Расчет режимов резания при сверлении пример. Расчет режимов резания при сверлении, развертывании

Главная / Коммуникации

Обработка отверстий производится различными режущими инструментами в зависимости от вида заготовки, требуемой точности и нужной чистоты поверхности.

Различают заготовки с отверстиями, подготовленными при отливке, ковке или штамповке, и заготовки без предварительно подготовленных отверстий.

Обработку отверстий в заготовках, не имеющих предварительно подготовленных отверстий, всегда начинают со сверления.

1. Сверла

Сверление неглубоких отверстий производят перовыми и спиральными сверлами.

Перовое сверло . Перовое сверло показано на рис. 159. Режущая часть сверла представляет плоскую лопатку 3, переходящую в стержень 4. Две режущие кромки 1 и 2 сверла наклонены друг к другу обычно под углом 116-118°, но этот угол может быть равным от 90 до 140°, в зависимости от твердости обрабатываемого материала: чем материал тверже, тем больше угол.

Перовые сверла малопроизводительны, кроме того, при сверлении их уводит в сторону от оси отверстия. Несмотря на это, их иногда применяют для неответственных работ, что объясняется простотой конструкции таких сверл и их невысокой стоимостью.

Спиральные сверла . В настоящее время сверление производят главным образом спиральными сверлами. На рис. 160 показано такое сверло. Оно состоит из рабочей части и хвостовика (конического по рис. 160, а или цилиндрического по рис. 160, б) для крепления сверла либо в коническом отверстии пиноли задней бабки, либо в патроне.

Конический хвостовик имеет лапку , которая служит упором при выбивании сверла (рис. 160, а).

Рабочая часть спирального сверла представляет собой цилиндр с двумя спиральными (вернее - винтовыми) канавками, служащими для образования режущих кромок сверла и вывода стружки наружу. Передняя часть сверла (рис. 160, в) заточена по двум коническим поверхностям и имеет переднюю поверхность, заднюю поверхность, две режущие кромки , соединенные перемычкой (поперечной кромкой). Две узкие ленточки (фаски), идущие вдоль винтовых канавок сверла, служат для правильного направления и центрировакия сверла.

Угол при вершине сверла 2φ обычно равен 116 - 118°. Для сверления твердых материалов этот угол увеличивают до 140°, а для сверления мягких материалов его уменьшают до 90°.

Сверла изготовляют из легированной стали 9ХС, быстрорежущей стали Р9 и Р18, а также из легированной стали с припаянными пластинками твердого сплава.


Сверла, оснащенные пластинками твердого сплава, показаны на рис. 161. Сверла с прямыми канавками (рис. 161, а) проще в изготовлении, но выход стружки из отверстия у них затруднен; их обычно применяют при сверлении чугуна и других хрупких металлов, когда глубина отверстия не превышает двух-трех диаметров. Сверла с винтовыми канавками (рис. 161, б) легче выводят стружку из отверстия, поэтому их рекомендуется применять при сверлении вязких материалов.

2. Затачивание спиральных сверл

Затачивание спиральных сверл производят на специальных заточных станках. Однако токарю иногда приходится затачивать сверла вручную на обычном точиле.

При затачивании сверл нужно соблюдать следующие условия:
1. Режущие кромки сверла должны быть симметричны , т. е. расположены под определенными и равными углами к оси сверла и иметь одинаковую длину.
2. Поперечная кромка (перемычка) должна быть расположена под углом 55° к режущим кромкам (рис. 160, в.).
Заточенное таким образом сверло будет работать хорошо.

На рис. 162 показаны отверстия, получаемые при сверлении правильно и неправильно заточенными сверлами. При одинаковой длине режущих кромок (рис. 162, а) диаметр просверленного отверстия равен диаметру сверла. Если же одна кромка длиннее другой (рис. 162, б), то диаметр отверстия получается больше диаметра сверла. Это может привести к браку и быстро вывести сверло из строя ввиду неравномерной нагрузки режущих кромок.

Правильность затачивания сверла проверяется специальным комбинированным шаблоном с тремя вырезами (рис. 163, а); одним из вырезов проверяют угол при вершине сверла и длину режущих кромок (рис. 163, б), вторым вырезом - угол заострения режущей кромки на наружном диаметре сверла (рис. 163, в), третьим - угол между перемычкой и режущей кромкой (рис. 163, г).


3. Закрепление сверл

Способ закрепления сверла зависит от формы его хвостовика. Сверла с цилиндрическим хвостовиком закрепляют в пиноли задней бабки посредством специальных патронов (рис. 164); сверла с коническим хвостовиком закрепляют непосредственно в коническом отверстии пиноли задней бабки (рис. 165). Конические хвостовики у инструментов, а также конические отверстия в шпинделях и пинолях токарных станков изготовляются по системе Морзе. Конусы Морзе имеют номера 0, 1, 2, 3, 4, 5, 6; каждому номеру соответствует определенный размер. Если конус сверла меньше конического отверстия пиноли задней бабки, то на хвостовик 1 сверла надевают переходную втулку 2 (рис. 166) и затем втулку вместе со сверлом вставляют в отверстие пиноли задней бабки станка.


Перед тем как вставить сверло в пиноль задней бабки, необходимо тщательно очистить от грязи хвостовик сверла, а также отверстие пиноли.

Чтобы удалить сверло из пиноли задней бабки, следует поворачивать маховичок до тех пор, пока пиноль не будет затянута в корпус задней бабки до крайнего положения. В этом положении винт упрется в торец хвостовика и вытолкнет его.

