоимость. Самыми популярными пластиками из этой категории являются полиэфиэфиркетон (PEEK, ПЕЕК) , политетрафторэтилен (PTFE, ПТФЕ) , Фторопласт (ф4) , поливинилиденфторид (PVDF, ПВДФ) .
Морозостойкость для пластиков характеризуется температурой хрупкости. Температура хрупкости - это температура, при которой происходит разрушение материала или изделия в условиях постоянно действующей нагрузки. Для пластиков она находится в отрицательной зоне и для каждого из них имеет свое значение, находящееся ниже минимальной рабочей температуры. Например, для полиэтилена низкого давления высокой плотности PE 300 это ниже чем -50°С; высокомолекулярного полиэтилена PE 500 - -100° C; сверхвысокомолекулярного полиэтилена PE 1000 , ниже чем - 250° С. При этом у полипропилена гомополимера PP-H хрупкость появляется уже при температуре ниже 0°С
При подборе листового пластика, встает такой вопрос, как выбор толщины
листа.
Самые ходовые на рынке пластики выпускаются в следующих толщинах:
На сегодняшний день существует огромное множество разновидностей пластика. Как же не потеряться в мире этих бесконечных наименований?
Давайте разбираться😊
- ABS – прочный пластик, хорошо поддаётся обработке (механической и химической) – можно довести модели до абсолютно глянцевого состояния, устойчив к щелочам и кислотам, ударопрочный, влагостойкий, температура эксплуатации готовых изделий от -40°С до +90°С. Однако трескается при попадании прямых солнечных лучей (потребуется вскрыть готовое изделие специальным лаком во избежания трещин), проводит электричество, необходимо печатать без обдува, так как также растрескивается при охлаждении, растворяется ацетоном и имеет большую усадку при печати.
- ABS+ – имеет меньшую усадку, чем обычный ABS, растрескивается при более низкой температуре обдува, имеет лучшее качество на поддержках и более прочный.
- PLA – экологически чист (зачастую производится из тростника и кукурузы), модели из него хорошо сохраняют форму, имеет минимальную усадку, отлично печатается на поддержках, также имеет высокую вязкость, за счёт чего подходит для печати подшипников, рабочая температура до 60°С, можно печатать на принтерах без подогреваемой платформы. Данный пластик имеет огромное количество цветов, посмотреть которые Вы можете, перейдя по ссылке. При довольно неплохих характеристиках всё же имеются и недостатки: биологически разлагаем (срок эксплуатации изделий уменьшается), низкая температура размягчения, растворяется практически во всех растворителях, представленных на сегодняшний день на рынке.
- PLA+ – имеет практически те же характеристики, что и обычный PLA, однако обладает гораздо большей прочностью.
- PETG – очень гибкий и прочный пластик, усадка значительно меньше, чем у ABS, не растрескивается, температура от -40°С до +70°С, практически самый прозрачный пластик на рынке. Из минусов можно отметить растворимость в бензоле.
- CoPET – пластик без вредных примесей в составе, температура от -40°С до +70°С, не проводит электричество, ударопрочный, не растворяется в большинстве растворителей, однако не стойкий к бензолу.
- Особенности гибких пластиков:
- Elastan бывает двух видов: D70 и D100 и отличаются друг от друга степенью жёсткости
- Plastan также пластичный, однако если его согнуть, первозданную форму он уже не примет
- Primalloy не растворяется и довольно мягкий по своей структуре
- TPU по своим характеристикам напоминает резину и очень «чисто» печатает
- Flex отличный гибкий материал, хорошо поддаётся выгибанию и возвращает себе прежнюю форму
Пластик для 3D принтера: разновидности филаментов
- POM – идеально подходит для втулок, имеет очень высокий коэффициент скольжения, считается самым прочным пластиком, однако довольно нестабильный, из-за чего тяжело печатается и неточно передаёт форму изделия.
- PET – более высокотемпературный пластик, однако со временем начинает стекловаться и тем самым изнашивает сопло.
- Carbon Fiber – это смесь PLA пластика и карбонового порошка (80%:20%). Он жёсткий, матовый и создаёт практически идеально ровные модели, на которых не видно послойность. Минусы такие же, как и у PLA пластика. При использовании неправильного температурного режима может забивать сопло. Для печати данный пластиком необходим 3Д принтер, способный выдерживать очень большие температуры.
- PC – довольно жёсткий пластик, но имеет сильную усадку.
- PA (Nylon) – способен выдерживать широкий спектр температур и обладает стойкостью к большинству органических растворителей.
- PEEK – самый высокотемпературный пластик для FDM печати, отлично подходит для применения в медицине, поскольку его можно стерилизовать.
- PVA – водорастворимый пластик, используется для печати поддержек, однако имеет непостоянную усадку и плавится при температуре 180°С.
- HIPS – также водорастворимый пластик, прочный полистирол, растворяется .
- Металлические пластики – состоят на 80% из PLA пластика и на 20% из порошкового металла (алюминия, меди, бронзы либо латуни). Отлично подходят для декора, так как выглядят практически идентично с изделиями, сделанными из металла. Из-за своего состава быстро изнашивают сопло.
- Деревянные пластики – отлично подходят для декора. При низких температурах более светлый цвет, при высоких – более тёмный. Также при длительном использовании изнашивают сопло 3Д принтера.
Все вышеперечисленные пластики для Вы можете приобрести в нашем магазине. Обращайтесь, с удовольствием проконсультируем Вас!