Опиливание. Приемы опиливания металла
§ 40. Техника и приемы опиливания
Положение корпуса считается правильным, если правая рука с напильником, установленным на губках тисков (исходное положение), согнутая в локте, образует угол 90° между плечевой и локтевой частью руки (рис. 150, а). При этом корпус работающего должен быть прямым и развернутым под углом 45° к линии оси тисков (рис. 150, 6).
Положение ног. При начале рабочего хода напильника масса тела приходится на правую ногу, при нажиме центр тяжести переходит на левую ногу. Этому соответствует такая расстановка ног: левая выносится (отводится) вперед по направлению движения напильника, правую ногу отставляют от левой на 200 - 300 мм так, чтобы середина ее ступни находилась против пятки левой ноги.
При рабочем ходе напильника (от себя) основная нагрузка приходится на левую ногу, а при обратном (холостом) ходе - на правую, поэтому мышцы ног попеременно отдыхают.
При снятии напильником толстых слоев металла приходится нажимать на напильник с большой силой, поэтому правую ногу отставляют от левой назад на полшага, и правая нога в этом случае является основной опорой. При слабом нажиме на напильник, например при доводке или отделке поверхности, стопы, ног располагают почти рядом. Эти работы как точные чаще выполняют сидя.
Положение рук (хватка напильника) имеет чрезвычайно важное значение. Слесарь берет в правую руку напильник за ручку так, чтобы ручка упиралась в ладонь руки, четыре пальца захватывали ручку снизу, а большой палец помещался сверху (рис. 151, а). Ладонь левой руки накладывают несколько поперек напильника на расстоянии 20 - 30 мм от его носка. При этом пальцы должны быть слегка согнуты, но не свисать (рис. 151, 6); они не поддерживают, а только прижимают напильник. Локоть левой руки должен быть немного приподнят. Правая рука от локтя до кисти должна составлять с напильником прямую линию.
Координация усилий. При опиливании должна соблюдаться координация усилий нажима (балансировка), заключающаяся в правильном увеличении нажима правой руки на напильник во время рабочего хода и при одновременном уменьшении нажима левой руки (рис. 152). Движение напильника должно быть строго горизонтальным, поэтому нажимы на ручку и носок напильника должны изменяться в зависимости от положения точки опоры напильника на обрабатываемой поверхности. При рабочем движении напильника нажим левой рукой постепенно уменьшают. Регулируя нажимы на напильник, добиваются получения ровной опиливаемой поверхности без завалов по краям.
В случае ослабления нажима правой руки и усиления левой может произойти завал поверхности вперед. При усилении нажима правой руки и ослаблении левой руки получится завал назад.
Прижимать напильник к обрабатываемой поверхности необходимо при рабочем ходе (от себя). При обратном ходе не следует отрывать напильник от поверхности детали.
Во время обратного хода напильник должен лишь скользить. Чем грубее обработка, тем больше должно быть усилие при рабочем ходе.
При чистовом опиливании нажим на напильник должен быть значительно меньше, чем при черновом. В этом случае левой рукой нажимают на носок напильника не ладонью, а лишь большим пальцем.
Опиливанием называется способ резания, при котором осуществляется снятие слоя материала с поверхности заготовки с помощью напильника.
Напильник - это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).
Опиливанием придают детали требуемую форму и размеры, производят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.
Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка
Рис.1 . Напильники:
а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;
6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;
г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.
Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.
Насечка может быть одинарной (простой), двойной (перекрестной), рашпильной (точечной) или дуговой (рис. 1, б - д ).
Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.
Напильники с двойной насечкой применяют при опиливании стали, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.
Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.
Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.
Изготовляются напильники из стали У13 или У13 А. После насечки зубьев напильники подвергают термической обработке,
Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.
По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машинные напильники.
Рис. 2. Формы сечений напильников:
а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;
ж - ромбический; з - ножовочные.
Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизированных (электрических и пневматических) напильников.
В условиях учебных мастерских возможно применение механизированных ручных опиловочных машинок, которые широко используются на производстве.
Универсальная шлифовальная машина (см. рис. 4, г ), работающая от асинхронного электродвигателя 1, имеет шпиндель, к которому крепится гибкий вал 2 с державкой 3 для закрепления рабочего инструмента, и сменные прямые и угловые головки, позволяющие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.
Опиливание металла
При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность должна выступать над уровнем губок тисков на 8-10 мм. Чтобы предохранить заготовку от вмятин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опиливании металла аналогична рабочей позе при разрезании металла ножовкой.
Правой рукой берут за ручку напильника так, чтобы она упиралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).
Ладонь левой руки накладывают несколько поперек напильника на расстоянии 20-30 мм от его носка (рис. 3, б).
Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.
Рис. 3. Хватка напильника и балансировка им в процессе опиливания:
а - хватка правой рукой; б - хватка левой рукой; в - силы нажима в начале движения;
г - силы нажима в конце движения.
В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вначале нажима правой рукой на ручку с одновременным уменьшением более сильного вначале нажима левой рукой на носок напильника (рис. 3, в, г).
Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.
Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.
Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдерживать размеры детали и взаимное расположение ее поверхностей.
Если степень шероховатости поверхностей на чертеже не указана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опиливание заканчивают личным напильником.
В практике ручной обработки металлов встречаются следующие виды опиливания: опиливание плоскостей сопряженных, параллельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.
В случае опиливания параллельных плоских поверхностей проверку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.
При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании положение напильника неустойчивое и легко «завалить» края поверхности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Продольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.
Для создания лучших условий и повышения производительности труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсальные наметки, наметки-рамки, специальные кондукторы и другие.
Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой поверхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.
Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рамки, после чего окончательно закрепляют винты.
Рис. 4. Опиливание поверхностей:
а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей;г - опиливание с помощью универсальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).
Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснется верхней плоскости рамки. Поскольку эта плоскость рамки обработана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи линейки.
При обработке плоскостей, расположенных под углом 90°, сначала опиливают плоскость, принимаемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают плоским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, прижимая к ней, перемещают до соприкосновения с проверяемой поверхностью. Отсутствие просвета указывает, что перпендикулярность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.
Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильниками, внутренние - ромбическими, трехгранными и другими. Контроль обработки ведется угломерами или специальными шаблонами.
При обработке криволинейных поверхностей, кроме обычных приемов опиливания, применяются и специальные.
Выпуклые криволинейные поверхности можно обрабатывать, используя прием раскачивания напильника (рис. 4, б ). При перемещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напильника противоположные.
Вогнутые криволинейные поверхности в зависимости от радиуса их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно периодически перезажимают с тем, чтобы обрабатываемый участок располагался под напильником.
Распиливанием называется обработка отверстий (пройм) различной формы и размеров при помощи напильников. По применяемому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.
Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатываются плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, ножовочными и другими напильниками. Проймы криволинейной формы обрабатывают круглыми и полукруглыми напильниками.
Распиливание обычно выполняют в тисках. В крупных деталях проймы распиливают на месте установки этих деталей.
Подготовка к распиливанию начинается с разметки проймы. Затем удаляется излишний металл из ее внутренней полости.
При больших размерах проймы и наибольшей толщине заготовки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полотно, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.
Припасовкой называется взаимная пригонка двух деталей, сопрягающихся без зазора. Припасовывают как замкнутые, так и полузамкнутые контуры. Припасовка характеризуется большой точностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.
Припасовка применяется как окончательная операция при обработке деталей шарнирных соединений и чаще всего при изготовлении различных шаблонов. Выполняется припасовка напильниками с мелкой или очень мелкой насечкой.
Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.
Возможные виды брака при опиливании металла и их причины:
Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, неправильности измерения или неточности измерительного инструмента;
Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;
Вмятины и другие повреждения поверхности заготовки в результате неправильного ее зажима в тисках.
Дефекты конструкции ВС. К дефектам конструкции ВС можно отнести всеразлиные сколы, микро трещины, коррозионные поражения и т.д. Дефекты обнаруживаются с помощью методов неразрушающего контроля.
Обрабоотка резанием. Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки . Осуществляется путём снятия стружкирежущим инструментом (резцом, фрезой и пр.)
Обработка склеиванием.
Клеевые композиции при ремонте применяются для восстановления деталей с трещинами и пробоинами (блоки цилиндров, картеры агрегатов, корпусы узлов, емкости, фильтры и др.) для склеивания поврежденных деталей взамен клепки при ремонте тормозных для выравнивания поверхности кабин и оперения перед покраской как защитные покрытия длявосстановления размеров и геометрической формы изношенных деталей, устранения задиров и царапин в трущихся поверхностях для изготовления ремонтных деталей из штампованных заготовок и неметаллических материалов для обеспечения прочности и герметичности неподвижных сопряжений.
Технологические процессы восстановления деталей клеевыми композициямиотличаются простотой выполнения операций и не требуют сложного оборудования. Применение клеев допускает соединение однородных и неоднородных материалов, что осуществить другими способами весьма сложно. При склеивании детали не подвергаются тепловым и силовым нагрузкам, поэтому этим способом можно восстанавливать детали сложной формы и любых размеров.
Обработка сваркой. Сварка в ремонтном производстве находит очень широкое применение. Многие дефекты и повреждения устраняются сваркой, в том числе различные трещины, отколы, пробоины, срыв или износ резьбы и т. п. Сваркой называется процесс соединения металлических частей в одно неразъемное целое при помощи нагрева металла в местах соединения. При ремонте автомобильных деталей нагрев металла осуществляют газовым пламенем или электрической дугой. Так как детали изготавливаются из различных металлов (сталь, серый и ковкий чугун, цветные металлы и сплавы), то применяют соответствующий способ сварки. При горячей сварке деталь медленно нагревают до температуры 600-650°С в специальных печах или горнах. Чем больше содержание углерода в чугуне, тем медленнее должна быть скорость нагрева. Предварительный нагрев осуществляют при сварке и заварке трещин в ответственных деталях и деталях сложной конфигурации. После подогрева деталь помещают в термоизоляционный кожух со специальными задвижками или закрывают листовым асбестом, оставляя открытым только место сварки.
Обработка пайкой. Пайкой называется процесс получения неразъемного соединения или герметичного соединения при помощи присадочных материалов - припоев.При пайке основной металл детали не плавится. Надежность соединения обеспечивается за счет диффузии припоя в металл и зависит от правильного подбора флюса и припоя, тщательности очистки поверхности и наличия минимального зазора в стыке соединенных деталей. В зависимости от температуры плавления припои делятся на мягкие и твердые: мягкие припоиимеют температуру плавления до 300 °С, а твердые – 800 °С и выше.
Бортовой аварийный регистратор - это устройство, используемое в авиации для записи основных параметров полёта, показателей систем самолёта, переговоров экипажа и т. д. для выяснения причин лётных происшествий. Бортовой самописец собирает такие данные как:
o параметры техники: давление топлива, давление в гидросистемах, обороты двигателей, температура и т. д.;
o действия экипажа: степень отклонения органов управления, уборка и выпуск взлётно-посадочной механизации, нажатия на кнопки;
o навигационные данные: скорость и высота полёта, курс, прохождение приводных маяков и прочее.
Запись информации производится либо на магнитные носители (металлическая проволока или магнитная лента), либо - в современных регистраторах - на твердотельные накопители (флэш-память). Затем эту информацию можно считать и расшифровать в виде последовательных записей с указанием их времени.
Контрольно-измерительная и проверочная аппаратура. К инструментам и приборам для точных измерений относятся штангенциркули одно– или двухсторонние, эталонные и угловые плитки, микрометры для наружных измерений, нутромеры микрометрические, глубиномеры микрометрические, индикаторы, профилометры, проекторы, измерительные микроскопы, измерительные машины, а также разного вида пневматические и электрические приборы и вспомогательные устройства.
Измерительные индикаторы предназначены для сравнительных измерений путем определения отклонений от заданного размера. В сочетании с соответствующими приспособлениями индикаторы могут применяться для непосредственных измерений.
Измерительные индикаторы, являющиеся механическими стрелочными приборами, широко применяются для измерения диаметров, длин, для проверки геометрической формы, соосности, овальности, прямолинейности, плоскостности и т. д. Кроме того, индикаторы часто используются как составная часть приборов и приспособлений для автоматического контроля и сортировки. Цена деления шкалы индикатора обычно 0,01 мм, в ряде случаев – 0,002 мм. Разновидностью измерительных индикаторов являются миниметры и микрокаторы.
Измерительные приспособления предназначены для измерения изделий больших размеров.
Измерительные проекторы – это приборы, относящиеся к группе оптических, основанные на использовании метода бесконтактных измерений, т. е. измерений размеров не самого предмета, а его изображения, воспроизведенного на экране в многократном увеличении.
Измерительные микроскопы, как и проекторы, относятся к группе оптических приборов, в которых используется бесконтактный метод измерений. Они отличаются от проекторов тем, что наблюдение и измерение выполняются не на изображении предмета, спроектированном на экране, а на увеличенном изображении предмета, наблюдаемом в окуляре микроскопа. Измерительный микроскоп служит для измерения длин, углов и профилей разнообразных изделий (резьб, зубьев, шестерен и т. д.).
Обслуживание топливных фильтров. Основными работами технического обслуживания системы питания топливом являются: промывка фильтров грубой очистки; смена фильтрующих элементов тонкой очистки; проверка работоспособности топливоподкачивающего насоса; проверка и регулировка топливного насоса высокого давления на начало, величину и равномерность подачи топлива в цилиндры двигателя; установка угла опережения впрыска топлива; проверка и регулировка форсунок. Причем проверка топливоподкачивающего насоса и загрязненности топливных фильтрующих элементов должна быть систематической и проводиться инструментальными методами (например, приспособлением КИ-13943 ГосНИТИ).
Уход за топливными фильтрами заключается в промывке фильтра грубой очистки и смене фильтрующих элементов в фильтрах тонкой очистки.
Для промывки фильтра грубой очистки необходимо слить из него топливо и произвести его разборку. Сетка фильтрующего элемента и внутренняя полость стакана промываются бензином или дизельным топливом и продуваются сжатым воздухом.
Перед заменой старых фильтрующих элементов на новые топливо из фильтров тонкой очистки сливается и его стаканы промываются бензином или дизельным топливом и продуваются сжатым воздухом.
После сборки фильтров грубой и тонкой очистки необходимо убедиться в отсутствии подсоса воздуха через фильтры при работающем двигателе. Подсос воздуха и подтекание топлива устраняются подтягиванием болтов крепления стаканов к корпусам.
Фильтр тонкой очистки промывают на ультразвуковой установке в водном растворе или креолине. Качество промывки фильтров на ультразвуковой установке проверяется с помощью прибора ПКФ (рис.1.)
Рисунок 1.
Рис.1. Контроль качества промывки фильтров прибором ПКФ:
1 - сигнальная кнопка; 2- ручка; 3, 8, 10 - уплотнительные кольца; 4 - корпус; 5 - поплавок; 6- переходник; 7 - фланец; 9 - проверяемый фильтр; 11 - заглушка; 12 - секундомер). Для этого на прибор устанавливают переходник, соответствующий проверяемому фильтру, и фильтр с одной заглушкой устанавливают на переходник. В емкость заливают масло АМГ-10, подогретое до температуры 18-23 °С так, чтобы уровень масла был на 50...60 мм выше верхнего края проверяемого фильтра. Фильтр опускают на короткое время в масло АМГ-10, после чего дают возможность стечь маслу. Подготовляют секундомер, заглушают отверстие на рукоятке прибора, и прибор с фильтром опускают в емкость с маслом АМГ-10. Открывают отверстие на рукоятке прибора и включают секундомер. В момент совпадения сигнальной кнопки с уровнем верхнего торца рукоятки прибора секундомер выключают и определяют время заполнения фильтра маслом, которое должно быть не более 5 с. Если это время окажется более 5 с, то фильтр промывают повторно на ультразвуковой установке или его заменяют.
Проверка на герметичность. Проверка производится следующим образом: вначале необходимо включить компрессор и наблюдать за повышением давления в кабине по ртутному манометру. Скорость нарастания давления должна быть не более 0,3-0,4 мм рт. ст. При достижении в кабине избыточного напора 0,1 кгс/см2 необходимо произвести внешний осмотр фюзеляжа и выявить места утечки воздуха, поддерживая это давление. Затем медленно (не более 0,3- 0,4 мм рт. ст.) довести избыточный набор,в кабине до 0,3 кгс/см2, после чего выключить подачу воздуха от компрессора; замерить время падения.избыточного давления с 0,3 до 0,1 кгс/см2. Фюзеляж считается герметичным, если время падения избыточного напора с 0,3 до 0,1 кгс/см2 не менее 10 мин. При проверке герметичности (при повышении и снижении давления) следует осмотреть места возможной утечки. В случае если время падения давления менее 10 мин, необходимо обязательно проверить контуры люков, входной двери, остекление кабин, места стыковки обшивки герметического отсека (по всему фюзеляжу) и отсек носового колеса. Дополнительными местами утечки могут быть гермовыводы электрожгутов, труб, ШДГ и антенн. Устранение выявленных дефектов следует производить после стравливания.избыточного давления до нуля. Места с явными утечкам, и воздуха подлежат обязательной заделке, даже если время падения давления укладывается,в норму.
Турбовинтово́й дви́гатель - тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина - высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.
Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит компрессор, другая (через понижающий редуктор) - винт. Такая конструкция имеет ряд премуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).
В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Вместе с тем, турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели.
ПМД-70
Назначение.
Порошковый дефектоскоп ПМД-70 представляет собой универсальное многофункциональное устройство, осуществляющее магнитопорошковый и магнитолюминисцентный методы неразрущающего контроля металлических изделий и сварных соединений. Прибор предназначен для выявления различных дефектов как на поверхности детали, так и в верхнем слое ферромагнитного материала.
ПМД-70 применяется для проведения дефектоскопических исследований на производствах, изготавливающих, обслуживающих и эксплуатирующих металлические конструкции и изделия, соединенные между собой сварочными операциями. Дефектоскоп эффективен и в полевых условиях, при работе на открытом воздухе и при испытаниях в лабораториях.
Принцип действия.
Порошковый дефектоскоп имеет несколько разновидностей, отличающихся видом намагничивающих устройств: электромагниты, кабели, контактные группы, и их питанием: от сети переменного или постоянного тока. С помощью этих устройств и импульсного блока прибор наводит электромагнитное поле в контролируемом объекте, которое намагничивают отдельные участки изделия продольным или циркулярным полем. Далее на изделие наносится магнитная суспензия или порошок, который является своего родом индикатором намагниченности. По измеренной величине магнитной индукции определяется наличие и глубина повреждения. С помощью нанесения данного индикатора составляется визуальная картина дефекта. Размагничивание материала изделия происходит при помощи триггеров, работающих в динамическом режиме, и осуществляющих реверсивное течение тока через намагничивающие устройства.
