Как рассчитать шестерню из фанеры. Квадратные шестеренки
Изготовление цилиндрических шестеренок на станке с ЧПУ не представляет особой сложности. Достаточно задать контур обрабатываемой детали и фреза его повторит. Много более сложную проблему представляет расчет и проектирование самих шестеренок, особенно если они имеют не стандартную конфигурацию. Примером таковых могут служить шестерни, геометрия которых отлична от окружности. Известны варианты с формой, в плане приближающейся к треугольнику, квадрату и некоторым другим фигурам.
Желание изготовить такие необычные шестеренки пришло после просмотра интернета. На одном из зарубежных сайтов был найден чертеж квадратного варианта. После небольшой доработки, заключающейся в изменении масштаба, подготовленный управляющий файл был загружен в контроллер станка. В качестве материала использована 6 мм березовая фанера, инструмент — фреза, диаметром 1 мм. После изготовления и сборки получилась весьма необычная конструкция. До последнего не верилось, что шестеренки будут крутиться. Тем не менее, они вертятся!
Готовые квадратные шестеренки
Получившаяся конструкция неплохо подходит в качестве сувенира. Технари от нее просто балдеют. Некоторые даже используют в качестве успокаивающего элемента. Оказалось, что просто крутить их в руках достаточно для успокоения психики.
Векторный файл с шестеренками лежит в разделе . Для обеспечения вращения шестеренки имеют различную форму, поэтому необходимо изготавливать их обе.
В интернет-магазине можно купить детские развивающие бизиборды и детали для них с доставкой по России напрямую от производителя по самым выгодным ценам.
Детали для бизибордов
Бизиборд состоит из различных мелких частей, деталей и расходных материалов: , часы, шнуровки - все это помогает детям эффективно развивать в раннем возрасте мелкую моторику в игровой форме, улучшать изобретательность, мышление, ловкость рук, внимательность и сообразительность.
С нашими деталями для бизибордов вы всегда можете самостоятельно собрать своему ребенку уникальный бизиборд по очень доступной цене, а не переплачивать за уже готовый бизиборд.
В производстве деталей для бизибордов мы используем высококачественное сырье. Все наши деревянные заготовки изготовлены из фанеры без формальдигидных смол со всеми необходимыми сертификатами.
Пожалуйста, зарегистрируйтесь на МААМ. Копировать можно только зарегистрированным пользователям МААМ. Адрес публикации: https://www.maam.ru/detskijsad/-chudo-doska-bizibord.html
Чтобы правильно сделать бизиборд современного типа, нужно, во-первых, знать, что его элементы компонуются в группы (блоки) след. назначения: Моторную - для развития начальных моторных навыков. Моторно-прикладную - для закрепления первоначальных моторных навыков путем обращения с мелкими подвижными вещами повседневного пользования. Бизиборд Марии Монтессори содержал только этот блок. Ассоциативную - для ускорения развития отвлеченного мышления на основе закрепленных моторных навыков. Цветовую, т.к. полноценное развитие цветового зрения способствует лучшим успехам по всем пред. пунктам.
Постарался изложить максимально простым языком.
Недавно друг, который занимался продажей шоколадных фонтанов в Питере обратился с необычным предложением. Ему вернули фонтан, где не крутился винт, поднимающий шоколад. Я люблю подобные задачи, когда мало кто может (или хочет браться) за починку единичных вещей и нужно поломать немного голову как изготовить редкие запчасти своими руками.
После разборки стало ясно, что дело в редукторе. Одна шестерня буквально расплавилась на валу (качество компонентов было просто на высоте. Скорей всего шестерня проскальзывала долгое время, потом нагрелась. Фонтан выключили, шестерня снова прилипла к валу со смещенным центром. Потом его снова включили и несколько зубъев, не выдержав нагрузки, отломилось). Точно такую же шестерёнку не найти, поэтому из оказавшегося под боком оборудования решил изготовить новую.
Вариантов создания шестерёнок очень много, я расскажу лишь про один из них. На мой взгляд он самый простой и эффективный.
Шаг 1. Разработка чертежа шестерни
Вам понадобится:
- любой векторный редактор
- штангенциркуль
- генератор шестеренок (я использовал этот онлайн сервис)
Итак, считаем количество зубцов поломавшейся шестерни. Вводим все параметры, проводим замеры.
Качаем файл чертёж. Внутреннюю звёздочку я чертил сам в кореле, т.к. нужного параметра не нашел.
Рассчитывая внутренний диаметр шестерёнки нужно соблюсти тонкий баланс между прокручиванием и растрескиванием от сильного натяга.
Шаг 2. Изготовление шестерни
Материал новой шестерни — прозрачное оргстекло. Просто ищете в поисковике лазерную резку в вашем городе и отправляетесь туда. Лучше нарезать несколько с разными параметрами сразу. Думаю, одна порезка как у меня не должна выйти более $ 6.
Шаг 3. Запуск и тест фонтана
Вообще соседние шестерни принято делать из материалов немного разной плотности. Так они дольше прослужат. Скорей всего производитель просто пренебрег этим.
