Слесарное опиливание - опиливание металла. Опиливание металла Характеристика инструмента для опиливания металла

Главная / Коммуникации

Опиливание - операция, при выполнении кото­рой с поверхности заготовки снимается слой метал­ла (припуск) посредством режущего инструмента - напильника. Цель опиливания - придание деталям требуемой формы, размеров и заданной шероховато­сти поверхности.

В практике слесарной обработки чаще других при­меняются следующие основные виды опиловочных работ: а) опиливание наружных плоских и криволи­нейных поверхностей; б) опиливание наружных и внутренних углов, а также сложных или фасонных поверхностей; в) опиливание углублений и отверстий пазов и выступов. Опиливание выполняется различ­ными напильниками и подразделяется на предвари­тельное (черновое) и окончательное (чистовое и от­делочное).

Обработка напильником дает возможность полу­чить точность деталей до 0,05 мм, а в отдельных слу­чаях даже до 0,01 мм. Припуски при опиливании обычно небольшие - от 0,5 до 0,025 мм.

Итак, вы приобрели массивную доску для покрытия пола, теперь следует ознакомиться с способами ее укладки на пол. Ведь правильно уложенная массивная доска обеспечит вам красивый и надежный пол на долгое …

Какой должна быть ванная комната для ребенка? В первую очередь, безопасной, интересной и оригинальной. На это следует ориентироваться, выбирая не только мебель и аксессуары, но и сантехнику для детского санузла. …

На что обратить внимание при оформлении кухни? Привычная обстановка кухни может надоедать. Тогда появляется желание изменить ее. Для этого приобретаются кухни Киев, но мебели недостаточно. Необходимо правильно оформить окно, подобрать …

Общие приемы и правила опиливания

Подлежащее опиливанию изделие зажимают в тисках так, чтобы обрабатываемая поверхность выступала над губками тисков на высоту от 5 до 10 мм. Зажим производят между нагубниками. Тиски должны быть установлены по росту работающего, и хорошо закреплены. При опиливании надо встать перед тисками вполоборота к ним (слева или справа, смотря по надобности),т.е. повернувшись на 45° к оси тисков. Левую ногу, выдвигают вперед по направлению движения напильника, правую ногу отставляют от левой на 200-300 мм так, чтобы середина ее ступни находилась против пятки левой ноги.
Напильник берут в правую руку за ручку, упирая ее головкой в ладонь; большой палец кладут на ручку вдоль с остальными пальцами поддерживают ручку снизу. Положив напильник на обрабатываемый предмет, накладывают левую руку ладонью поперек напильника на расстоянии 20-30 мм от его конца. При этом пальцы должны быть полусогнуты, а не поджаты, так как иначе их легко поранить об острые края обрабатываемого изделия. Локоть левой руки приподнимают. Правая рука - от локтя до кисти - должна составлять с напильником прямую линию.

Действия рук при опиливании.

Напильник двигают обеими руками вперед (от себя) и назад (на себя) плавно, притом всей его длиной. При движении напильника вперед на него нажимают руками, но не одинаково и не равномерно. По мере его продвижения вперед усиливают нажим правой руки и ослабляют нажим. При движении напильника назад на него не нажимают. Рекомендуется делать от 40 до 60 двойных движений напильника в минуту. При опиливании плоскостей напильник нужно двигать не только вперед, но одновременно и перемещать его в стороны вправо или влево, чтобы спиливать равномерный слой металла со всей плоскости. Качество опиливания зависит от умения регулировать силу нажима на напильник. Если нажимать на напильник с постоянной силой, то в начале рабочего хода он будет отклоняться рукояткой вниз, а в конце рабочего хода - передним концом вниз. При такой работе будут «заваливаться» края обрабатываемой поверхности.

Способы опиливания.

Самое сложное в опиливании, действительно ли он снимает в данный момент тот слой металла и в том именно месте, где это необходимо.
Правильно опилить плоскость можно только в том случае, если выбран напильник с прямолинейной или выпуклой, но невогнутой поверхностью и если опиливание выполняется движением напильника косым штрихом, т. е. попеременно с угла на угол. Для этого сначала ведут опиливание, предположим, слева направо под углом 30-40°к боковым сторонам тисков. После того как в этом направлении пройдена вся плоскость, надо, не прерывая работы (чтобы не сбиться с темпа), перейти к опиливанию прямым штрихом и затем продолжать опиливание снова косым штрихом, но уже справа налево. Угол сохраняется прежним. В результате на плоскости получается сеть перекрестных штрихов.