Вывод
В результате прохождения слесарно-механической практики я:
Ознакомился с техникой безопасности, охраной труда при работе с инструментами, оборудование и приспособлениями для выполнения слесарно-механических работ;
Приобрел навыки практической работы в качестве исполнителя ведения слесарно-механической работы;
Закрепил теоретические знания,полученные при изучении специальных дисциплин;
Ознакомился со слесарно-механическими оборудованиями, инструментами и научился пользововаться ими;
Ознакомился с приборами и методами обнаружения дефектов.
Хотелось бы подробно рассмотреть, изучить детали ВС и поучаствовать в техническом обслуживании. Надеюсь заполнить эти пробелы в следующей производственной практике.
Цеулёв Н.Е.
Министерство образования и науки Республики Казахстан
АО «Академия Гражданской Авиации»
Авиационный факультет
Кафедра №10 «Авиационная техника и летная эксплаутация»
©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16
Правила и приемы опиливания
Для определенной работы выбирают тип напильника, его длину и номер насечки.
Тип напильника определяется формой обрабатываемой поверхности, длина – ее размерами. Напильник берут длиной на 150 мм больше размера обрабатываемой поверхности.
Для опиливания тонких пластин, пригоночных и доводочных работ берут короткие напильники с мелкой насечкой.
Когда требуется снять большой припуск, работают напильником длиной 300 – 400 мм с крупной насечкой. Номер насечки выбирают в зависимости от вида обработки и размера припуска.
Для черновой обработки применяют напильники с насечкой N0 и N1. Они снимают припуск до 1 мм.
Чистовую обработку делают напильником N2.
На обработку личными напильниками оставляют припуск до 0,3 мм.
Для окончательного опиливания и доводки поверхности берут напильники NN 3, 4, 5. Они снимают слой металла до 0,01 – 0,02 мм.
Заготовки из стали повышенной твердости лучше всего опиливать напильником с насечкой N 2.
Цветные металлы обрабатывают специальными напильниками, а в отсутствие напильниками общего назначения N 1. Личные и бархатные напильники для опиливания цветных металлов непригодны.
Перед опиливанием необходимо подготовить поверхность, очистив ее от масла, формовочной смеси, окалины, литейной корки и т.д. Затем деталь зажимают в тисках опиливаемой плоскостью горизонтально примерно на 10 мм выше губок тисков.
Заготовку с обработанными поверхностями закрепляют, надев на губки тисков нагубники из мягкого материала – меди, латуни, алюминия.
При опиливании тонкой детали, ее закрепляют на деревянном бруске деревянными пластинками, которые обеспечивают неподвижность детали.
При опиливании нужно следить за правильной координацией движений рук и усилия, передаваемого на напильник. Движение напильника должно быть горизонтальным, поэтому нажимы на ручку и носок напильника должны изменяться в зависимости от положения точки опоры напильника на обрабатываемую поверхность.
При движении напильника нажим левой рукой постепенно уменьшается. Регулируя нажимы на напильник, добиваются получения ровной опиливаемой поверхности без завалов по краям.
В случае ослабления нажима правой руки и усиления левой может произойти завал поверхности вперед.
При усилении нажима правой руки и ослабления левой получится завал назад. Прижимать напильник к обрабатываемой поверхности необходимо при рабочем ходе, т.е., когда напильник движется от себя.
При обратном ходе напильник идет свободно без нажима, однако его не нужно отрывать от детали, чтобы не потерять опоры и не изменить положения напильника.
Чем мельче насечка, тем меньше должна быть сила нажатия.
Важное значение имеет положение работающего в момент опиливания по отношению к обрабатываемой детали.
Он должен располагаться сбоку от тисков на расстоянии около 200 мм от верстака так, чтобы корпус был прямым и повернутым под углом 45 градусов к продольной оси тисков.
При движении напильника от себя основная нагрузка приходится на слегка вынесенную вперед левую ногу, а при обратном – холостом ходе – на правую. При слабом нажиме на напильник при доводке или отделке поверхности, стопы ног располагаются почти рядом. Такие работы, как точные, чаще выполняют сидя.
Важное значение имеет и положение рук (хватка напильника). Необходимо взять в правую руку напильник за ручку так, чтобы она упиралась в ладонь руки, при этом четыре пальца захватывают ручку снизу, а большой палец помещают сверху.
Ладонь левой руки накладывают несколько поперек напильника на расстоянии 20 – 30 мм от его носка.
Пальцы должны быть слегка согнуты, но не свисать; они не поддерживают, а только прижимают напильник. Локоть левой руки должен быть немного приподнят. Правая рука от локтя до кисти должна составлять с напильником прямую линию.
При обработке мелких деталей напильником, а также при работе надфилем большим пальцем левой руки нажимают на конец надфиля, остальными пальцами поддерживают его снизу.
Указательный палец правой руки кладут на надфиль или напильник. При таком положении рук давление получается минимальным, стружка снимается очень тонкая, и поверхность доводится до нужного размера без опасности зайти за разметочную линию.
Опиливание поверхности является сложным трудоемким процессом. Чаще всего дефектом при опиливании поверхности является неплоскостность.
Работая напильником в одном направлении, трудно получить правильную и чистую поверхность.
Поэтому движение напильника, положение его штрихов, следов на обрабатываемой поверхности должны меняться, т.е. попеременно с угла на угол.
Сначала опиливание выполняют слева направо под углом 30 – 40 градусов к оси тисков, затем, не прерывая работы, прямым штрихом и заканчивают опиливание косым штрихом под тем же углом, но справа налево. Такое изменение направление направления движения напильника дает возможность получать необходимую плоскостность и шероховатость поверхности.
Процесс опиливания нужно постоянно контролировать.
Деталь нужно проверять довольно часто, особенно в конце опиливания.
Для контроля пользуются поверочными линейками, штангельциркулями, угольниками, поверочными плитами.
Поверочную линейку выбирают в зависимости от длины проверяемой поверхности, т.е. поверочная линейка по длине должна перекрывать проверяемую поверхность.
Проверку качества опиливания поверхности поверочной линейкой производят на просвет. Для этого деталь достают из тисков и поднимают на уровень глаз. Поверочную линейку берут правой рукой за середину и прикладывают ребро поверочной линейки перпендикулярно проверяемой поверхности.
Для того чтобы проверить поверхность во всех направлениях сначала линейку ставят по длинной стороне в двух-трех местах, затем по короткой – также в двух-трех местах и, наконец, по одной и другой диагоналям. Если просвет между линейкой и проверяемой поверхностью узкий и равномерный, значит плоскость обработана удовлетворительно.