Смазываем, запускаем, радуемся!
Удачи в вашем труде!
Про моделирование и печать шестеренок здесь написано достаточно. Однако, большинство статей предполагают использование спец. программ. Но, у каждого пользователя есть своя «любимая» программа для моделирования. Кроме того, не все хотят устанавливать и изучать дополнительный софт. Как же моделировать профиль зуба шестерни в программе, где не предусмотрено вычерчивание эвольвентного профиля? Очень просто! Но муторно…
Нам понадобится любая программа, которая может работать с 2D графикой. Например, ваша любимая программа! Она работает с 3D? Значит и с 2D сможет! Строим профиль эвольвентного зуба без коррекции. Если кому-то захочется построить корригированный зуб, он может с этим разобраться самостоятельно. Информации полно - и в интернете, и в литературе. Если в вашей шестеренке зубьев больше 17-ти, то вам коррекция не понадобится. Если же зубьев 17 или меньше, то без коррекции возникает «утоньшение» ножки зуба, а при чрезмерной коррекции возникает заострение вершины зуба. Что выбрать? Решать вам. Определяем делительную окружность шестерни. Зачем это нужно? Чтобы определить межосевое расстояние. Т.е. где у вас будет располагаться одна шестерня, а где другая. Сложив диаметры делительных окружностей шестеренок и разделив сумму пополам, вы определите межосевое расстояние.
Чтобы определить диаметр делительной окружности нужно знать два параметра: модуль зуба и количество зубьев. Ну, с количеством зубьев – тут всем все понятно. Количеством зубьев на одной и другой шестерне определяется нужное нам передаточное отношение. Что такое модуль? Чтобы не связываться с числом «пи», инженеры придумали модуль. Как вы знаете из курса школьной математики: D= 2 «Пи» R. Так вот, что касается шестеренок, там D = m* z, где D – это диаметр делительной окружности, m – модуль, z – количество зубьев. Модуль – величина, характеризующая размер зуба. Высота зуба равна 2,25 m. Модуль принято выбирать из стандартного ряда величин: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32 (ГОСТ-9563). Можно ли придумать «свой» модуль? Конечно! Но ваша шестеренка будет нестандартная! Чертим делительную окружность. У кого нет подходящей «проги», чертит на бумаге, фанере или металле! От делительной окружности «откладываем» наружу на величину модуля (m) окружность вершин зубьев. Внутрь откладываем модуль и еще четверть модуля (1,25 m) - получаем окружность впадин зубьев. Четверть модуля дается на зазор между зубом другой шестерни и впадиной этой шестерни.
Строим основную окружность. Основная окружность – это окружность, по которой «перекатывается» прямая линия, своим концом вычерчивая эвольвенту. Формула для расчета диаметра основной окружности очень простая: Db = D * cos a, где а – угол рейки 20 градусов. Эта формула нам не нужна! Все гораздо проще. Строим прямую линию через любую точку делительной окружности. Удобнее взять самую высокую точку, на «12 часов». Тогда линия будет горизонтальная. Повернем эту линию на угол в 20 градусов против часовой стрелки. Можно ли повернуть на другой угол? Думаю, можно, но не нужно. Кому интересно, ищем в литературе или интернете ответ на вопрос.
Прямую линию, которую мы получили, будем поворачивать вокруг центра шестерни маленькими угловыми шагами. Но, самое главное, при каждом повороте против часовой стрелки будем удлинять нашу линию на длину той дуги основной окружности, которую она прошла. А при повороте по часовой стрелки наша линия будет укорачиваться на ту же величину. Длину дуги или мерим в программе, или считаем по формуле: Длина дуги = (Пи * Db * угол поворота (в градусах)) / 360
«Прокатываем» прямую линию по основной окружности с нужным угловым шагом. Получаем точки эвольвентного профиля. Чем точнее хотим строить эвольвенту, тем меньший угловой шаг выбираем.
К сожалению, в большинстве программ автоматического проектирования (CAD) не предусмотрено построение эвольвенты. Поэтому эвольвенту строим по точкам либо прямыми, либо дугами, либо сплайнами. При построении эвольвента заканчивается на основной окружности. Оставшуюся часть зуба до впадины можно построить дугой того же радиуса, который получается на трех последних точках. Для 3D печати я рисовал эвольвенту сплайнами. Для лазерной резки металла мне пришлось рисовать эвольвенту дугами. Для лазера нужно создать файл в формате dwg или dxf (для некоторых, почему-то, только dxf). «Понимает» лазер только прямые, дуги и окружности, сплайны не понимает. На лазере можно сделать только прямозубые шестерни.
Делим окружность на такое количество частей, которое в 4 раза больше количества зубьев шестерни. Эвольвенту отзеркаливаем относительно оси зуба и копируем с поворотом нужное количество раз.
Чтобы получить шестерню в объеме, то задаем толщину и получаем прямозубую цилиндрическую шестерню:
Если нужна косозубая шестерня, то вводим наклон зубьев и получаем: