Очистка ионообменной смолы. Подбор замены ионообменных смол различных производителей

Главная / Строительство

Ионообменные смолы (иониты) - это твердые зернистые материалы, практически нерастворимые в воде и обычных растворителях, содержащие активные (ионогенные) группы кислотного или основного характера с подвижными ионами.

Ионообменные смолы в основном применяют:

    для умягчения и обессоливания воды в теплоэнергетике и других отраслях;

    для разделения и выделения цветных и редких металлов в гидрометаллургии;

    при очистке возвратных и сточных вод;

    для регенерации отходов гальванотехники и металлообработки;

    для разделения и очистки различных веществ в химической промышленности;

    в качестве катализатора для органического синтеза.

Ионообменные смолы используются в котельных, теплоэлектростанциях, атомных станциях, пищевой промышленности (при производстве сахара, алкогольных, слабоалкогольных и других напитков, пива, бутилированной воды), фармацевтической промышленности и других отраслях, а также для хозяйственно-питьевого водоснабжения (в системах водоочистки загородных домов, коттеджей, дач для удаления солей жесткости, или умягчения воды).

Смола для фильтра может задерживать ионы различных примесей (начиная от металлов и заканчивая солями жесткости), меняя их на безопасные и безвредные ионы других веществ.

Обмен ионами позволяет изменять ионный состав обрабатываемой жидкости, не изменяя суммарного числа зарядов, находившихся в этой жидкости до процесса обмена.

Существует ряд параметров, по которым различают ионообменные смолы (ИОС), а именно:

1. По заряду иона

I. Катиониты - иониты с положительно заряженными ионами (Na+, Н+ и др.).

По степени ионизации (способность к ионному обмену) катиониты делят на сильно- и слабокислотные.

Сильнокислотные катиониты в качестве функциональной (ионогенной) группы содержат сульфогруппы SO3H или фосфорнокислые РО(ОН) 2 группы, слабокислотные - карбоксильныеCOOH и фенольные C6H5OH группы.

Cильнокислотные катиониты способны обмениваться ионами (диссоциировать) при любом значении рН (0-14). Слабокислотные катиониты диссоциируют при pH>7.

II. Аниониты - иониты с отрицательно заряженными ионами (ОН-, Сl- и др.).

Аниониты делят на сильноосновные и слабоосновные.

Сильноосновные аниониты в качестве функциональной группы содержат четвертичные аммониевые основания R3NOH, слабоосновные - первичные NH2 и вторичные NH аминогруппы.

Сильноосновные аниониты диссоциируют при любом значении рН (0-14), слабоосновные - при pH<7.

2. По структуре матрицы

I. Гелевая структура

ИОС с гелевой структурой лишены истинных пор и способны обмениваться ионами только в набухшем (гелеобразном) состоянии. Для достижения данного состояния смолу помещают на некоторое время в воду. Размер пор в таком типе смол составляет 1 нм.

II. Пористая (макропористая) структура

Данная структура называется так потому, что на поверхности ионита (ионообменной смолы) находится большое количество пор, которые способствуют ионообменному процессу. Размер пор в смоле с макропористой структурой составляет 100 нм.

III. Промежуточная структура

Среднее по свойствам между гелевой и пористой структурами.

Отличительной особенностью ионообменных смол с различной структурой является то, что иониты с гелевой структурой обладают большей обменной емкостью, чем смолы с макропористой структурой. В свою очередь ионообменные смолы с пористой структурой превосходят гелевые по осмотической стабильности, химической и термической стойкости, т.е. они могут задерживать большее количество примесей практически при любой температуре воды.

3. По типу матрицы

Промышленные ионообменные материалы (ионообменные смолы), которые применяют для очистки воды, относятся к типу полимерных синтетических смол, отличающихся размерами и структурой их молекул.

Приблизительно 90% товарных синтетических ионообменных смол получено на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола.

Таким образом, различают ионообменные смолы с полистирольной или с полиакриловой матрицей.

Получение полистирольной матрицы ионитов. Мономер стирол при нагреве полимеризуется в твердый полистирол. Этот продукт растворим в органических растворителях, а после введения в него гидрофильной функциональной группы, растворим в воде. Чтобы предотвратить такого рода растворимость и для усиления межмолекулярных связей в стирол вводят второй мономер для поперечной сшивки (структурирования). Наиболее часто используется мономер дивинилбензол (ДВБ). При увеличении доли дивинилбензола в смеси мономеров пропорционально нарастает количество сшивок, что приводит к меньшей подвижности полимерных цепочек за счет усиления межмолекулярных связей. В результате полимер приобретает большую устойчивость к воздействию окислителей, т.е. к деструктуризации, и вместе с тем снижается его способность к активизации, т.е. к процессу прививки функциональных групп, а в процессе работы уменьшается способность к сорбции-десорбции ионов. Поэтому при производстве ионообменных смол используется оптимальное количество дивинилбензола - 7-12% по весу. Сферическая форма частиц, характерная для большинства ионообменных смол - результат проведения процесса в условиях суспензионной полимеризации. Этот метод основан на том, что стирол практически нерастворим в воде, а смесь мономеров (стирол, дивинилбензол и инициатор) при перемешивании распадаются на мелкие мономерные капельки и образуют взвесь в воде - так называемую суспензию. В воду добавляют суспендирующие агенты, которые способствуют образованию капелек мономерной фазы и одновременно стабилизируют эти капельки в процессе полимеризации. В результате, после окончания реакции полимеризации весь полимер представляет собой твердые сферические частицы. Размер этих частиц зависит от геометрии реактора, природы стабилизатора и скорости перемешивания. После проведения реакции твердые полимерные шарики отмывают от суспендирующих агентов и сушат. Необработанный продукт из полимеризатора содержит некоторое количество нежелательных крупных и очень мелких частиц. Поэтому после сушки необработанные полимерные частицы проходят стадию разделения на необходимые фракции по размерам и после активации получаются зерна ионообменных смол необходимых размеров.

Получение акриловой матрицы ионитов. Несмотря на различие в химизме процессов, основные принципы производства смол с акриловой матрицей идентичны производству полистирольных смол. Полиакриловая матрица ионообменных смол может быть по-лучена полимеризацией акрилата, метакрилата или акрилнитрила. Образование межмолекулярных связей (структурирование) производится также с помощью дивинилбензола.

4. По размеру частиц

Форма и размер частиц ионита должны обеспечить эффективный контакт с обрабатываемой водой при отсутствии избыточного перепада давления.

Различают полидисперсные (рис.1) гранулы (размер частиц колеблется в диапазоне 0,3-1,2 мм) и м онодисперсные (рис.2) гранулы (размер частиц, как правило, составляет 0,5-0,6 мм ± 0,05 мм).

Кроме параметров, показывающих многообразие форм ИОС, существуют числовые показатели, которые играют не менее важную роль в характеристике ионообменных смол, такие как:

Массовая доля влаги. Подвижный и фиксированный ионы в твердой фазе смолы всегда окружены молекулами воды. Вода обеспечивает движение ионов внутри смолы: чем больше воды находится между полимерными цепочками, тем больше подвижность ионов и, следовательно, выше скорость реакции ионного обмена. С другой стороны, объем, занятый водой, уменьшает объем, занятый активными центрами и ионообменными группами в полимерной матрице. Таким образом, оптимальное содержание влаги является компромиссом между этими взаимоисключающими факторами, что учитывается и варьируется в определенных пределах при производстве смол. Значение массовой доли влаги для большинства смол, используемых в процессах водоподготовки, составляет 40-60%.

Ионообменная емкость. В общих словах, под емкостью ионообменной смолы понимается количество ионов, которое может быть поглощено определенным объемом смолы.Различают полную и рабочую обменные емкости. Полная ионообменная емкость - это то количество ионов (катионы, анионы), которое может задержать ионит (смола), находящийся в рабочем состоянии, до того момента, когда жесткость фильтрата (в случае умягчения) сравнивается с жесткостью исходной воды. Полная статическая обменная емкость может быть определена как массовая в г-экв/кг сухого ионита или объемная в г-экв/м3 влажного уплотненного ионита. Данная величина является стандартной, ее определяют в лабораториях и указывают в характеристике готового продукта.

Рабочая ионообменная емкость - это то количество ионов, которое задерживает ионит до момента «проскока» в фильтрат ионов солей жесткости. Данная величина не является стандартной, и ее невозможно определить в лабораторных условиях, т.к. рабочая ионообменная емкость зависит от многих «рабочих» факторов: размеров слоя смолы, уровня загрязненности очищаемой воды, скорости потока, температуры фильтрования и т.д. Значения этих факторов приводятся в технических бюллетенях производителей ионообменных смол и в проектной документации. По исчерпании рабочей обменной способности ионита ее подвергают регенерации (восстановлению) путем пропуска поваренной соли NaCl для катионитов, либо каустической содой NaOH для анионитов.

Оптимальные условия, обеспечивающие максимальную величину рабочей обменной емкости ионообменной смолы, в каждом конкретном случае определяют при проведении наладочных работ.

Механическая прочность (истираемость) и осмотическая стабильность.