При контроле линейку не передвигают по поверхности, а каждый раз отнимают от проверяемой поверхности и переставляют в нужное положение.
Если поверхность должна быть опилена особенно тщательно, проверку точности производят с помощью поверочной плиты на краску. В этом случае на рабочую поверхность поверочной плиты тампоном наносится тонкий равномерный слой краски (синька, сурик или сажа, разведенные в масле).
Затем поверочную плиту накладывают на поверяемую поверхность, делают несколько круговых движений, затем плиту снимают.
На недостаточно точно обработанных (выступающих) местах остается краска. Эти места опиливают дополнительно до тех пор, пока не будет получена поверхность с равномерным слоем краски по всей поверхности.
Штагенциркулем можно проверить параллельность двух поверхностей путем замера толщины детали в нескольких местах.
При опиливании плоскостей под углом 90 градусов, их взаимно перпендикулярность проверяют слесарным угольником.
Контроль наружных углов детали осуществляют внутренним углом напильника, смотря на просвет.
Правильность внутренних углов в изделии проверяют наружным углом.
Опиливание вогнутых поверхностей. Сначала на заготовке размечают необходимый контур детали.
Большую часть металла в данном случае можно удалить вырезанием ножовкой, придав впадине в заготовке форму треугольника, или высверливанием. Затем напильником опиливают грани и спиливают выступы полукруглым или круглым драчевым напильником до нанесенной риски.
Профиль сечения полукруглого или круглого напильника выбирают таким образом, чтобы его радиус был меньше, чем радиус опиливаемой поверхности.
Не доходя примерно 0,5 мм от риски, драчевый напильник заменяют личным. Правильность формы распиливания проверяют по шаблону "на просвет", а перпендикулярность опиленной поверхности торцу заготовки – угольником.
Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих СауловичКАК ИСПОЛЬЗОВАТЬ ПРИЕМЫ Набор приемов подобно набору инструментов образует систему, ценность которой выше арифметической суммы ценностей, составляющих набор инструментов. Но и сами по себе отдельные приемы дают в некоторых случаях отличные результаты. Интересно в этом
Из книги Интерфейс: новые направления в проектировании компьютерных систем автора Раскин ДжеффПРИЕМЫ ОБРАЗУЮТ СИСТЕМУ Представьте себе, что мир состоял бы только из химических элементов и их изотопов. В нем были бы возможны всего несколько сотен простых веществ. Реальный мир неизмеримо богаче, и достигнуто это богатство благодаря тому, что химические элементы
Из книги Правила функционирования розничных рынков электрической энергии в переходный период реформирования электроэнергетики в вопросах и ответах. Пособие для автора Рябов Сергей Из книги Работы по дереву и стеклу автора Коршевер Наталья ГавриловнаРаздел 4. Правила деятельности гарантирующих поставщиков на розничных рынках и правила заключения публичных договоров с гарантирующими поставщиками и их исполнения Вопрос 1. Каковы основные обязательства гарантирующего поставщика?Ответ. Гарантирующий поставщик
Из книги Основы композиции [Учебник для уч. 5-8 кл.] автора Сокольникова Наталья МихайловнаIV. Правила деятельности гарантирующих поставщиков на розничных рынках и правила заключения публичных договоров с гарантирующими поставщиками и их исполнения 61. Гарантирующий поставщик обязан заключить договор энергоснабжения (договор купли-продажи (поставки)
Из книги Учебник по ТРИЗ автора Гасанов А ИОсновные приемы работы При составлении рисунка можно использовать либо геометрические фигуры, либо произвольные элементы. Среди геометрических фигур большой популярностью пользуются треугольники, квадраты, прямоугольники, из которых можно составить разнообразные
Из книги Воздушный бой (зарождение и развитие) автора Бабич В. К.§2 Правила, приемы и средства композиции У композиции есть свои законы, складывающиеся в процессе художественной практики и развития теории. Этот вопрос очень сложный и обширный, поэтому здесь пойдет речь о правилах, приемах и средствах, которые помогают построить
Из книги Электронные самоделки автора Кашкаров А. П.8. Приемы устранения технических противоречий Кудрявцев А. В. В ТРИЗ детально рассмотрены и практически отработаны правила и подходы, позволяющие формулировать ТП и ФП. Но как повысить вероятность нахождения решений, позволяющих устранять противоречия? Это можно
Из книги Коси, коса… автора Родионов Н. Н.8.8. Как выбирать приемы для решения Несомненно, простейшим способом применения приемов является их перебор или использование по аналогии. Такое использование приемов достаточно распространено. Многие специалисты, изучавшие ранее ТРИЗ, имеют «любимые» приемы. Как
Из книги Шлюпка. Устройство и управление автора Иванов Л. Н.7. Тактические приемы Наиболее распространенным был прием «удар и уход» (рис. 13). Типичным условием завязки воздушного боя после получения информации с земли являлось сближение на встречных курсах. «Миги» занимали исходное положение с превышением относительно
Из книги Основы дизайна. Художественная обработка металла [Учебное пособие] автора Ермаков Михаил Прокопьевич4.8.2. Эффективные приемы при борьбе с помехами В борьбе с шумами, идущими по линии питания, лучше всего комбинировать линейные РЧ-фильтры и подавители переходных процессов в линии переменного тока. Этим способом можно добиться ослабления помех на 60 дБ при частотах до
Из книги Художественная обработка металла. Ковка автора Мельников ИльяПриемы кошения Крестьяне учились косить с малых лет, только с годами постигая премудрость кошения. Иной думает, что косит, а на самом деле он «рубит» или «рвет» траву, оставляя после себя клочья и плешины.Косить надо учиться у опытных косцов. Смотреть, как они держат косу,
Из книги автораГлава 5. Правила плавания и пользования корабельными шлюпками 5.1. Правила допуска к самостоятельному управлению шлюпкой К самостоятельному управлению гребно-парусной шлюпкой допускаются офицеры, мичманы, старшины курсанты и матросы, прошедшие специальную подготовку,
Из книги автора1.2. Художественные и технические приемы дизайна Прежде чем приступить к практике дизайна, необходимо обозначить ее основные этапы.Широко известна лаконичная формула дизайна: «красота + польза», с учетом которой разрабатываются наиболее совершенные вещи. Иногда
Из книги автора4.7. Специальные приемы Изложенная выше в общих чертах технология художественной чеканки в каждом конкретном случае включает в себя большое разнообразие приемов. Например, при точных работах, требующих большой четкости и верности форм, сканфаренный рисунок обводят и
Из книги автораОсновные приемы ручной свободной ковки В процессе ковки художественных изделий применяют разнообразные приемы, используя различные инструменты, исходя из характера материала и задач, стоящих перед мастером.В основном все приемы можно свести к следующим основным
Опиливанием называется снятие слоя с поверхности заготовки посредством напильника.
Напильники представляют собой режущий инструмент в виде стальных закаленных брусков с насечкой на поверхности. Материал У13, У13А, а также хромистая шарикоподшипниковая сталь ШХ15.
Имеют различную форму плоскую, квадратную, трехгранную, полукруглую, круглую, ромбические, ножовочные. С различным числом насечек, приходящихся на 1 пог.см рабочей части (драчевые, личные и бархатные).
Три типа: обыкновенные, надфили и рашпили, алмазные напильники и надфили.
Напильники бывают:
с одинарной насечкой могут снимать широкую стружку, их применяют при опиливании мягких металлов, а также неметаллов.
с двойной или перекрестной насечкой, для стали чугуна и др. твердых материалов. В этих напильниках сначала насекается нижняя, глубокая насечка, называемая основной, а по верх неё верхняя, неглубокая, называемая вспомогательной, которая разрубает основную насечку на зубья.
перекрестная насечка размельчает стружку, что облегчает работу.
Дуговая насечка имеет большие впадины между зубьями и дугообразную форму, обеспечивающую высокую производительность и хорошее качество.
Рашпильная насечка – зубья в шахматном порядке. Для мягких металлов и неметаллов.
Выбор напильников:
Для грубого опиливания до 0,5 мм применяют драчевые напильники, позволяющие за один ход снять слой металла 0,08- 0,15 мм.
Личные – для более чистой отделки на 0,15 мм. Снимают 0,05-0,08 мм за один ход. Достигается 7-8 кл чистоты.
С бархатной насечкой – самая точная отделка, шлифование с точностью до 0,01-0,05 мм. Снимают 0,01-0,03 мм. Шероховатость 9-12 кл чистоты.
Шаберы – стальные полосы или стержни с рабочими гранями. Бывают плоские, трехгранные, фасонные с рукоятками, с остро заточенными рабочими поверхностями.
Требования. Острый, ровный хвостовик, ручка с кольцом, без трещин, при ударе по наковальне издает чистый звук.
Ручка сначала просверливается, потом прожигается хвостовиком старого напильника и забивается ударами головкой ручки о верстак.
При опиливании мягких и вязких металлов натирают мелом, алюминия – стеарином. Предохранять их от влаги и масла, поэтому не протирать рукой. Периодически очищать от стружки стальными щетками.
Брак . Неровность поверхности и завалы краев, лишнего сняли или не досняли.
Безопасность . Можно поранить руку хвостовиком, при неисправной рукоятке, или повредить пальцы левой руки при обратном ходе. Нельзя очищать напильник от стружки голыми руками, сдувать их или удалять сжатым воздухом, можно повредить руки и глаза. Работать лучше с головным убором т.к. стружку из волос трудно удалить.
Сверление.
Сверлением называется процесс образование отверстий в режущем материале режущим инструментом – сверлом.
Рассверливание – увеличение диаметра имеющегося отверстия.
Чистота обработки – 1-3класса шероховатости.
Применяется для получения неответственных отверстий, невысокой степени точности и невысокого класса шероховатости, например под крепежные болты, заклепки, шпильки, под резьбу, развертывания, и зенкерование.
Спиральное сверло – двузубый режущий инструмент, состоящий из 2-х основных частей: рабочей и хвостовика. Рабочая часть сверла состоит из цилиндрической (направляющей) и режущей частей. На цилиндрической части имеются две винтовые канавки, расположенные одна против другой. Их назначение – отводить стружку.
Для уменьшения трения сверло имеет обратный конус 0,1 мм на каждые 100 мм длины.
Зуб – это выступающая часть сверла, имеющие режущие кромки.
Угол между режущими кромками оказывает существенное влияние. При его увеличении повышается прочность сверла, но возрастает усилие подачи. С уменьшением угла резка облегчается, но ослабляется режущая часть. Величина угла выбирается в зависимости от твердости материала.
Сталь и чугун……………………………………….116-118 о
Закаленная сталь, медь красная……………………125
Латунь и бронза, алюминий………………….…….130-140
Силумин……………………………………………...90-100
эбонит………………………………………………...85-90
мрамор………………………………………………..80
пластмассы………………………………………..…50-60
Хвостовики
у сверла до 10 мм цилиндрический (обычно) и крепится в патроне. У хвостовика имеется поводок для дополнительной передачи крутящего момента.
Сверла большего диаметра имеют конический хвостовик. На конце – лапка, не позволяющая сверлу провертываться в шпинделе и служащая упором при выбивании сверла из гнезда. Размеры 0,1,2,3,4,5,6 с разными размерами конуса
Изготавливаются – У10, У12А, хромистой 9Х, хромокремнистой 9ХС, быстрорежущей Р9, Р18, металлокерамические сплавы марок ВК6, ВК8 и Т15К6, с корпусами из стали марок Р9,9ХС и 40Х.
Сверла с пластинками из твердых сплавов применятся для чугуна, закаленной стали, пластмасс, стекла, мрамора.
Бывают сверла с отверстиями для подвода охлаждающей жидкости к режущим кромкам сверла.
При сверлении затупившееся сверло очень быстро нагревается, настолько, что произойдет отпуск стали, и сверло станет негодным. Поэтому сверла охлаждают.
Сталь………………………………….мыльная эмульсия или смесь минерального и жирного мала.
Чугун………………………………….мыльная эмульсия или в сухую
Медь…………………………………..мыльная эмульсия или сурепное масло
Алюминий…………………………….мыльная эмульсия или в сухую
Дюралюминий………………………..мыльная эмульсия, керосин с касторовым или сурепным маслом
Силумин………………………………мыльная эмульсия или смесь спирта со скипидаром.
Износ сверла обнаруживается по резко скрипящему звуку.
Заточку ведут с охлаждением водно-содовым раствором. Затачивают сверло следующим образом: слегка прижимая режущую кромку к поверхности абразивного круга так, чтобы режущая часть приняла горизонтальное положение, прилегая задней поверхностью к кругу. Плавным движением правой руки, не отнимая сверла от круга, поворачивают сверло вокруг своей оси, соблюдая правильный наклон, затачивают заднюю поверхность, при этом следят за тем, чтобы режущие кромки были прямолинейны, имели одинаковую длину и были заточены под одинаковыми углами.
Сверла с режущими кромками разной длины или с разными углами их наклона будут сверлить отверстия больше своего диаметра.
Сверлят ручными, электрическими, пневматическими дрелями и Эл. станками.
Меры безопасности к ручным дрелям :
Работать в резиновых перчатках на резиновом коврике.
Проверить провод;
Щетки должны быть хорошо прошлифованы, при нормальной работе не искрят.
Меры безопасности к сверлильным станкам:
Работать в спецодежде с головным убором, хлястики и рукава застегнуть (свисающие части одежды и волосы могут захватиться шпинделем или сверлом)
Не работать на станке в рукавицах.
Проверить исправность заземления
Проверить наличие заграждения
Проверить в холостую вращение, осевое перемещение шпинделя и работу механизма подачи, закрепление стола
Прочно закреплять детали и не удерживать их руками в процессе обработки;
Конические сверла крепят непосредственно в коническом отверстии шпинделя или через переходные конические втулки. Удаляются при помощи клина через прорезь.
Цилиндрические в патронах
Не оставлять ключа в сверлильном патроне после смены сверла;
Не браться за вращающее сверло и шпиндель;
Не вынимать сломанное сверло рукой;
Не нажимать сильно на рычаг подачи при сверлении заготовок на проход, особенно сверлами малого диаметра.
Подкладывать деревянную подкладку на стол под шпиндель при смене сверла;
Не передавать предметы через работающий станок;
Не опираться на станок во время его работы.
Не удалять стружку из отверстий пальцами и не сдувать её. Это надо делать кручком или щеткой и только после остановки станка
Обязательно останавливать станок при смене сверла, уборке или ухода.
Опиливание металла
Цель работы: Ознакомиться с основными способами опиливания мета. Основными инструментами применяемыми для опиливания. Приобрести практические навыки по опиливанию металлов.
Оборудование, инструменты, приспособления. Тиски слесарные, напильники различных видов, контрольно-измерительные инструменты для проверки качества опиливания, наметки-рамки и копиры.
Теоретическая часть
Опиливанием называется способ резания, при котором осуществляется снятие слоя материала с поверхности заготовки с помощью напильника.
Напильник - это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).
Опиливанием придают детали требуемую форму и размеры, производят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.
Припуски на опиливание оставляют небольшие - от 0,5 до 0,025 мм. Достигаемая точность обработки может быть от 0,2 до 0,05 мм, и в отдельных случаях - до 0,005 мм.
Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка (нарезка).
Рис. 76. Напильники:
а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;
6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;
г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.
Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.
Насечка может быть одинарной (простой), двойной (перекрестной), рашпильной (точечной) или дуговой (рис. 1, б - д ).
Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.
Напильники с двойной насечкой применяют при опиливании стали, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.
Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.
Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.
Изготовляются напильники из стали У13 или У13 А. После насечки зубьев напильники подвергают термической обработке,
Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.
По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машинные напильники.
Для общеслесарных работ применяют напильники общего назначения. По числу насечек на 1 см длины их подразделяют на 6 номеров.
Напильники с насечкой №0 и 1 (драчевые) имеют наиболее крупные зубья и служат для грубого (чернового) опиливания с точностью 0,5-0,2 мм.
Напильники с насечкой №2 и 3 (личные) служат для чистового опиливания деталей с точностью 0,15-0,02 мм.
Напильники с насечкой №4 и 5 (бархатные) применяются для окончательной точной отделки изделий. Достигаемая точность обработки - 0,01-0,005 мм.
По длине напильники могут изготовляться от 100 до 400 мм.
По форме поперечного сечения они подразделяются на плоские, квадратные, трехгранные, круглые, полукруглые, ромбические и ножовочные (рис. 2).
Для обработки мелких деталей служат малогабаритные напильники-надфили. Они изготовляются пяти номеров с числом насечек на 1 см длины до 112.
Обработку закаленной стали и твердых сплавов производят специальными надфилями, у которых на стальном стержне закреплены зерна искусственного алмаза.
Рис. 2. Формы сечений напильников:
а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;
ж - ромбический; з - ножовочные.
Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизированных (электрических и пневматических) напильников.
В условиях учебных мастерских возможно применение механизированных ручных опиловочных машинок, которые широко используются на производстве.
Универсальная шлифовальная машина (см. рис. 4, г ), работающая от асинхронного электродвигателя 1, имеет шпиндель, к которому крепится гибкий вал 2 с державкой 3 для закрепления рабочего инструмента, и сменные прямые и угловые головки, позволяющие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.
Опиливание металла
При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность должна выступать над уровнем губок тисков на 8-10 мм. Чтобы предохранить заготовку от вмятин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опиливании металла аналогична рабочей позе при разрезании металла ножовкой.
Правой рукой берут за ручку напильника так, чтобы она упиралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).
Ладонь левой руки накладывают несколько поперек напильника на расстоянии 20-30 мм от его носка (рис. 3, б).
Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.
Рис. 3. Хватка напильника и балансировка им в процессе опиливания:
а - хватка правой рукой; б - хватка левой рукой; в - силы нажима в начале движения;
г - силы нажима в конце движения.
В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вначале нажима правой рукой на ручку с одновременным уменьшением более сильного вначале нажима левой рукой на носок напильника (рис. 3, в, г).
Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.
Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.
Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдерживать размеры детали и взаимное расположение ее поверхностей.
Если степень шероховатости поверхностей на чертеже не указана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опиливание заканчивают личным напильником.
В практике ручной обработки металлов встречаются следующие виды опиливания: опиливание плоскостей сопряженных, параллельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.
Опиливание широких плоских поверхностей является одним из самых сложных видов опиливания. Для получения правильно опиленной прямолинейной поверхности главное внимание должно быть сосредоточено на обеспечении прямолинейности движения напильника. Опиливание ведут перекрестным штрихом (с угла на угол) под углом 35-40° к боковым сторонам тисков. При опиливании по диагонали не следует выходить напильником на углы заготовки, так как при этом уменьшается площадь опоры напильника и снимается большой слой металла. Образуется так называемый «завал» края обрабатываемой поверхности.
Проверку правильности плоскости производят линейкой «на просвет», для чего накладывают ее вдоль, поперек и по диагонали обработанной поверхности. Поверочная линейка по длине должна перекрывать проверяемую поверхность.
В случае опиливания параллельных плоских поверхностей проверку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.
При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании положение напильника неустойчивое и легко «завалить» края поверхности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Продольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.
Для создания лучших условий и повышения производительности труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсальные наметки, наметки-рамки, специальные кондукторы и другие.
Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой поверхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.
Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рамки, после чего окончательно закрепляют винты.
Рис. 4. Опиливание поверхностей:
а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей; г - опиливание с помощью универсальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).
Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснется верхней плоскости рамки. Поскольку эта плоскость рамки обработана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи линейки.
При обработке плоскостей, расположенных под углом 90°, сначала опиливают плоскость, принимаемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают плоским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, прижимая к ней, перемещают до соприкосновения с проверяемой поверхностью. Отсутствие просвета указывает, что перпендикулярность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.
Внутренние углы обрабатывают следующим образом. Размечают заготовку, используя в качестве баз наружные поверхности. Они же будут базами и при контроле. Затем ножовкой вырезают лишний металл, оставляя припуск на опиливание около 0,5 мм. Если стороны внутреннего угла должны сходиться без закругления, в нем просверливается отверстие диаметром 2-3 мм или делается неглубокий пропил под углом 45° (обработать внутренний угол без закругления внутри практически невозможно). Опиливая стороны угла, в первую очередь добиваются их плоскостности, а затем перпендикулярности. Опиливание поверхностей по внутреннему углу ведут так, чтобы ко второй поверхности было обращено ребро напильника, на котором нет насечки. Контроль правильности внутреннего угла производится также угольником.
Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильниками, внутренние - ромбическими, трехгранными и другими. Контроль обработки ведется угломерами или специальными шаблонами.
При обработке криволинейных поверхностей, кроме обычных приемов опиливания, применяются и специальные.
Выпуклые криволинейные поверхности можно обрабатывать, используя прием раскачивания напильника (рис. 4, б ). При перемещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напильника противоположные.
Вогнутые криволинейные поверхности в зависимости от радиуса их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно периодически перезажимают с тем, чтобы обрабатываемый участок располагался под напильником.
При изготовлении партии деталей целесообразно изготовить специальный копир, подобный наметке-рамке, лицевая часть которого имеет форму криволинейной поверхности. В этом случае копир с закрепленной в нем заготовкой зажимают в тисках и ведут опиливание до касания напильником закаленной поверхности копира.
Распиливанием называется обработка отверстий (пройм) различной формы и размеров при помощи напильников. По применяемому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.
Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатываются плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, ножовочными и другими напильниками. Проймы криволинейной формы обрабатывают круглыми и полукруглыми напильниками.
Распиливание обычно выполняют в тисках. В крупных деталях проймы распиливают на месте установки этих деталей.
Подготовка к распиливанию начинается с разметки проймы. Затем удаляется излишний металл из ее внутренней полости.
При больших размерах проймы и наибольшей толщине заготовки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полотно, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.
Пройму средних размеров обсверливают по контуру сверлом диаметром
3-5 мм вблизи разметочных линий, затем крейцмейселем или зубилом прорубают оставшиеся перемычки.
Для подготовки к распиливанию небольших пройм часто бывает достаточно просверлить одно отверстие диаметром на-0,3-0,5 мм меньше диаметра окружности, вписанной в пройму.
Непосредственно распиливание производится, как уже отмечалось, приемами, аналогичными опиливанию.
Контроль осуществляется штангенциркулем и специальными шаблонами.
Припасовкой называется взаимная пригонка двух деталей, сопрягающихся без зазора. Припасовывают как замкнутые, так и полузамкнутые контуры. Припасовка характеризуется большой точностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.
Припасовка применяется как окончательная операция при обработке деталей шарнирных соединений и чаще всего при изготовлении различных шаблонов. Выполняется припасовка напильниками с мелкой или очень мелкой насечкой.
Сначала обрабатывают заготовки для вкладыша и проймы. Размечают их, распиливают пройму и опиливают вкладыш, оставляя припуск (0,1-0,4 мм) на припасовку.
Первой обычно подготовляют к припасовке и припасовывают ту из сопряженных деталей, которую легче обработать и проконтролировать, с тем чтобы затем использовать ее для контроля при изготовлении сопряженной детали.
Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.
Возможные виды брака при опиливании металла и их причины:
Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, неправильности измерения или неточности измерительного инструмента;
Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;
Вмятины и другие повреждения поверхности заготовки в результате неправильного ее зажима в тисках.
При опиливании металла ручными и механизированными инструментами следует соблюдать правила техники безопасности . Пользоваться только исправным инструментом. Ручки напильников должны быть прочно насажены. Запрещается работать напильниками без ручек или с треснутыми, расколотыми ручками. Образовавшуюся в процессе опиливания стружку следует сметать специальной щеткой. Запрещается сдувать ее или смахивать голыми руками, чтобы избежать ранения рук или засорения глаз. При работе электроинструментами соблюдать правила электробезопасности. Следить за исправностью токопроводящих частей инструмента.
Общие правила обращения и ухода за напильниками:
Применять напильники только по их назначению;
Нельзя обрабатывать напильником материалы, твердость которых равна или превышает его твердость;
Предохранять напильники даже от незначительных ударов, которые могут повредить зубья;
Оберегать от попадания на напильники влаги, что вызывает их коррозию;
Периодически очищать напильники от стружки кордовой щеткой;
Хранить напильники на деревянных подставках в положении, исключающем соприкосновение их между собой.
Задание
По заданию преподавателя опилить заготовки с узкими и широкими поверхностями с самостоятельным подбором необходимых напильников и контрольно-измерительного инструмента. Опилить криволинейные поверхности на предложенных заготовках, предварительно подобрать напильники необходимого профиля и инструменты для контроля работы.
Вопросы:
1. Какой способ обработки металла называется опиливанием?
2. В каких случаях применяют опиливание металла?
3. Какие бывают виды насечек для образования зубьев напильников?
4. Из какого материала изготовляют напильники?
5. На какие группы делят напильники по их назначению?
6. Что такое надфили и для чего они служат?
7. Каковы общие правила обращения и ухода за напильниками?
8. Какова техника выполнения приемов опиливания?
9. Какие механизированные инструменты применяются при опиливании металла?
10. Какие возможны виды брака при опиливании и в чем их причины?
11. Какие правила техники безопасности надо соблюдать при опиливании металлов?