По расположению штрихов можно проверить правильность обработанной плоскости. Допустим что на плоскости, опиленной слева направо, наложением проверочной линейки обнаружилась в середине выпуклость, а по краям завал. Очевидно, что плоскость опилена неправильно. Если теперь продолжать опиливание движением напильника справа налево так, чтобы штрихи ложились только на выпуклость, то такое опиливание будет правильным. Если же штрихи будут обозначаться как на выпуклости, так я на краях плоскости, то это будет означать, что опиливание снова ведется неправильно.

Отделка обработанной поверхности.

Опиливание поверхности обычно заканчивается ее отделкой, которая производится различными способами. В слесарном деле поверхности отделывают личным и бархатным напильниками, бумажной или полотняной абразивной шкуркой, абразивными брусками. Отделка напильниками производится поперечным, продольным и круговым штрихом.

Чтобы получить в результате отделки гладкую и чистую поверхность, очень важно не допускать на ней глубоких царапин при доотделочном опиливании. Так как царапины получаются от опилок, застрявших в насечке напильника, необходимо во время работы насечку чаще прочищать и натирать мелом или минеральным маслом. Еще более тщательно надо прочищать и натирать мелом или маслом (а при опиливании алюминия - стеарином) насечку отделочных напильников, особенно при работе по вязким металлам.
После отделки напильником поверхность обрабатывают абразивными брусками или абразивной шкуркой (мелкими номерами) всухую или с маслом. В первом случае получают блестящую поверхность металла, во втором - полуматовую. При отделке меди и алюминия шкурку следует натирать стеарином. Обработка плоской поверхности шкуркой требует умения; неправильная работа шкуркой может привести к порче изделия.

Для отделки поверхностей пользуются также деревянными брусками с наклеенной на них абразивной шкуркой. Иногда шкурку навертывают на плоский напильник (в один слой) или же натягивают на напильник полоску шкурки, придерживая ее при работе.
При отделке криволинейной поверхности, а также в тех случаях отделки прямолинейной поверхности, когда возможный небольшой завал краев не будет считаться браком, шкурку навертывают на напильник в несколько слоев.

Измерение и контроль при опиливании.

Чтобы убедиться в правильном опиливании плоскости, необходимо время от времени проверять ее проверочной линейкой на просвет. Если линейка ложится на плоскость плотно, без просвета, это значит, что плоскость опилена чисто и правильно. Если обозначается ровный по всей длине линейки просвет - плоскость опилена правильно, но грубо. Такой просвет образуется оттого, что насечка напильника оставляет на поверхности металла незаметные бороздки и линейка опирается на их заусеницы.
На неправильно опиленной плоскости при наложении линейки обнаружатся неровные просветы, что будет указывать на наличие возвышенностей (горбов).
Проверка на просвет производится по всем направлениям контролируемой плоскости: вдоль и поперек и с угла на угол, т. е. по диагонали. Линейку надо держать тремя пальцами правой руки - большим, указательным и средним. Нельзя передвигать линейку по проверяемой плоскости: она от этого изнашивается и теряет прямолинейность. Чтобы переместить линейку, ее надо приподнять и осторожно наложить на новое место.
При проверке угольником его осторожно и плотно прикладывают длинной стороной к широкой плоскости детали, короткую сторону подводят к проверяемой боковой стороне и смотрят на свет. Если деталь с этой стороны опилена правильно, короткая сторона угольника плотно ляжет поперек боковой стороны детали. В случае неправильного опиливания угольник коснется либо только середины боковой стороны (если эта сторона выпуклая), либо какого-нибудь края (если боковая сторона косая).
Для проверки параллельности двух плоскостей пользуются кронциркулем. Расстояние между параллельными плоскостями в любом месте должно быть одинаковым. Кронциркуль держат правой рукой за шайбу шарнирного соединения. Установка раствора ножек кронциркуля на определенный размер производится легким постукиванием одной из ножек по какому ни будь твердому предмету.
Ножки кронциркуля надо устанавливать на детали так, чтобы их концы находились друг против друга. При косо установленных ножках, смещениях и наклонах при проверке будут получены неверные результаты.
Для проверки устанавливают раствор ножек кронциркуля точно по расстоянию между плоскостями в каком либо одном месте и перемещают кронциркуль по всей поверхности. Если при перемещении кронциркуля между его ножками ощущается качка, это значит, что в данном месте расстояние между плоскостями меньше, если же кронциркуль перемещается туго (без качки), это значит, что расстояние между плоскостями в данном месте больше, чем в другом.
Две плоскости могут считаться параллельными между собой, если ножки перемещаемого кронциркуля скользят по ним с легким трением равномерно.

Опиливание – это слесарная металлообработка , во время которой происходит снятие материала с поверхности детали с помощью напильника.
Напильник – это инструмент, который служит для обработки металлов , состоит из многолезвийных режущих элементов, он обеспечивает высокую точность проделываемых работ, а также не значительную шероховатость обрабатываемой поверхности детали. Сама резка металла , проводится качественно и с малой погрешностью.

С помощью опиливание, детали придается нужный размер и форма, подгоняют деталь друг под друга и проводят множество других работ. Напильниками обрабатывают металлы различной формы: криволинейные поверхности, плоскости, пазы, отверстия различных форм, канавки, различного рода поверхности и т.д. Припуски во время опиливания оставляют небольшого размера - от 0.55 до 0.015 мм. А погрешность после проведенной работы может составляет от 0.1 до 0.05, а в определенных случаях еще меньше – до 0.005 мм., что обеспечивает качественную металлообработку /

Инструмент напильник – это брусок из стали определенной длины и профиля, у которого на поверхности стоит нарезка. Нарезка (насечка) формирует маленькие и острые зубья, которые определяют в сечении форму клина. Угол сечения напильника с сеченым зубом обычно равен 65-70 градусов, задний угол от 35 до 50 градусов, передний угол – 16 градусов.
Инструменты с одинарной нарезкой убирают с металла широкую стружку, по всей насечке. Они применяются при металлообработке мягких металлов.
Напильник с двойной нарезкой используются при опиливании чугуна, стали и других твердых металлов, из-за того, что перекрестная нарезка измельчает стружку, в связи с чем – облегчает работу.

Насечку рашпилем получают с помощью вдавливания металла специальными зубцами состоящими из трехгранника. Обработка металлов рашпилем производится только на мягких металлах и неметаллических материалах.
Также можно получить другую насечку с помощью фрезерования. У нее дугообразная форма и большие выемки между зубьями – это обеспечивает хорошее качество поверхностей и высокую производительность при металлообработке
Напильники производятся из стали У13А и У13, а еще из хромистой стали ШХ 15. Когда заканчивается насечка зубьев напильники термически обрабатываются. Ручки напильников изготавливаются из древесины (клен, береза и другие).

По своему назначению резки металла напильники делятся на следующие группы:

  1. Общего назначения.
  2. Надфили.
  3. Специального назначения.
  4. Машинные напильники.
  5. Рашпили.
Для общих слесарных работы, чаще всего применяются напильники общего назначения.

По количеству насечек на 1 см. напильники разделяют на 6 разных номеров:

  1. Напильники с нарезкой от номер 0 до 1 (драчевые), применяются для более грубого опиливания, так как состоят из крупных зубьев. При обработке металлов погрешность составляет от 0.6- 0.3 мм.
  2. Напильники с нарезкой № 2-3, применяются для чистого опиливания деталей. Погрешность при металлообработке составляет 0.2-0.005 мм.
  3. Напильники с нарезкой номером 4-5, служат окончательным обрабатываемым процессом. Погрешности при этом процессе составляет 0.1- 0.004 мм.
По своей длине напильники изготавливаются от 150 до 400 мм. По форме сечения их делят на квадратные, плоские, круглые, трехгранные, ромбические, ножничные и полукруглые.
Для обработки металлов небольших форм используются малогабаритные напильники - надфили. Обработка твердых и закаленных сталей производится специальными надфилями, а на стальных стержнях закрепляются зерна алмаза.
Улучшение производительности и условий труда при металлообработке опиливанием достигается путем использования механизированных (пневматических и электрических) напильников. Сменяемые угловые и прямые головки при помощи круглых фасонных инструментов способствуют опиливанию под разными углами и в труднодоступных местах.

Качество работы контролируется различного рода инструментами. Качество опиливаемой плоскости проверяется проверочной линейкой. Если плоскость должны быть опилена достаточно точно, ее подвергают проверке на проверочной плите. Если нужно опилить плоскость под определенным углом, ее проверяют с помощью угломера или угольника. Для контроля параллельности двух плоскостей используют штангенциркуль, где расстояние между плоскостями должно быть одинаковым.
Если контроль нужно провести по криволинейным поверхностям, его производят с помощью линий разметки и специальных шаблонов.
Опиливание служит для разрезания и обработки поверхности и значительно отличается от процесса плазменной резки металла , которая в свою очередь используется для полного разрезания изделия, а также для обработки его.

Опиливанием называется способ резания, при котором осуще­ствляется снятие слоя материала с поверхности заготовки с по­мощью напильника.

Напильник - это многолезвийный режущий инструмент, обес­печивающий сравнительно высокую точность и малую шерохова­тость обрабатываемой поверхности заготовки (детали).

Опиливанием придают детали требуемую форму и размеры, про­изводят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.

Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка

Рис.1 . Напильники:

а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;

6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;

г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.

Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насе­ченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.

Насечка может быть одинарной (простой), двойной (перекрест­ной), рашпильной (точечной) или дуговой (рис. 1, б - д ).

Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.

Напильники с двойной насечкой применяют при опиливании ста­ли, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.

Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.

Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.

Изготовляются напильники из стали У13 или У13 А. После на­сечки зубьев напильники подвергают термической обработке,

Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.

По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машин­ные напильники.

Рис. 2. Формы сечений напильников:

а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;

ж - ромбический; з - ножовочные.

Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизиро­ванных (электрических и пневматических) напильников.

В условиях учебных мастерских возможно применение механи­зированных ручных опиловочных машинок, которые широко ис­пользуются на производстве.

Универсальная шлифовальная машина (см. рис. 4, г ), работаю­щая от асинхронного электродвигателя 1, имеет шпиндель, к кото­рому крепится гибкий вал 2 с державкой 3 для закрепления рабо­чего инструмента, и сменные прямые и угловые головки, позволяю­щие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.

Опиливание металла

При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность долж­на выступать над уровнем гу­бок тисков на 8-10 мм. Чтобы предохранить заготовку от вмя­тин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опи­ливании металла аналогична ра­бочей позе при разрезании ме­талла ножовкой.

Правой рукой берут за ручку напильника так, чтобы она упи­ралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).

Ладонь левой руки накладывают несколько поперек напильни­ка на расстоянии 20-30 мм от его носка (рис. 3, б).

Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.

Рис. 3. Хватка напильника и балан­сировка им в процессе опиливания:

а - хватка правой рукой; б - хватка ле­вой рукой; в - силы нажима в начале движения;

г - силы нажима в конце движения.

В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вна­чале нажима правой рукой на ручку с одновременным уменьше­нием более сильного вначале нажима левой рукой на носок на­пильника (рис. 3, в, г).

Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.

Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.

Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдержи­вать размеры детали и взаимное расположение ее поверхностей.

Если степень шероховатости поверхностей на чертеже не ука­зана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опилива­ние заканчивают личным напильником.

В практике ручной обработки металлов встречаются следую­щие виды опиливания: опиливание плоскостей сопряженных, парал­лельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.

В случае опиливания параллельных плоских поверхностей про­верку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.

При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании поло­жение напильника неустойчивое и легко «завалить» края поверх­ности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Про­дольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.

Для создания лучших условий и повышения производительно­сти труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсаль­ные наметки, наметки-рамки, специальные кондукторы и другие.

Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой по­верхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.

Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рам­ки, после чего окончательно закрепляют винты.

Рис. 4. Опиливание поверхностей:

а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей;г - опиливание с помощью уни­версальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).

Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснет­ся верхней плоскости рамки. Поскольку эта плоскость рамки об­работана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи ли­нейки.

При обработке плоскостей, расположен­ных под углом 90°, сначала опиливают плоскость, прини­маемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают пло­ским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, при­жимая к ней, перемещают до соприкосновения с проверяемой по­верхностью. Отсутствие просвета указывает, что перпендикуляр­ность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.

Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильника­ми, внутренние - ромбическими, трехгранными и другими. Конт­роль обработки ведется угломерами или специальными шабло­нами.

При обработке криволинейных поверх­ностей, кроме обычных приемов опиливания, применяются и специальные.

Выпуклые криволинейные поверхности можно обрабатывать, ис­пользуя прием раскачивания напильника (рис. 4, б ). При пере­мещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напиль­ника противоположные.

Вогнутые криволинейные поверхности в зависимости от радиу­са их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно перио­дически перезажимают с тем, чтобы обрабатываемый участок рас­полагался под напильником.

Распиливанием называется обработка отверстий (пройм) различ­ной формы и размеров при помощи напильников. По применяе­мому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.

Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатывают­ся плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, но­жовочными и другими напильниками. Проймы криволинейной фор­мы обрабатывают круглыми и полукруглыми напильниками.

Распиливание обычно выполняют в тисках. В крупных дета­лях проймы распиливают на месте установки этих деталей.

Подготовка к распиливанию начинается с разметки проймы. За­тем удаляется излишний металл из ее внутренней полости.

При больших размерах проймы и наибольшей толщине заго­товки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полот­но, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.

Припасовкой называется взаимная пригонка двух деталей, соп­рягающихся без зазора. Припасовывают как замкнутые, так и по­лузамкнутые контуры. Припасовка характеризуется большой точ­ностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.

Припасовка применяется как окончательная операция при об­работке деталей шарнирных соединений и чаще всего при изготов­лении различных шаблонов. Выполняется припасовка напильни­ками с мелкой или очень мелкой насечкой.

Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.

Возможные виды брака при опиливании металла и их причины:

Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, непра­вильности измерения или неточности измерительного инструмента;

Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;

Вмятины и другие повреждения поверхности заготовки в ре­зультате неправильного ее зажима в тисках.

Дефекты конструкции ВС. К дефектам конструкции ВС можно отнести всеразлиные сколы, микро трещины, коррозионные поражения и т.д. Дефекты обнаруживаются с помощью методов неразрушающего контроля.

Обрабоотка резанием. Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки . Осуществляется путём снятия стружкирежущим инструментом (резцом, фрезой и пр.)

Обработка склеиванием. Клеевые композиции при ремонте применяются для восстановления деталей с трещинами и пробоинами (блоки цилиндров, картеры агрегатов, корпусы узлов, емкости, фильтры и др.) для склеивания поврежденных деталей взамен клепки при ремонте тормозных для выравнивания поверхности кабин и оперения перед покраской как защитные покрытия длявосстановления размеров и геометрической формы  изношенных деталей, устранения задиров и царапин в трущихся поверхностях для изготовления ремонтных деталей из штампованных заготовок и неметаллических материалов для обеспечения прочности и герметичности неподвижных сопряжений.
Технологические процессы восстановления деталей клеевыми композициямиотличаются простотой выполнения операций и не требуют сложного оборудования. Применение клеев допускает соединение однородных и неоднородных материалов, что осуществить другими способами весьма сложно. При склеивании детали не подвергаются тепловым и силовым нагрузкам, поэтому этим способом можно восстанавливать детали сложной формы и любых размеров.

Обработка сваркой. Сварка в ремонтном производстве находит очень широкое применение. Многие дефекты и повреждения устраняются сваркой, в том чис­ле различные трещины, отколы, пробоины, срыв или износ резьбы и т. п. Сваркой называ­ется процесс соединения металлических частей в одно неразъемное целое при помощи нагре­ва металла в местах соединения. При ремонте автомобильных деталей нагрев металла осу­ществляют газовым пламенем или электриче­ской дугой. Так как детали изготавливаются из различных металлов (сталь, серый и ковкий чугун, цветные металлы и сплавы), то приме­няют соответствующий способ сварки. При горячей сварке деталь медленно на­гревают до температуры 600-650°С в специ­альных печах или горнах. Чем больше содер­жание углерода в чугуне, тем медленнее дол­жна быть скорость нагрева. Предварительный нагрев осуществляют при сварке и заварке трещин в ответственных деталях и деталях сложной конфигурации. После подогрева де­таль помещают в термоизоляционный кожух со специальными задвижками или закрывают листовым асбестом, оставляя открытым толь­ко место сварки.

Обработка пайкой. Пайкой называется процесс получения неразъемного соединения или герметичного соединения при помощи присадочных материалов - припоев.При пайке основной металл детали не плавится. Надежность соединения обеспечивается за счет диффузии припоя в металл и зависит от правильного подбора флюса и припоя, тщательности очистки поверхности и наличия минимального зазора в стыке соединенных деталей. В зависимости от температуры плавления припои делятся на мягкие и твердые: мягкие припоиимеют температуру плавления до 300 °С, а твердые – 800 °С и выше.

Бортовой аварийный регистратор - это устройство, используемое в авиации для записи основных параметров полёта, показателей систем самолёта, переговоров экипажа и т. д. для выяснения причин лётных происшествий. Бортовой самописец собирает такие данные как:

o параметры техники: давление топлива, давление в гидросистемах, обороты двигателей, температура и т. д.;

o действия экипажа: степень отклонения органов управления, уборка и выпуск взлётно-посадочной механизации, нажатия на кнопки;

o навигационные данные: скорость и высота полёта, курс, прохождение приводных маяков и прочее.

Запись информации производится либо на магнитные носители (металлическая проволока или магнитная лента), либо - в современных регистраторах - на твердотельные накопители (флэш-память). Затем эту информацию можно считать и расшифровать в виде последовательных записей с указанием их времени.

Контрольно-измерительная и проверочная аппаратура. К инструментам и приборам для точных измерений относятся штангенциркули одно– или двухсторонние, эталонные и угловые плитки, микрометры для наружных измерений, нутромеры микрометрические, глубиномеры микрометрические, индикаторы, профилометры, проекторы, измерительные микроскопы, измерительные машины, а также разного вида пневматические и электрические приборы и вспомогательные устройства.

Измерительные индикаторы предназначены для сравнительных измерений путем определения отклонений от заданного размера. В сочетании с соответствующими приспособлениями индикаторы могут применяться для непосредственных измерений.

Измерительные индикаторы, являющиеся механическими стрелочными приборами, широко применяются для измерения диаметров, длин, для проверки геометрической формы, соосности, овальности, прямолинейности, плоскостности и т. д. Кроме того, индикаторы часто используются как составная часть приборов и приспособлений для автоматического контроля и сортировки. Цена деления шкалы индикатора обычно 0,01 мм, в ряде случаев – 0,002 мм. Разновидностью измерительных индикаторов являются миниметры и микрокаторы.

Измерительные приспособления предназначены для измерения изделий больших размеров.

Измерительные проекторы – это приборы, относящиеся к группе оптических, основанные на использовании метода бесконтактных измерений, т. е. измерений размеров не самого предмета, а его изображения, воспроизведенного на экране в многократном увеличении.

Измерительные микроскопы, как и проекторы, относятся к группе оптических приборов, в которых используется бесконтактный метод измерений. Они отличаются от проекторов тем, что наблюдение и измерение выполняются не на изображении предмета, спроектированном на экране, а на увеличенном изображении предмета, наблюдаемом в окуляре микроскопа. Измерительный микроскоп служит для измерения длин, углов и профилей разнообразных изделий (резьб, зубьев, шестерен и т. д.).

Обслуживание топливных фильтров. Основными работами технического обслуживания системы питания топливом являются: промывка фильтров грубой очистки; смена фильтрующих элементов тонкой очистки; проверка работоспособности топливоподкачивающего насоса; проверка и регулировка топливного насоса высокого давления на начало, величину и равномерность подачи топлива в цилиндры двигателя; установка угла опережения впрыска топлива; проверка и регулировка форсунок. Причем проверка топливоподкачивающего насоса и загрязненности топливных фильтрующих элементов должна быть систематической и проводиться инструментальными методами (например, приспособлением КИ-13943 ГосНИТИ).

Уход за топливными фильтрами заключается в промывке фильтра грубой очистки и смене фильтрующих элементов в фильтрах тонкой очистки.

Для промывки фильтра грубой очистки необходимо слить из него топливо и произвести его разборку. Сетка фильтрующего элемента и внутренняя полость стакана промываются бензином или дизельным топливом и продуваются сжатым воздухом.

Перед заменой старых фильтрующих элементов на новые топливо из фильтров тонкой очистки сливается и его стаканы промываются бензином или дизельным топливом и продуваются сжатым воздухом.

После сборки фильтров грубой и тонкой очистки необходимо убедиться в отсутствии подсоса воздуха через фильтры при работающем двигателе. Подсос воздуха и подтекание топлива устраняются подтягиванием болтов крепления стаканов к корпусам.

Фильтр тонкой очистки промывают на ультразвуковой установке в водном растворе или креолине. Качество промывки фильтров на ультразвуковой установке проверяется с помощью прибора ПКФ (рис.1.)

Рисунок 1.

Рис.1. Контроль качества промывки фильтров прибором ПКФ:
1 - сигнальная кнопка; 2- ручка; 3, 8, 10 - уплотнительные кольца; 4 - корпус; 5 - поплавок; 6- переходник; 7 - фланец; 9 - проверяемый фильтр; 11 - заглушка; 12 - секундомер). Для этого на прибор устанавливают переходник, соответствующий проверяемому фильтру, и фильтр с одной заглушкой устанавливают на переходник. В емкость заливают масло АМГ-10, подогретое до температуры 18-23 °С так, чтобы уровень масла был на 50...60 мм выше верхнего края проверяемого фильтра. Фильтр опускают на короткое время в масло АМГ-10, после чего дают возможность стечь маслу. Подготовляют секундомер, заглушают отверстие на рукоятке прибора, и прибор с фильтром опускают в емкость с маслом АМГ-10. Открывают отверстие на рукоятке прибора и включают секундомер. В момент совпадения сигнальной кнопки с уровнем верхнего торца рукоятки прибора секундомер выключают и определяют время заполнения фильтра маслом, которое должно быть не более 5 с. Если это время окажется более 5 с, то фильтр промывают повторно на ультразвуковой установке или его заменяют.

Проверка на герметичность. Проверка производится следующим образом: вначале необходимо включить компрессор и наблюдать за повышением давления в кабине по ртутному манометру. Скорость нарастания давления должна быть не более 0,3-0,4 мм рт. ст. При достижении в кабине избыточного напора 0,1 кгс/см2 необходимо произвести внешний осмотр фюзеляжа и выявить места утечки воздуха, поддерживая это давление. Затем медленно (не более 0,3- 0,4 мм рт. ст.) довести избыточный набор,в кабине до 0,3 кгс/см2, после чего выключить подачу воздуха от компрессора; замерить время падения.избыточного давления с 0,3 до 0,1 кгс/см2. Фюзеляж считается герметичным, если время падения избыточного напора с 0,3 до 0,1 кгс/см2 не менее 10 мин. При проверке герметичности (при повышении и снижении давления) следует осмотреть места возможной утечки. В случае если время падения давления менее 10 мин, необходимо обязательно проверить контуры люков, входной двери, остекление кабин, места стыковки обшивки герметического отсека (по всему фюзеляжу) и отсек носового колеса. Дополнительными местами утечки могут быть гермовыводы электрожгутов, труб, ШДГ и антенн. Устранение выявленных дефектов следует производить после стравливания.избыточного давления до нуля. Места с явными утечкам, и воздуха подлежат обязательной заделке, даже если время падения давления укладывается,в норму.

Турбовинтово́й дви́гатель - тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина - высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.

Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит компрессор, другая (через понижающий редуктор) - винт. Такая конструкция имеет ряд премуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Вместе с тем, турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели.

ПМД-70

Назначение.

Порошковый дефектоскоп ПМД-70 представляет собой универсальное многофункциональное устройство, осуществляющее магнитопорошковый и магнитолюминисцентный методы неразрущающего контроля металлических изделий и сварных соединений. Прибор предназначен для выявления различных дефектов как на поверхности детали, так и в верхнем слое ферромагнитного материала.

ПМД-70 применяется для проведения дефектоскопических исследований на производствах, изготавливающих, обслуживающих и эксплуатирующих металлические конструкции и изделия, соединенные между собой сварочными операциями. Дефектоскоп эффективен и в полевых условиях, при работе на открытом воздухе и при испытаниях в лабораториях.

Принцип действия.

Порошковый дефектоскоп имеет несколько разновидностей, отличающихся видом намагничивающих устройств: электромагниты, кабели, контактные группы, и их питанием: от сети переменного или постоянного тока. С помощью этих устройств и импульсного блока прибор наводит электромагнитное поле в контролируемом объекте, которое намагничивают отдельные участки изделия продольным или циркулярным полем. Далее на изделие наносится магнитная суспензия или порошок, который является своего родом индикатором намагниченности. По измеренной величине магнитной индукции определяется наличие и глубина повреждения. С помощью нанесения данного индикатора составляется визуальная картина дефекта. Размагничивание материала изделия происходит при помощи триггеров, работающих в динамическом режиме, и осуществляющих реверсивное течение тока через намагничивающие устройства.

Вывод

В результате прохождения слесарно-механической практики я:

Ознакомился с техникой безопасности, охраной труда при работе с инструментами, оборудование и приспособлениями для выполнения слесарно-механических работ;

Приобрел навыки практической работы в качестве исполнителя ведения слесарно-механической работы;

Закрепил теоретические знания,полученные при изучении специальных дисциплин;

Ознакомился со слесарно-механическими оборудованиями, инструментами и научился пользововаться ими;

Ознакомился с приборами и методами обнаружения дефектов.

Хотелось бы подробно рассмотреть, изучить детали ВС и поучаствовать в техническом обслуживании. Надеюсь заполнить эти пробелы в следующей производственной практике.

Цеулёв Н.Е.

Министерство образования и науки Республики Казахстан

АО «Академия Гражданской Авиации»

Авиационный факультет

Кафедра №10 «Авиационная техника и летная эксплаутация»

Опиливание - слесарная операция, при которой с по­верхности детали напильником срезают слой металла толщиной от 0,05 до 1 мм. Опиливают деталь обычно после рубки или резки для отделки поверхности детали и придания ей более точных размеров, а также для пригонки деталей при сборке. Напильники представ­ляют собой стальные, зака­ленные бруски различной формы с насеченными на рабочих поверхностях зубьями, которые срезают с обрабаты­ваемой детали небольшие слои металла в виде стружки (опилок).

Насечка напильников бывает одинарной и двойной (перекрестной), ее наносят на специальных станках зу­билом или получают фрезерованием и шлифованием. На­пильниками с одинарной насечкой, выполненной под углом 70-80° к его оси, опиливают мягкие материалы, так как работа ими требует больших усилий вследствие срезания широкой стружки, у напильников с двойной на­сечкой нижнюю насечку выполняют под углом 56-60°, верхнюю - под углом 70-80° к оси напильника. Такой вид насечки дает возможность обрабатывать напильни­ками твердые материалы, так как при опиливании стру­жка дробится и работа облегчается.

В зависимости от числа зубьев, приходящихся на 1см напильники делятся на три класса: драчевые (4-12 зубьев, номер насечки 0), личные (13-25 зубьев, номер насечки 1) бархатные (36-80 зубьев, номера насечек 2, 3, 4 и 5), у бархатных напильников чем выше номер насечки, тем больше зубьев на 1 см и они мельче.

Драчевые напильники применяются в тех случаях, когда с детали необходимо снять слой металла более 0,3 мм. Для снятия меньших слоев металла и получения чистой поверхности и точных размеров применяются личные напильники. Бархатные напильники предназна­чены для доводки и точной подгонки деталей.

Напильники со специальной насечкой в виде отдель­ных (точечных) зубьев называются рашпилями. Их при­меняют для опиливания вязких и мягких материалов (дерево, баббит и др.). Для обработки небольших поверхностей и доводочных работ применяются надфили,

По форме поперечного сечения напильники бывают восьми типов: плоские (остроносые и тупоносые), круглые, овальные, полукруглые, квадратные, трехгранные, ромбические и ножовочные.

Для опиливания выбирают напильник определенной формы и длины. Выбор формы напильника определяет­ся очертанием обрабатываемой поверхности детали. Кри­волинейные вогнутые поверхности опиливают круглыми или овальными напильниками, а выпуклые - плоскими.

Опиленные плоскости проверяют линейкой или угольником на просвет. У правильно обработанной по­верхности просвет ровный или совсем отсутствует. Па­раллельность двух плоскостей проверяют кронцирку­лем.

Для продления срока службы напильников необходимо соблюдать определенные правила. Новыми напильниками нельзя опиливать твердые материалы, поверхно­сти с литейной коркой, а также не очищенные от окалины.

© 2020 reabuilding.ru -- Портал о правильном строительстве