В процессе ионного обмена зерна ионита подвергаются разнообразным физико-механическим воздействиям: физического давления и трения при фильтровании, взрыхляющей промывке, гидро- и пневмовыгрузке, а также осмотического давления при ионном обмене, регенерации и отмывке. Механическая прочность показывает способность ионита противостоять данным механическим воздействиям.

Осмотическая стабильность. Наибольшее разрушение частиц ионитов происходит при изменении характеристик среды, в которой они находятся. Поскольку все иониты представляют собой структурированные гели, их объем зависит от солесодержания, рН среды и ионной формы ионита. При изменении этих характеристик объем зерна изменяется. Вследствие осмотического эффекта объем зерна в концентрированных растворах меньше, чем в разбавленных. Однако это изменение происходит не одновременно, а по мере выравнивания концентраций «нового» раствора по объему зерна. Поэтому внешний слой сжимается или расширяется быстрее, чем ядро частицы; возникают большие внутренние напряжения, и происходит откалывание верхнего слоя или раскалывание всего зерна. Это явление называется «осмотический шок» . Каждый ионит способен выдерживать определенное число циклов таких изменений характеристик среды. Это называется его осмотической прочностью или стабильностью . Наибольшее изменение объема происходит у слабокислотных катионитов. Наличие в структуре зерен ионита макропор увеличивает его рабочую поверхность, ускоряет перенабухание и дает возможность «дышать» отдельным слоям.

Поэтому наиболее осмотически стабильны сильнокислотные катиониты макропористой структуры, а наименее - слабокислотные катиониты.

Химическая стойкость. Химическая устойчивость ионообменных смол определяется степенью межмолекулярных связей матрицы, достаточной для обеспечения их нерастворимости. Присутствие в обрабатываемой воде окислителей (хлора, азотной кислоты и др.) и ионов металлов железа и алюминия, а также рН воды могут спровоцировать разрушение межмолекулярных связей ионита, а, следовательно, и возникновение растворимой фазы, что приводит к загрязнению фильтрата (воды) продуктами разложения ионита и уменьшению способности ионита обмениваться ионами. Постоянное наличие в воде вышеперечисленных факторов ограничивает срок службы ионообменной смолы, который при нормальных условиях может достигать 10 и более лет без ухудшения их химических свойств.

Термическая устойчивость ионитов обуславливает их противодействие процессам деструкции (разрушение матрицы ионита) и деградации (отщепление функциональных групп от каркаса ионита).

Для каждого типа ионообменной смолы установлен температурный предел их длительного использования. Катиониты наиболее термически устойчивы, чем аниониты. Так рабочая температура для катионитов достигает 150 0С, для анионитов - не выше 60 0С, максимум 80 0С, особенно низкая термическая стойкость у акриловых анионообменных смол - не более 35 0С.

Первым признаком температурной деградации смолы служит увеличение длительности отмывки, а затем и уменьшение рабочей обменной емкости, связанной с потерей функциональных групп.

Таким образом, можно выделить основные характеристики, которые необходимо учитывать при выборе той или иной ионообменной смолы:

    Ионная форма поставки

    Функциональная группа

    Тип матрицы

    Тип структуры

    Ионообменная емкость

    Размер частиц

Теоретические знания характеристик используемых ионообменных смол очень важны при их эксплуатации.

В настоящее время на рынке ИОС представлено большое число производителей ионитов. Основными марками являются такие смолы, как Lewatit (Германия), Purolite (Англия), Dowex (США), Tulsion (Индия), Granion (Китай), а также некоторые смолы российского и украинского производства.

Специалисты ООО «ГК Химические Системы» окажут Вам профессиональную консультацию и помогут сделать правильный выбор!

Фильтры для воды стали обязательным очищающим элементом в квартирах и загородных домах, а также на предприятиях.

Они, как и любая другая техника, нуждаются в обслуживании, в частности, особенного внимания заслуживает процедура регенерации картриджей с ионообменной смолой.

И если в одноступенчатых устройствах, а также фильтрах-насадках и кувшинах использованный картридж просто меняют на новый, с трехступенчатыми все сложнее.

Они состоят из картриджа механической очистки, доочистки угля и картриджа с ионообменной смолой. В связи с большим ресурсом работы устройства их нужно обслуживать или менять единожды в год.

Фильтр будет функционировать нормально, при одном условии — если будет проводиться регулярная регенерация, то есть восстановление свойств ионообменной смолы.

Технология регенерации смолы — как восстанавливается ионообменная смола в фильтре

Ионообменная смола представляет собой мелкие шарики янтаря, которые преобразовывают ионы магния и кальция в ионы натрия. Таким образом, вода становится менее жесткой, на бытовой технике не образуется накипь.

Зная показатели жесткости воды, можно прогнозировать примерный ресурс картриджа со смолой. Для этого показатель емкости делят на показатели жесткости воды, выраженные в мг-экв/литр.

Поглощение ионов магния и кальция – это обратимый процесс. При избыточном содержании ионов натрия будет обратная ситуация, то есть пойдет отдача ионов магния и кальция и поглощение ионов натрия.

Чтобы этого избежать, прибегают к так называемой регенерации, то есть восстановлению функций ионообменной смолы, чтобы она могла послужить вашему фильтру еще некоторое время.


Запустить процесс регенерации поможет обычная поваренная соль, так как эффективность регенерации фильтров солью давно доказана на практике.

Процесс регенерации может проводиться многократно, но смола все же постепенно начинает терять свои свойства за счет обогащения воды примесями, и рано или поздно ионообменную смолу придется менять.

В целом порядок проведения регенерации выглядит следующим образом:

  • перекрыть поступление воды,
  • включить кран, чтобы стравить давление,
  • вынуть картридж механической очистки, вымыть его, а также колбу, поставить на место,

Для регенерации системы без картриджа:

  • вынуть ионообменный картридж и пересыпать содержимое в кастрюлю или другую емкость,
  • залить смолу солевым раствором и оставить на 6-8 часов, периодически перемешивая,
  • промыть смолу несколько раз чистой водой,

Для регенерации системы с картриджем раствор заливают внутрь и выдерживают 8 часов, затем его сливают и повторяют процедуру;

  • после чего смолу нужно промыть кипяченой водой,
  • установить картридж на место,
  • вынуть картридж с углем, выполнить промывку, поставить на место,
  • включить воду и пропустить несколько минут, пока из воды не пропадет солевой привкус.

Вместо соли также могут использоваться питьевая сода и даже лимонная кислота.

Компания «Гейзер» — один из лидеров на отечественном рынке фильтров. Рассмотрим, как выполнить регенерацию в трехступенчатый моделях этого производителя.

  1. Перекрыть поступающую в устройство воду.
  2. Спустить давление, открыв кран.
  3. Выполнить механическую очистку фильтра.
  4. Подготовить 10% раствор поваренной соли. Емкость лучше взять больше, так как начнется процесс вспенивания.
  5. Держать устройство над раковиной и заливать 2 литрами солевого раствора так, чтобы смола не пролилась наружу.
  6. Установить картридж обратно в корпус и залить 0,5 л раствора до верха, оставить на 8-10 часов.
  7. Вынуть устройство и дать стечь раствору, затем еще раз залить 2 литра солевого раствора.
  8. После того, как раствор стечет, установить картридж обратно в корпус.
  9. Собрать фильтр.
  10. Включить воду на несколько минут, чтобы из воды пропал привкус соли.

Регенерация позволяет восстанавливать свойства картриджей B510-04 и KH.

Сменный модуль KH для систем Кристалл

1. Перекрыть воду, выпустить давление.
2. Вынуть KH, нажимая кнопку на крышке устройства.
3. Собрать идущий в комплекте переходник для регенерации или приобрести отдельно.
4. Отрезать дно бутылки из пластика и закрепить на переходнике.
5. Сделать раствор 2-2,5 литра поваренной соли.
6. Устройство с бутылкой и переходником поместить в кастрюлю, трубку переходника вывести в раковину.
7. Пропустить через смолу солевой раствор, а затем 2 литра чистой воды.
8. Установить устройство на место.

Модуль B510-04 для систем Трио

1. Отключить подачу воду и стравить давление.
2. Вынуть картридж.
3. Высыпать содержимое в емкость из пластика или металла.
4. Приготовить литровый раствор соли и залить содержимое картриджа, оставить на 6 часов, иногда помешивая.
5. Слить раствор и выполнить промывку кипяченой водой. Повторить процедуру дважды.
6. Поместить содержимое обратно в картридж и поставить его на место.
7. Не забыть о промывке механического картриджа.
8. Включить фильтр на 10 минут, после чего им можно вновь пользоваться.

Инструкция по регенерации картриджа фильтра Арагон

  1. Перекрыть воду, спустить давление.
  2. Приготовить раствор из 40 г лимонной кислоты и двух столовых ложек соды на один литр воды. Так как происходит вспенивание, посуда для раствора должна быть емкостью 1,5-2 литра. Воду нужно наливать постепенно.
  3. Картридж Арагон поставить в корпус, залить его раствором в количестве 0,6 л. Оставить на 12 часов, затем достать картридж и слить раствор.
  4. Далее потребуется дополнительная обработка оставшимся раствором. Делать это лучше над раковиной. Жидкость льют через горловину и оставляют до полного стекания.
  5. Затем нужно промыть устройство. Для этого используют сначала 3 литра чистой воды, которую заливают через горловину. Затем пленкой фиксируют ее и удаляют донную заглушку. Удерживая картридж вертикально, вливают еще 3 литра воды, после чего пленку удаляют, заглушку ставят на место. Останется поставить картридж на свое место в фильтре и включить устройство на несколько минут для промывки.

ВИДЕО ИНСТРУКЦИЯ

Таким образом, используя эту технологию, можно в домашних условиях без приобретения дорогостоящих средств, а лишь с использованием обычной соли можно неоднократно восстанавливать свойства ионообменных картриджей для вашего фильтра.

" статьёй Способы умягчения воды . Где опишем основные существующие способы и , как можно из жёсткой воды сделать мягкую воду. А также подробнее остановимся на одном из них, наиболее распространённом и надёжном.

Способы умягчения воды можно разделить на три и большие группы:

  1. химические способы.
  2. физические.
  3. экстрасенсорные.

Перед тем, как перейти к описанию способов, давайте для начала определимся с терминами. А именно с термином "умягчение воды ". Ранее, в статье "Жёсткая вода " мы затрагивали вопрос жёсткости воды и причин, которые её вызывают — а также последствий использования жёсткой воды. Соответственно, существует несколько определений термина "умягчение воды ", в зависимости от того, на каком этапе идёт воздействие —

  • на этапе борьбы с причинами жёсткости воды или
  • на этапе борьбы с последствиями использования жёсткой воды.

Понятное дело, этап воздействия на причину жёсткости воды будет бороться и с последствиями жёсткой воды. Но не наоборот. Соответственно, теперь можно перейти к способам умягчения воды. Химические реагентные способы умягчения воды мы затронем в другой статье, а сейчас поговорим про ионный обмен .

Химический способ борьбы с жёсткой водой основан на обмене. Обменом заведует ионо-обменная смола. Ионо-обменная смола — это длинные молекулы, собранные в полупрозрачные желтоватые шарики.

Из этих молекул торчат многочисленные отростки (очень-очень маленькие), к которым присоединяются частицы соли. Простой поваренной соли (ионы натрия).Один ион натрия на один отросток.

В процессе умягчения вода проходит через смолу, пропитывает её насквозь. Соли жёсткости заменяют натрий, связанный со смолой. То есть, происходит обмен — натрий высвобождается и течёт далее, а соли жёсткости остаются связанными со смолой. Причём важно знать, что вымывается из смолы в два раза больше солей, чем оседает, что связано с разницей в зарядах ионов.

Соответственно, рано или поздно (зависит от ёмкости смолы, количества очищенной воды и количества солей жёсткости) все соли натрия в смоле заменяются на соли жёсткости. И после этого смола перестаёт работать — так как больше нечего обменивать.

Для каждой смолы есть свой предел, который она может достигнуть, после чего перестаёт работать. После чего возможны два варианта обращения со смолой, которые зависят от того, в каком виде вы использовали эту смолу. Так, существует два варианта, в каких ионообменная смола работает.

Первый вариант — простой картридж, который располагается в стандартном корпусе, как для или для . Пример картриджа с ионообменной смолой:

Другой вариант — смола, которая насыпается в большой баллон (или не очень большой, зависит от фантазии инженеров). Поскольку баллон чаще всего похож на колонну (пропорциями), то он называется "ионообменная колонна". Она же называется "умягчитель", "ионообменник". Пример ионообменной колонны:

Отличия этих двух вариантов заключаются в количестве ионообменной смолы:

  1. Картридж с ионообменной смолой годится только для того, чтобы пить воду и иногда на ней готовить.
  2. Ионообменная колонна предназначена для очистки воды на всю квартиру, дом, производство.

Второй вариант, помимо большей стоимости при покупке, имеет нюанс: он требует постоянных затрат на покупку соли, которой восстанавливается фильтрующая способность смолы. Здесь мы возвращаемся к тем возможностям, что можно сделать с ионообменной смолой, когда она перестаёт работать. Так, вариант с картриджем таков — выкинуть. Хотя иногда встречаются люди, которые применяют к нему второй вариант, как к ионообменной колонне.

Ионообменная колонна всегда имеет спутника — бак с рассолом.

В этом баке специальная таблетированная соль растворяется и образует рассол.

Периодически (зависит от того, какой тип управления используется и от показателей воды) раствор соли протекает через смолу, вымывает соли жёсткости и меняет их на исходную соль. После промывок смола восстанавливает свои способности к ионному обмену.

Ионообменная смола так же может удалять и железо в небольших количествах. Трёхвалентное железо портит ионообменную смолу, смола необратимо забивается, и её нужно менять. Так что будьте внимательны и вовремя делайте анализ воды .

Какой фильтр лучше покупать? Какой больше нравится. И, естественно, тот, который в наибольшей степени позволяет вам достичь ваших целей (о чём говорилось в статье "Выбор фильтра для воды: сколько тратить? ").

Также следует учитывать особенности, связанные с размером эксплуатационных расходов на использование ионообменного фильтра. Так, для разных установок умягчения воды требуется разное количество соли на одинаковую производительность. И нужно следить, чтобы расходы на соль были минимальными . Так же показатель — количество сброса воды в канализацию при промывках. Чем больше тратится воды, тем дороже выходит обслуживание. Для ориентира — минимальный расход соли, который мне когда-либо встречался, при производительности 1,5 м3/час составлял 1,14 кг соли на регенерацию.

Ионный обмен — способ умягчения воды, который воздействует на причину жёсткости воды, чем делает её мягкой.

Другие способы умягчения воды мы рассмотрим в дальнейшем.

» закончено. Однако, оказалось, что это совершенно не так. Мы упустили очень важный момент — рассчёт умягчения на ионообменной колонне ! В одной из предыдущих статей «Способы умягчения воды. Ионный обмен » мы говорили о наиболее распространённом способе борьбы с жёсткой водой — удалении солей жёсткости с помощью обмена на специальной смоле. Но не говорили о том, как расчитать этот процесс.

Расчёт умягчения на ионообменной колонне состоит из трёх этапов:

  1. Учёт потока воды для подбора собственно корпуса и управляющего клапана.
  2. Учёт характеристик ионообменной смолы для уточнения характеристик корпуса и режимов промывки.
  3. Сопоставление возможностей и количества смолы с реальной жёсткостью воды, которую нужно получить для уточнения всей системы вообще и частоты регенераций в частности.

На самом деле первые два пункта лучше доверить специалистам — это их работа и не стоит отбирать у них хлеб 🙂 Но третий пункт является ключевым и менее требовательным к техническим знаниям (особенно если учесть, что в конце статьи вы сможете скачать и пользоваться калькулятором для расчёта умягчения), и третий пункт можно провести самостоятельно, проверяя правильность подбора умягчителя разнообразными копаниями. Поэтому в статье остановимся на третьем этапе. Заодно третий этап позволяет определить, сколько денег вы будете тратить на умягчение воды с помощью ионного обмена.

Для того, чтобы понимать, что к чему и про какой обмен идёт речь, рекомендуем воспользоваться статьёй Способы умягчения воды. Ионный обмен . Ну а пока что продолжаем тему.

Расчёт умячения на ионообменной колонне с точки зрения возможностей смолы и реальной жёсткости воды состоит в следующем. Каждая ионообменная смола имеет паспортные данные. Одна из ключевых характеристик — общая ионообменная ёмкость смолы , которая выражается в грамм-эквивалентах на литр смолы.

Общая ионообменная ёмкость — грубо говоря, это единица, которая показывает, сколько солей жёсткости может удалить данная смола до того, как полностью потеряет способность обмениваться. То есть, когда пишется, что общая ионообменная ёмкость равняется 2 г-экв, то это означает, что один литр смолы может извлечь из воды соли жёсткости в количестве 2 г-экв, после чего потеряет способность что-либо извлекать, и для восстановления этой способности будет необходимо произвести процедуру регенерации смолы концентратом поваренной соли, или же, по научному, натрия хлоридом в таблетированной форме.

Вернёмся немного назад и поговорим про грамм- (милиграмм-) эквиваленты. Это страшное слово, но нам оно не страшно, поскольку жёсткость воды выражается в милиграмм-эквивалентах на литр (или, что равнозначно, в молях на литр), и ничего никуда пересчитывать не надо.

Нужно помнить, что 2 г-экв — это общая ионообменная ёмкость только одного литра смолы. Соответственно, если в вашем умягчителе у вас 100 литров смолы, то ваша общая ионообменная ёмкость составит 200 г-экв.

Теперь о том, как это всё применяется на практике. Мы имеем значение общей ионообменной ёмкости — 2 г-экв. И мы имеем значение жёсткости воды, например, 10 мг-экв/л. Что получается? Получается, что один литр данной ионообменной смолы может удалить соли жёсткости из 200 литров воды. Как мы это узнали?

Мы разделили значение общей ионообменной ёмкости (2000 мг-экв) на значение общей жёсткости воды (10 мг-экв/л). В результате получили 200 литров жёсткой воды.

Вы можете спросить: «И что же, теперь нужно проводить регенерацию солью через каждые 200 литров очищенной воды?» Это так лишь в том случае, если вы используете 1 литр ионообменной смолы. Потому что 2 г-экв — это значение для одного литра смолы.

Соответственно, если вам предложили ионообменный умягчитель, в котором 100 литров ионообменной смолы, то получается, что КАЖДЫЙ литр этой смолы может умягчить 200 литров воды с жёсткостью 10 мг-экв/л. Сколько это получится воды? Это очень просто посчитать: воспользуемся значением общей ионообменной ёмкости для всего умягчителя (200 г-экв) и разделим её на жёсткость воды (0,01 г-экв/л) и получим 20 000 литров.

То есть, если вы умягчаете воду жёсткостью 10 мг-экв/л на ионообменном умягчителе с обЪёмом смолы 100 литров и ионообменной ёмкостью одного литра смолы 2 г-экв, то смола перестанет работать после 20 м 3 очищенной воды.

Можно предположить, что регенерацию нужно проводить каждые 20 м 3 очищенной воды, но на практике регенерация происходит чаще (обычно вдвое), чем это выходит по расчёту. Всё потому, что жёсткость воды является значением непостоянным, и ресурс ионообменной смолы может закончится быстрее. Естественно, делать запас в 50 % — это уже слишком. Но 10-20 % — это самое оно. Поэтому при описанных условиях регенерация должна происходить каждые 16-18 м 3 очищенной от солей жёсткости воды.

Таким образом, если вам предложили умягчитель, в котором 100 литров ионообменной смолы с общей ёмкостью одного литра 2 г-экв, а регенерацию установили каждые 5 м 3 очищенной воды, то на вас тупо зарабатывают, ведь вам приходится почти в 4 раза чаще покупать таблетированную соль для возобновления работы умягчителя. Возможен другой вариант — при описанных условиях регенерация происходит каждые 30 м 3 воды. Это экономит деньги но делает бессмысленным умягчитель как таковой — поскольку 10 м 3 воды вы получили с исходной жёсткостью.

И наконец — обещанный калькулятор расчёта умягчения на ионообменной колонне.

Его вы можете скачать по ссылке «Калькулятор для рассчёта обЪёма воды между регенерациями «. Пользоваться им очень просто — нужно ввести цифры в зелёные квадратики и посмотреть результат в квадратике жёлтом. Ну а потом сравнить его с тем, что вам насчитали специалисты 🙂

Методики расчёта могут быть разными, и мы НЕ предлагаем обвинять поставщиков в недобросовестности на основании одного лишь рассчёта вручную или с помощью нашего калькулятора. Но несоответствие значений — это сигнал, что нужно к процессу покупки умягчителя в данной компании присмотреться подробнее. Возможно, там есть и другие несоответствия.

Ах, да, чуть не забыли — рассчитав частоту регенераций и зная своё обычное потребление воды, вы можете заранее, перед покупкой умягчителя, узнать, сколько денег вы будете тратить на соль для регенерации. Так, в предложении должна стоять цифра — на одну регенерацию уходит, например, 25 кг соли. Соответственно, если на умягчителе на 100 литров ионообменной смолы вы очищаете 18 м 3 воды с жёсткостью 10 мг-экв/л от регенерации до регенерации, а 18 м 3 воды вы тратите за месяц, то каждый месяц вам будет необходимо высыпать в солевой бак 1 мешок (25 кг) соли. Ну а теперь остаётся узнать цену соли в вашем регионе, и всё — экономический расчёт готов! И вы можете определить, потянете ли вы такие затраты 🙂

Итак, расчёт умягчения на ионообменной колонне — это быстро, просто и полезно!

В этой статье мы рассмотрим почему и как применяются ионообменные смолы для умягчения воды. Купить ионообменные смолы можно на нашем сайте, достаточно пройти по ссылке. Теоретически разработаны и применяются практически следующие методы умягчения:

* термический метод. (кипячение, дистилляция или замораживании-размораживании)

* реагентный. (ионы кальция (II) и магния (II) деактивируются и связываются различными химическими реагентами в труднорастворимый осадок

* ионный обмен. (фильтрация водных растворов через ионообменные материалы, при котором происходит замена ионов Na (I) или Н (I) в ионите (катионит, анионит или сульфоуголь) на ионы водного раствора кальция (Са II) и магния (Mg II)

* комбинация различных методов.

Выбор метода умягчения определяется качеством воды, задаваемой степенью очистки, техническим потенциалом установки и технико-экономическим обоснованием выбора методики водоочистки.

История открытия и разработки метода ионного обмена был рассмотрен в .

Ионообменные смолы номализуют жесткость воды

Сразу нужно определиться какой параметр воды в теории водоподготовки в данном случае нас интересует прежде всего. Очевидно это ЖЕСТКОСТЬ ВОДЫ . Жесткость воды как параметр, а также другие - как цветность и нормальность . Здесь мы будем понимать под жесткостью то количество миллиграмм-эквивалентов ионов кальция Са2+ или магния Mg2+, которое содержится в 1 литре воды.

Как определить жесткая вода или мягкая без абстрактных цифр? Скажем так: единица жесткости - 1 мг/экв/л эквивалентна 20,03 мг кальция Са2+ или 12,15 мг магния Mg2+. Количественное содержание солей жесткости в мг в водном растворе теперь можно измерить и посчитать. По количественному содержанию соответственно по жесткости разделяем:

* очень мягкая вода (0–1,5 мг/экв/л)

* мягкая вода (1,5–3 мг/экв/л)

* вода со средней жесткостью (3–6 мг/экв/л)

* жесткая (6–9 мг/экв/л)

* очень жесткая (более 9 мг/экв/л).

Последняя даже не вода, а скорее рассол. Лучшими органолептическими свойствами обладает с показателями жесткости от 1,65 до 2,90 мг/экв/л, но требования СанПиН 2.1.4.1116–02 регламентируют жесткость как полноценной и физиологической с показателями от 1,6 до 6,9 мг/экв/л. Тут нужно пресечь спекуляции, что чем мягче вода, тем она полезнее для организма. Совсем не так. Если употреблять исключетильно деминерализованную воду, например, полученную с помощью , то можно заработать неустранимые проблемы со здоровьем, это связано с дефицитом магния и кальция.

Однако, при существенной минерализации (жесткость от 4,5 мг/экв/л) вода начинает приносить вред не организму человека, а его окружению, так или иначе связанному с водоснабжением. Накипь в чайнике, утюге, стиральной машине, водонагревательных приборах - вот неполный список устройств, подверженных вредному воздействию солей жесткости в водоснабжении.

Нормальным умягчением, на которое настроено подавляющее количество данных водоподготовительных систем - это нормализация жесткости на уровне 1,0–1,6 мг/экв/л. Ну а что с экстримально мягкой водой, с показателем ниже 0,5 мг/экв/л? Британские ученые доказали, что такая вода является активной и способной вымывать отложения в трубах систем водоснабжения, правда это может повлечь появление неприятного цвета и запаха воды.

Принцип умягчения воды ионообменными смолами

Умягчение воды или ее деминерализация с помощью ионообменных материалов основана на ионном обмене . Принцип состоит в возможности ионообменных засыпок для фильтров (катионитов и анионитов) улавливать из воды ионы в обмен на соответствующее количество ионов катионита или анионита. Ионообменная смола будь то катионит или анионит характеризуется показателем обменной емкости. Это характеризуется определенным количеством или положительных или отрицательных ионов, которые ионит может обменять с водным раствором в фильтроцикле. Обменную емкость ионитов измеряют в грамм-эквивалентах задержанных ионов на 1 метр кубический. Ионит при этом находится в набухшем состоянии после отмокания в воде. В этом состоянии ионит засыпан в фильтре. Стоит различать полную и рабочую обменную емкость ионообменной смолы.

Полная обменная емкость - количество ионов солей жесткости, которое может задержать 1 куб. метр ионообменной смолы, находящегося в набухшем - рабочем состоянии, вплоть до того момента, когда жесткость отфильтрованой (исходящей) воды сравнивается с жесткостью входящей в фильтр воды. Рабочей обменной емкостью ионитов называют то количество ионов жесткости, которое задерживает 1 куб. метр ионообменной смолы до момента «проскока» в фильтрованной воде ионов солей жесткости. Обменную емкость, соотнесенную к полному объему ионита в фильтре обычно называют емкостью поглощения.

В объем фильтра засыпается ионообменная смола. Это или . Отличие этих смол заключается в "знаке" обмениваемых ионов при водоподготовке. Катионит обменивается положительными ионами. Анионит обменивается отрицательными ионами. По временном снижении рабочей обменной способности ионита его подвергают процессу регенерации. Этот можно сравнить с аккумулятором телефона. При снижении заряда он требует подзарядки. Эта подзарядка ионообменной смолы и называется регенерацией. Но это проходит не от электрической розетки, а с помощью растворов солей или кислот, которые возвращают иониты в первоначальное состояние. Восстановление обменной емкости катионита как правило происходит пропуском 8% раствора поваренной соли через фильтрующий слой.

Но емкость аккумулятора не бесконечна. Ионит тоже рассчитан на определенное количество циклов регенерации. После этого ионообменная смола подлежит замене в фильтре и процесс водоподготовки - регенерации начинается снова.

*** Вы всегда можете купить ионообменные смолы для умягчения воды.

© 2020 reabuilding.ru -- Портал о правильном строительстве