4. Приемы сверления

Подготовка к сверлению . При сверлении отверстия длиной больше двух диаметров сверла рекомендуется сначала отверстие жестко закрепленным в пиноли коротким Тогда последующее сверло будет лучше направляться и его меньше будет уводить в сторону.

Подача сверла . Подачу сверла производят вращением маховичка задней бабки (рис. 165).

При сверлении глубокого отверстия спиральным сверлом нужно время от времени выводить сверло из отверстия на ходу станка И удалять из стружку; этим предотвращается поломка сверла. Необходимо также следить за тем, чтобы при сверлении нормальными сверлами глубина отверстия не была больше длины спиральной канавки сверла, так как иначе стружка не сможет выходить из канавок и сверло сломается.

Сверление глухих отверстий . Для сверления отверстий заданной длины удобно пользоваться рисками с на пиноли задней бабки (см. рис. 165). Вращением ма-выдвигают сверло, пока оно не углубится в материал де-всей заборной частью, и замечают при этом соответствующую риску на пиноли. Затем, вращая маховичок задней бабки, перемещают пиноль до тех пор, пока она не выйдет из корпуса на нужное число делений.

Когда на пиноли нет делений, можно применить следующий способ. Отмечают на сверле мелом требуемую длину отверстия и перемещают пиноль, пока сверло не углубится в метки.

Иногда при сверлении слышится характерный металлический визг. Это является признаком перекоса отверстия или затупления сверла. В подобных случаях надо немедленно прекратить подачу, остановить станок, выяснить и устранить причину визга.

Прежде чем остановить станок во время сверления, нужно вывести сверло из отверстия. Останавливать станок в то время, когда сверло находится в отверстии, нельзя, это может привести к заеданию сверла и его поломке.

5. Режимы резания при сверлении и рассверливании

Скорость резания при сверлении углеродистой стали средней твердости, серого чугуна и бронзы сверлами из быстрорежущей стали можно принимать равной 20-40 м/мин.

Подача сверла на токарном станке производится обычно вручную, медленным перемещением пиноли задней бабки, как показано на рис. 165. Слишком большая и неравномерная подача может привести к поломке сверла, особенно при использовании сверл малых диаметров.

Иногда при сверлении применяется и механическая подача (см. рис. 167). В этом случае сверло укрепляется с помощью специальных прокладок или втулки в резцедержателе. При сверлении с механической подачей величину подачи принимают равной: при сверлах диаметром от 6 до 30 мм для углеродистой стали средней твердости - от 0,1 до 0,35 мм1об; для чугуна - от 0,15 до 0,40 мм/об.

При рассверливании поперечная кромка сверла не принимает участия в работе. Благодаря этому значительно уменьшается усилие подачи, уменьшается и увод сверла; это позволяет увеличивать величину подачи примерно в 1½ раза по сравнению с подачей сверла того же диаметра при сверлении в сплошном материале.

Скорость резания при рассверливании можно брать такую же, как и при сверлении.

Сверление и рассверливание стали и алюминия рекомендуется вести с охлаждением эмульсией в количестве не менее 6 л/мин; чугун, латунь и бронзу сверлят и рассверливают без охлаждения. Необходимо, однако, отметить, что ввиду горизонтального расположения обрабатываемых отверстий охладающая жидкость с трудом подается к месту образования стружки. Поэтому для глубокого сверления в трудно обрабатываемых материалах применяют сверла с внутренними каналами, по которым подают охлаждающую жидкость под большим давлением к режущим кромкам.

6. Высокопроизводительные методы работы при сверлении и рассверливании

Замена ручной подачи механической . Новаторы производства в целях механизации подачи сверла применяют простые и дешевые приспособления, облегчающие труд и сберегающие время. Одно из таких приспособлений показано на рис. 167.

Приспособление представляет собой стальную державку 2 с плиткой 1, закрепляемой при помощи болтов 3 в резцедержателе. В державке имеется коническое отверстие для закрепления хвостовика сверла и отверстие для выбивания сверла. Нижняя плоскость плитки 1 прострогана или профрезерована так, что при закреплении ее в резцедержателе сверло точно (без прокладок) устанавливается на высоте центров. Чтобы установить сверло по оси отверстия в горизонтальной плоскости, на нижних салазках суппорта отмечается риска. Такое приспособление очень эффективно при изготовлении большого числа деталей с отверстиями, так как в этом случае сверление производится с механической подачей сверла от суппорта; использование его уменьшает время обработки и облегчает Труд токаря.

Для механизации подачи сверла при сверлении отверстий большого диаметра в условиях мелкосерийного и единичного производства токарем-новатором т. Бучневым изготовлено устройство (рис. 168, а), дающее возможность передвигать заднюю бабку с затратой небольшого усилия. Это устройство заключается в следующем. К плите задней бабки крепят болтами угловой кронштейн 5, в котором помещаются валики 1 и 2. На валике 1 сидит ведущее зубчатое колесо 7 и рукоятка 6. На валике 2 находится зубчатое колесо 3 и колесо 4, сцепляющееся с рейкой станины. Вращение рукоятки 6 через колеса 7 и 3 передается колесу 4, которое катится по рейке станка и передвигает заднюю бабку по станине.

На токарно-винторезном станке 1К62 завода «Красный пролетарий» предусмотрена замена ручной подачи сверла (зенкера, развертки) механической. Для этого в суппорте имеется специальный замок (рис. 168, б), входящий в прилив задней бабки. При помощи такого несложного устройства можно соединить каретку суппорта с плитой задней бабки и, освободив плиту задней бабки от станины, включить наиболее выгодную механическую подачу суппорта.

Производительность труда при этом значительно повышается. Кроме указанного преимущества, такой способ подачи позволяет производить сверление (зенкерование, развертывание) отверстий на необходимую глубину, ведя отсчет по лимбу продольной подачи или пользуясь продольным упором (длиноограничителем).

Использование сверл особой заточки . Для повышения производительности труда новаторы производства применяют подточку перемычки, используют двойную заточку сверл и бесперемычные сверла.

Сверло с двойной заточкой показано на рис. 169, а. Заборная часть его имеет ломаные режущие кромки: вначале короткие под углом 70-75°, а к вершине удлиненные - под углом 116-118°. Такие сверла изнашиваются меньше нормальных и отличаются повышенной стойкостью - в 2 - 3 раза большей при сверлении стали и в 3 - 5 раз большей при сверлении чугуна.

Для уменьшения усилия подачи при сверлении полезной оказывается подточка перемычки на участке ВС (рис. 169, б). При такой подточке не только уменьшается поперечная кромка, но и увеличивается передний угол, что облегчает условия резания.

На рис. 170 показано высокопроизводительное сверло из быстрорежущей стали скоростника - сверловщика Средневолжского станкостроительного завода В. Жирова. Сверло предназначено для сверления чугуна.

Сверло Жирова в отличие от сверла, показанного на рис. 169, а, изготовляется с тройным конусом у вершины, с подточенной передней поверхностью и прорезанной перемычкой. Наличие выемки вместо перемычки значительно облегчает врезание сверла в обрабатываемый металл, благодаря чему в 3-4 раза снижается осевое усилие при сверлении чугуна. Это позволяет увеличить подачу сверла и сократить машинное время, по крайней мере, вдвое.

Для повышения стойкости заборная часть сверла Жирова имеет три ломаные режущие кромки, вначале короткие, образующие угол 55°, затем более длинные - с углом 70° и, наконец, самые длинные - с углом у вершины 118°.

Наличие коротких режущих кромок с углом 55° способствует значительному повышению стойкости сверла (при работе с повышенными подачами) по сравнению с сверлами обычной конструкции.

7. Брак при сверлении и меры его предупреждения

Основной вид брака при сверлении - увод сверла от требуемого направления, чаще всего наблюдаемый при сверлении длинных отверстий.

Увод сверла происходит: при сверлении заготовок, у которых торцовые поверхности не перпендикулярны к оси; при работе длинными сверлами; при работе неправильно заточенными сверлами, у которых одна режущая кромка длиннее другой; при сверлении металла, который имеет раковины или содержит твердые включения.

Увод сверла при работе длинными сверлами можно уменьшить предварительным надсверливанием отверстия коротким сверлом того же диаметра.

Если на пути сверла в материале детали встречаются раковины или твердые включения, то в этом случае предотвратить увод сверла почти невозможно. Его можно только уменьшить путем уменьшения подачи, что в то же время явится средством предупреждения возможной поломки сверла.

Контрольные вопросы 1. Какие типы сверл применяются при сверлении на токарных станках?
2. Назовите элементы спирального сверла.
3. Расскажите о правилах затачивания сверл.
4. Как отразится на размерах отверстия неправильная заточка сверла?
5. Какими способами закрепляются сверла в станок?
6. Расскажите о приемах сверления сквозных отверстий, глухих отверстий:
7. Какое охлаждение применяют при сверлении?
8. Расскажите о передовых способах сверления.
9. Как предупредить увод сверла?

Основными элементами режима резания при сверлении являются скорость резания, подача и глубина резания.
Скоростью резания называется окружная скорость наиболее удаленной от центра сверла точки режущей кромки, измеряемая в метрах в минуту (м/мин ).

Таблица 19

Скорости резания при сверлении (работа с охлаждением) конструкционных сталей

Подача
в
мм/об

Диаметр сверла в мм

Скорость резания в м/мин

0,05
0,08
0,1
0,12
0,15
0,18
0,2
0,25
0,3
0,35
0,4
0,46
0,5
0,6
0,7
0,8
0,9

46
32
26
23
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
42
36
31
26
-
-
-
-
-
-
-
-
-
-
-

-
-
49
43
36
31
28
-
-
-
-
-
-
-
-
-
-

-
-
-
-
38
35
33
30
27
-
-
-
-
-
-
-
-

-
-
-
-
-
-
38
34
31
28
26
-
-
-
-
-
-

-
-
-
-
-
-
-
35
31
29
27
26
-
-
-
-
-

-
-
-
-
-
-
-
37
34
31
29
27
26
-
-
-
-

-
-
-
-
-
-
-
-
33
30
29
27
26
24
-
-
-

-
-
-
-
-
-
-
-
-
-
30
28
26
24
23
-
-

-
-
-
-
-
-
-
-
-
-
-
29
27
25
23
21
-

-
-
-
-
-
-
-
-
-
-
-
27
26
25
23
22
21

Скорость резания v определяется по формуле

где D - диаметр сверла;
n - число оборотов шпинделя в мин.;
π = 3,14 - постоянное число.
Число оборотов режущего инструмента определяется по формуле

При сверлении или развертывании отверстий важно правильно выбрать скорость резания, при которой инструмент будет работать нормально, т. е. наиболее эффективно.
Таким образом, скорость резания режущего инструмента и подача его на один оборот составляют режим резания.
Режим резания необходимо выбирать таким, чтобы сохранить инструмент от преждевременного износа с учетом максимальной производительности.
Режимы резания можно выбирать по табл. 19 и 20. Таблица 20

Переводная таблица скоростей резания и чисел оборотов сверл в минуту

Диа-
метр
сверла
в
мм

Скорость резания в м/мин

Число оборотов в минуту

1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
27
30
32
34
36
38
40
42
46
50

3180
1590
1061
796
637
530
455
398
353
318
265
227
199
177
159
145
132
122
113
106
99
93
88
84
80
76
71
64

4780
2390
1590
1195
955
796
682
507
530
478
398
341
298
265
239
217
199
184
171
159
149
140
133
126
119
113
106
96

6370
3190
2120
1595
1275
1061
910
796
708
637
530
455
398
353
318
290
265
245
227
213
199
187
177
168
159
152
142
127

7960
3980
2660
1990
1590
1326
1135
996
885
796
663
568
497
442
398
362
332
306
284
265
249
234
221
210
199
189
177
159

9550
4780
3180
2390
1910
1590
1365
1191
1061
955
796
682
597
531
478
432
398
368
341
318
298
280
265
252
239
227
212
191

11150
5580
3720
2790
2230
1855
1590
1392
1238
1114
929
796
696
619
558
507
465
429
398
371
348
327
310
294
279
265
248
223

12730
6880
4250
3185
2550
2120
1820
1590
1415
1273
1062
910
795
709
637
580
531
490
455
425
398
374
354
336
318
307
283
255

14330
8060
4780
3595
2865
2387
2045
1792
1593
1433
1193
1010
895
795
716
652
597
551
511
478
448
421
398
378
358
341
319
286

15920
7960
5320
3980
3180
2622
2270
1992
1770
1592
1326
1136
994
884
796
724
664
612
568
530
498
468
442
420
398
378
354
318

19100
9560
6360
4780
3820
3180
2730
2338
2122
1910
1592
1364
1194
1062
956
870
796
736
682
636
596
560
530
504
478
458
424
382

31840
15920
10640
7960
6360
5304
4340
3984
3540
3184
2652
2272
1988
1768
1592
1148
1328
1224
1136
1060
996
936
884
840
796
756
708
636

Зная диаметр сверла и материал обрабатываемой детали, находим по табл. 19 и 20 скорость резания, а по скорости резания и диаметру сверла определяем по переводной таблице (или по формуле) число оборотов сверла в минуту. Найденное число оборотов и значение подачи сопоставляют с фактическим числом оборотов шпинделя станка. На каждом станке имеется таблица оборотов шпинделя и подач, которая прикреплена к станку.
При работе сверлами из углеродистой стали величины скорости резания и подачи следует уменьшать на 30 - 40%.
Для уменьшения трения и нагрева инструмента при сверлении применяют охлаждающую жидкость. При обильном применении охлаждающей жидкости при сверлении стали можно увеличить скорость резания примерно на 30 - 35%. Кроме этого, обильное охлаждение облегчает удаление стружки из отверстия. Для нормального охлаждения необходимо к месту сверления подавать не менее 10 л охлаждающей жидкости в минуту.
При сверлении различных металлов и сплавов рекомендуется применять охлаждающие жидкости, приведенные в табл. 21.

Таблица 21

Если во время работы режущая кромка сверла быстро затупляется, то это признак того, что скорость резания выбрана слишком большой и ее надо уменьшить.
При выкрашивании режущих кромок следует уменьшить величину подачи.
Для предупреждения затупления и поломки сверла на выходе из отверстия рекомендуется уменьшать подачу в момент выхода сверла.
Для получения отверстий высокого класса точности развертки в шпинделе станка крепят на специальных качающихся оправках, которые дают возможность развертке занимать требуемое положение в отверстии. Этим устраняется «разбивание» отверстия.
Для получения высокой чистоты обработки отверстия при работе развертку следует смазывать растительным маслом.
Скорость резания при развертывании отверстий в стали принимается равной от 5 до 10 м/мин , подача - от 0,3 до 1,3 мм/об .
В табл. 22 приведены величины скорости резания при развертывании отверстий в различных металлах.

Таблица 22

Средние скорости резания развертками на сверлильных станках в м/мин

При сверлении отверстия диаметром более 25 мм рекомендуется производить предварительное сверление сверлом диаметром 8 - 12 мм , а затем рассверлить отверстие до требуемого диаметра. Разделение обработки отверстия на два прохода - сверление и рассверливание способствует получению более точного по диаметру отверстия, а также уменьшает износ инструмента.
При сверлении глубокого отверстия необходимо своевременно удалять стружку из отверстия и спиральных канавок сверла. Для этого периодически выводят сверло из отверстия, чем облегчают условия сверления и улучшают чистоту обрабатываемого отверстия.
При сверлении деталей из твердых материалов применяют сверла, оснащенные пластинками из твердого сплава.
Пластинки твердого сплава закрепляют пайкой на медь к державке, изготовляемой из углеродистой или легированной стали.
Скорость резания такими сверлами достигает 50 - 70 м/мин .

В процессе образования отверстия сверло одновременно совершает вращательное и поступательное движения, при этом режущие кромки сверла срезают тонкие слои материала, образуя стружку. Чем быстрее вращается сверло и чем большее расстояние за один оборот оно преодолевает в направлении оси обрабатываемого отверстия, тем быстрее происходит резание.

Скорость резания зависит от частоты вращения сверла и его диаметра, перемещение сверла вдоль оси заготовки за один оборот влияет на толщину снимаемого елс я материала (стружки). Сверло по сравнению с другими режущими инструментами работа, т в достаточно тяжелых условиях, так как при сверлении затруднен отвод стружки и подвод смазывающе-охлаждающей жидкости.

Основными элементами резания при сверлении являются скорость и глубина резания, подача, толщина и ширина стружки (рис. 3.77).

Скорость резания V — путь, пройденный точкой на режущей кромке сверла, наиболее удаленной от оси его вращения. Определяют скорость резания по формуле V = ndnl1000 (где V- скорость резания, м/мин; d — диаметр сверла, мм; п — частота вращения шпинделя, об/мин; п — постоянное число, равное 3,14; число 1 ООО введено в формулу для перевода диаметра сверла в метры). Величина скорости резания зависит от материала заготовки, материала инструмента и формы его заточки, подачи, глубины резания и наличия охлаждения при обработке отверстия.

Подача 3 измеряется в миллиметрах на один оборот сверла (мм/об). Величина подачи при сверлении выбирается в зависимости от требований, предъявляемых к шероховатости обработанной поверхности и точности обработки, обрабатываемого материала и материала сверля.

Глубина резания t измеряется в миллиметрах и представляет собой расстояние от обрабатываемой поверхности до оси сверла, т.е. при сверлении глубина резания составляет половину диаметра сверла, а при рассверливании — половину разности между диаметром предварительно просверленного отверстия и диаметр ом сверла.

Толщина среза (стружки) измеряется в направлении, перпендикулярном режущей кромки сверла, и равна половине величины перемещения сверла относительно оси обрабатываемого отверстия за один его оборот, т.е. половине величины подачи. Поскольку слой материала за один оборот сверла снимается двумя режущими зубьями, то каждый из этих зубьев удаляет слой материала, толщина которого равна половине величины подачи сверла на один его оборот.

Ширина среза измеряется вдоль режущей кромки и равна ее длине. При рассверливании ширина среза равна длине режущей кромки, участвующей в резании. Измеряется ширина среза в миллиметрах.

Режимы резания устанавливаются с целью обеспечения наибольшей производительности. При этом необходимо учитывать физико-механические свойства материала обрабатываемой заготовки, свойства материала инструмента и требования к качеству обработанной поверхности, заданные чертежом или техническими условиями на изготовление.

Теоретический расчет элементов режима резания выполняют в приведенной ниже последовательности.

1. По специальным справочным таблицам выбирают величину подачи в зависимости от xapat тера обработки, требований к качеству обработанной поверхности, материала сверла и других технологических данных.

2. Рассчитывают скорость инструмента с учетом технологических возможностей, режущих свойств материала инструмента и физико-механических свойств обрабатываемой заготовки.

3. Определяют расчетную частоту вращения шпинделя в соответствии с найденной скоростью резания. Полученную величину сравнивают с паспортными данными станка и принимают равной ближайшему наименьшему значению этой частоты.

4. Определяют действительную скорость резания, с которой будет производиться обработка.

На практике для определения режимов резания используют готовые данные технологических карт и таблиц справочников.

Режимы резания при зенкеровании и развертывании, а также критерии их выбора практически не отличаются от выбора этих параметров при сверлении.

Припуски на обработку отверстий

Припуск — это слой материала, подлежащий снятию при обработке. Величина этого Слоя зависит от требований, предъявляемых к обработанной поверхности и вида обработки.

При сверлении припуск на обработку составляет половину диаметра сверла. При рассверливании припуск определяется в зависимости от требований к обработанной поверхности и от необходимости в ее дальнейшей обработке (зенкеровании, развертывании). Припуск на зенкерование, в зависимости от того, является оно предварительным (перед развертыванием) или окончательным, составляет от 0,5 до 1,2 мм. Величина припуска зависит также от диаметра обрабатываемого отверстия. Припуск на развертывание зависит от диаметра обрабатываемого отверстия и от требований, предъявляемых к качеству обработанной поверхности и составляет от 0,05 до 0,3 мм. Типичные дефекты при обработке отверстий, причины их появления и способы предупреждения приведены в табл. 3.2.

Лабораторная работа № 6

Расчёт режимов резания при сверлении

Цель работы: научиться рассчитывать наиболее оптимальные режимы резания при сверлении по аналитическим формулам.

1. Глубина резания t , мм. При сверлении глубина резания t = 0,5 D , при рассверливании, зенкеровании и развертывании t = 0,5 (D d ) ,

где d – начальный диаметр отверстия;

D – диаметр отверстия после обработки.

2. Подача s , мм/об. При сверлении отверстий без ограничивающихся факторов выбираем максимально допустимую по прочности сверла подачу (табл.24). При рассверливании отверстий подача, рекомендованная для сверления, может быть увеличена до 2 раз. При наличии ограничивающих факторов подачи при сверлении и рассверливании равны. Их определяют умножением табличного значения подачи на соответствующий поправочный коэффициент, приведенный в примечании к таблице. Полученные значения корректируем по паспорту станка (приложение 3). Подачи при зенкеровании приведены в табл. 25, а при развертывании – в табл.26.

3. Скорость резания v р , м/мин. Скорость резания при сверлении

https://pandia.ru/text/80/138/images/image003_138.gif" width="128" height="55">

Значения коэффициентов С v и показателей степени m , x , y , q приведены для сверления в табл.27, для рассверливания, зенкерования и развертывания – в табл. 28, а значения периода стойкости Т – табл. 30.

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

Кv = Кмv Киv Кιv ,

где Кмv - коэффициент на обрабатываемый материал (см. табл. 1, 3, 7, 8);

Киv – коэффициент на инструментальный материал (см. табл. 4);

Кιv, - коэффициент учитывающий глубину сверления (табл. 29). При рассверливании и зенкеровании литых или штампованных отверстий вводится дополнительно поправочный коэффициент Кп v (см. табл. 2).

4. Частоту вращения n , об/мин, рассчитывают по формуле

https://pandia.ru/text/80/138/images/image005_96.gif" width="180" height="51">

5. Крутящий момент M кр , Н·м, и осевую силу Ро , Н, рассчитывают по формулам:

при сверлении

Мкр = 10 См Dqsy Кр;

Р0 = 10 Ср Dqsy Кр;

при рассверливании и зенкеровании

Мкр = 10 См Dq tx sy Кр;

Р0 = 10 Ср tx sy Кр;

Значения См и Ср и показателей степени q , x , y приведены в табл. 31.

Коэффициент Kp , учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражением

Кр = Кмр.

Значения коэффициента Кмр приведены для стали и чугуна в табл. 11, а для медных и алюминиевых сплавов – в табл. 10.

Для определения крутящего момента при развертывании каждый зуб инструмента можно рассматривать как расточной резец. Тогда при диаметре инструмента D крутящий момент, H·м,

;

здесь sz – подача, мм на один зуб инструмента, равная s/z ,

где s – подача, мм/об, z – число зубьев развертки. Значения коэффициентов и показателей степени см. в табл. 22.

6. Мощность резания Ne , кВт , определяют по формуле:

где n пр - частота вращения инструмента или заготовки, об/мин,

Мощность резания не должна превышать эффективную мощность главного привода станка N е < N э (, где N дв - мощность двигателя, h - кпд станка). Если условие не выполняется и N е > N э , снижают скорость резания. Определяют коэффициент перегрузки рассчитывают новое меньшее значение скорости резания https://pandia.ru/text/80/138/images/image011_47.gif" width="75" height="25 src=">, где Рост – осевая сила станка.

7. Основное время То , мин, рассчитывают по формуле ,

где L длина рабочего хода инструмента, мм;

Длина рабочего хода, мм, равна L = l + l 1 + l 2 ,

где l – длина обрабатываемой поверхности, мм;

l 1 и l 2 – величины врезания и перебега инструмента, мм (см. приложение 4).

Таблица 1

Поправочный коэффициент К мv , учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания.

Обрабатываемый

материал

Расчетная формула

Серый чугун

Ковкий чугун

Примечания: 1. σв и НВ – фактические параметры. Характеризующие обрабатываемый материал, для которого рассчитывается скорость резания.

2. Коэффициент Кr характеризующий группу стали по обрабатываемости, и показатель степени nv см. в табл.7.

Таблица 2

Поправочный коэффициент Кп v , учитывающий влияние состояния поверхности заготовки на скорость резания.

Таблица 3

Поправочный коэффициент Км v , учитывающий влияние физико-механических свойств медных и алюминиевых сплавов на скорость резания.

Таблица 4

Поправочный коэффициент Киv , учитывающий влияние инструментального материала на скорость резания.

Обрабатываемый

материал

Значения коэффициента Ки v в зависимости от марки

инструментального материала

Сталь конструкционная

Коррозионно-стойкие и жаропрочные стали

Сталь закаленная

Н 35 – 50

Н 51 – 62

Серый и ковкий чугун

Сталь, чугун, медные и алюминиевые сплавы

РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

ОБРАБОТКИ ЗАГОТОВОК НА СТАНКАХ

СВЕРЛИЛЬНОЙ ГРУППЫ

Расчет режимов резания при сверлении, рассверливании, зенкеровании, развертывании

Глубина резания при сверлении равна половине диаметра, а при рассверливании, зенкеровании и развертывании – полуразности имеющегося и получаемого диаметров (рис. 4.1):

–сверление: t = 0,5∙D ;

–рассверливание, зенкерование и развертывание: t = 0,5(D – d ).

Рис. 4.1. Схема резания:

а – при сверлении; б – при зенкеровании, рассверливании

Подача при сверлении отверстий без ограничивающих факторов выбирается максимально допустимой по прочности сверла может быть определена по табл. 4.1 в зависимости от обрабатываемого материала и диаметра выполняемого отверстия. При рассверливании отверстий подача, рекомендуемая для сверления, может быть увеличена до 2 раз.

При наличии ограничивающих факторов подачи при сверлении и рассверливании равны. Их определяют умножением табличного значения подачи на соответствующий поправочный коэффициент, приведенный в примечании к таблице.

Таблица 4.1

Подачи, мм/об, при сверлении стали, чугуна, медных и алюминиевых сплавов сверлами из быстрорежущей стали

Диаметр сверла D , мм Сталь
НВ <160 160…240НВ 240…300НВ НВ>300 НВ ≤170 НВ>170
2…4 0,09–0,13 0,08–0,10 0,06–0,07 0,04–0,06 0,12–0,18 0,09–0,12
4…6 0,13–0,19 0,10–0,15 0,07–0,11 0,06–0,09 0,18–0,27 0,12–0,18
6…8 0,19–0,26 0,15–0,20 0,11–0,14 0,09–0,12 0,27–0,36 0,18–0,24
8…10 0,26–0,32 0,20–0,25 0,14–0,17 0,12–0,15 0,36–0,45 0,24–0,31
10…12 0,32–0,36 0,25–0,28 0,17–0,20 0,15–0,17 0,45–0,55 0,31–0,35
12…16 0,36–0,43 0,28–0,33 0,20–0,23 0,17–0,20 0,55–0,66 0,35–0,41
16…20 0,43–0,49 0,33–0,38 0,23–0,27 0,20–0,23 0,66–0,76 0,41–0,47
20…25 0,49–0,58 0,38–0,43 0,27–0,32 0,23–0,26 0,76–0,89 0,47–0,54
25…30 0,58–0,62 0,43–0,48 0,32–0,35 0,26–0,29 0,89–0,96 0,54–0,60
30…40 0,62–0,78 0,48–0,58 0,35–0,42 0,29–0,35 0,96–1,19 0,60–0,71
40…50 0,78–0,89 0,58–0,66 0,42–0,48 0,35–0,40 1,19–1,36 0,71–0,81
Примечание. Приведенные подачи применяют при сверлении отверстий глубиной l ≤3D с точностью не выше 12-го квалитета в условиях жесткой технологической системы. В противном случае вводят поправочный коэффициенты: 1) на глубину отверстия: К ls = 0,9 при l ≤5D ; К ls = 0,8 при l ≤7D ; К ls = 0,75 при l ≤10D ; 2) на достижение более высокого качества отверстия в связи с последующей операцией развертывания или нарезания резьбы К о s = 0,5. 3) на недостаточную жесткость системы СПИЗ: при средней жесткости К ж s = 0,75; при малой жесткости К ж s = 0,5; 4) на инструментальный материал К И s = 0,6 для сверла с режущей частью из твердого сплава.


Подачи при зенкеровании приведены в табл. 4.2, а при развертывании – табл. 4.3.

Таблица 4.2

Подача, мм/об, при обработке отверстий зенкерами из быстрорежущей стали и твердого сплава

Обрабатываемый материал Диаметр зенкера D , мм
До 15 Св. 15 до 20 Св. 20 до 25 Св. 25 до 30 Св. 30 до 35 Св. 35 до 40 Св. 40 до 50 Св. 50 до 60 Св. 60 до 80
Сталь 0,5–0,6 0,6–0,7 0,7–0,9 0,8–1,0 0,9–1,1 0,9–1,2 1,0–1,3 1,1–1,3 1,2–1,5
Чугун, НВ ≤200 и медные сплавы 0,7–0,9 0,9–1,1 1,0–1,2 1,1–1,3 1,2–1,5 1,4–1,7 1,6–2,0 1,8–2,2 2,0–2,4
Чугун, НВ >200 0,5–0,6 0,6–0,7 0,7–0,8 0,8–0,9 0,9–1,1 1,0–1,2 1,2–1,4 1,3–1,5 1,4–1,5
Примечание: 1. Приведенные значения подачи применять для обработки отверстий с допуском не выше 12-го квалитета. Для достижения более высокой точности (9-11-й квалитет), а также при подготовке отверстий под последующую обработку их одной резверткой или под нарезание резьбы метчиком вводить поправочный коэффициент К os = 0,7. 2.При зенкеровании глухих отверстий подача не должна превышать 0,3–0,6 мм/об.

Таблица 4.3

Подача, мм/об, при предварительном (черновом) развертывании

отверстий развертками из быстрорежущей стали и твердого сплава

Обрабатываемый материал Диаметр развертки D , мм
До 10 Св. 10 до 15 Св. 15 до 20 Св. 20 до 25 Св. 25 до 30 Св. 30 до 35 Св. 35 до 40 Св. 40 до 50 Св. 50 до 60 Св. 60 до 80
Сталь 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,7 2,0
Чугун, НВ ≤200 и медные сплавы 2,2 2,4 2,6 2,7 3,1 3,2 3,4 3,8 4,3 5,0
Чугун, НВ >200 1,7 1,9 2,0 2,2 2,4 2,6 2,7 3,1 3,4 3,8
Примечание: 1. Подачу следует уменьшать: а) при чистовом развертывании в один проход с точностью по 9–11-му квалитету и параметром шероховатости поверхности R a = 3,2…6,3 мкм или при развертывании под полирование и хонингование, умножая на коэффициент К os = 0,8; б) при чистовом развертывании после чернового с точностью по 7-му квалитету и параметром шероховатости поверхности R a = 0,4…0,8 мкм, умножая на коэффициент К os = 0,7; в) при твердосплавной рабочей части, умножая на коэффициент К И s = 0,7. 2.При развертывании глухих отверстий подача не должна превышать 0,2–0,5 мм/об.

Скорость резания ,м/мин, при сверлении

а при рассверливании, зенкеровании, развертывании

Значения коэффициентов С v и показателей степени приведены для сверления в табл. 4.4, для рассверливания, зенкерования и развертывания – в табл. 4.5, а значения периода стойкости Т – в табл. 4.6.

Таблица 4.4

Значения коэффициента С v и показателей степени в формуле скорости резания при сверлении

Обрабатываемый материал Подача s, мм/об Охлаждение
С v q y m
Сталь конструкционная углеродистая, σ В = 750МПа Р6М5 ≤0,2 >0,2 7,0 9,8 0,40 0,70 0,50 0,20 Есть
Сталь жаропрочная 12Х18Н9Т, 141НВ 3,5 0,50 0,45 0,12
Чугун серый, 190 НВ ≤0,3 >0,3 14,7 17,1 0,25 0,55 0,40 0,125 Нет
ВК8 34,2 0,45 0,30 0,20
Чугун ковкий, 150 НВ Р6М5 ≤0,3 >0,3 21,8 25,3 0,25 0,55 0,40 0,125 Есть
ВК8 40,4 0,45 0,3 0,20 Нет
Медные гетерогенные сплавы средней твердости, 100…140 НВ Р6М5 ≤0,3 >0,3 28,1 32,6 0,25 0,55 0,40 0,125 Есть
Силумин и литейные алюминиевые сплавы, σ В = 100…200МПа, НВ≤ 65; дюралюминий, НВ≤ 100 ≤0,3 >0,3 36,3 40,7 0,25 0,55 0,40 0,125
Примечание . Для сверл из быстрорежущей стали рассчитанные по приведенным данным скорости резания действительны при двойной заточке и подточенной перемычке. При одинарной заточке сверл из быстрорежущей стали рассчитанную скорость резания следует уменьшать, умножая ее на коэффициент К з v = 0,7.

Таблица 4.5

Значения коэффициента С v и показателей степени в формуле скорости резания при рассверливании, зенкеровании и развертывании

Обрабатываемый материал Вид обработки Материал режущей части инструмента Коэффициент и показатели степени Охлаждение
С v q x y m
Рассверливание Р6М5 ВК8 16,2 10,8 0,4 0,6 0,2 0,5 0,3 0,2 0,25 Есть
Зенкерование Р6М5 Т15К6 16,3 18,0 0,3 0,6 0,5 0,3 0,2 0,25
Развертывание Р6М5 Т15К6 10,5 100,6 0,3 0,3 0,2 0,65 0,65 0,4
Конструкционная углеродистая сталь, σ В = 1600…1800МПа, 49…54НВС Зенкерование Т15К6 10,0 0,6 0,3 0,6 0,45
Развертывание 14,0 0,4 0,75 1,05 0,85
Серый чугун, 190 НВ Рассверливание Р6М5 ВК8 23,4 56,9 0,25 0,5 0,1 0,15 0,4 0,45 0,125 0,4 Нет
Зенкерование Р6М5 ВК8 18,8 105,0 0,2 0,4 0,1 0,15 0,4 0,45 0,125 0,4
Развертывание Р6М5 ВК8 15,6 109,0 0,2 0,2 0,1 0,5 0,5 0,3 0,45
Ковкий чугун, 150 НВ Рассверливание Р6М5 ВК8 34,7 77,4 0,25 0,5 0,1 0,15 0,4 0,45 0,125 0,4 Есть
Зенкерование Р6М5 ВК8 27,9 143,0 0,2 0,4 0,1 0,15 0,4 0,45 0,125 0,4 Есть
Развертывание Р6М5 ВК8 23,2 148,0 0,2 0,2 0,1 0,5 0,5 0,3 0,45 Нет

Таблица 4.6

Средние значения периода стойкости сверл, зенкеров и разверток

Инструмент (операция) Обрабатываемый материал Стойкость Т , мин, при диаметре инструмента, мм
До 5 6–10 11–20 21–30 31–40 41–50 51–60 61–80
Быстрорежущая сталь
Твердый сплав
Коррозионностойкая сталь Быстрорежущая сталь
Сверло (сверление и рассверливание) Серый и ковкий чугун, медные и алюминиевые сплавы Быстрорежущая сталь
Твердый сплав
Зенкеры (зенкерование) Конструкционная углеродистая и легированная, серый и ковкий чугун Быстрорежущая сталь и твердый сплав
Развертки (развертывание) Конструкционная углеродистая и легированная Быстрорежущая сталь
Твердый сплав
Серый и ковкий чугун Быстрорежущая сталь
Твердый сплав

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания

где К MV –коэффициент, учитывающий качество обрабатываемого материала (прил. 1-4); K И V –коэффициент на инструментальный материал (прил. 6); К l V – коэффициент, учитывающий глубину сверления (табл. 4.7). При рассверливании и зенкеровании литых или штампованных отверстий вводится дополнительно поправочный коэффициент K nV (прил. 5).

Таблица 4.7

Поправочный коэффициент К l V на скорость резания при сверления, учитывающий глубину обрабатываемого отверстия

Крутящий момент, Н∙м, и осевую силу, Н , рассчитывают по формулам:

– при сверлении

– при рассверливании и зенкеровании

Значения коэффициентов С М и С р и показателей степени приведены в табл. 4.8.

Таблица 4.8

Значения коэффициентов и показателей степени в формулах крутящего момента и осевой силы при сверлении, рассверливании и зенкеровании

Обрабатываемый материал Наименование операции Материал режущей части инструмента Коэффициент и показатели степени в формулах
крутящего момента осевой силы
С М q x y С р q x y
Конструкционная углеродистая сталь, σ В = 750МПа Сверление Быстрорежущая сталь 0,0345 2,0 0,8 1,0 0,7
0,09 1,0 0,9 0,8 1,2 0,65
Жаропрочная сталь12Х18Н9Т, 141НВ Сверление 0,041 2,0 0,7 1,0 0,7
Рассверливание и зенкерование 0,106 1,0 0,9 0,8 1,2 0,65
Серый чугун, 190 НВ Сверление Твердый сплав 0,012 2,2 0,8 1,2 0,75
Рассверливание и зенкерование 0,196 0,85 0,8 0,7 1,0 0,4
Сверление Быстрорежущая сталь 0,021 2,0 0,8 42,7 1,0 0,8
Рассверливание и зенкерование 0,085 0,75 0,8 23,5 1,2 0,4
Ковкий чугун, 150 НВ Сверление Быстрорежущая сталь 0,021 2,0 0,8 43,3 1,0 0,8
Рассверливание и зенкерование Твердый сплав 0,01 2,2 0,8 32,8 1,2 0,75
0,17 0,85 0,8 0,7 1,0 0,4
Примечание. Рассчитанные по формуле осевые силы при сверлении действительны для сверл с подточенной перемычкой; с неподточенной перемычкой осевая сила при сверлении возрастает в 1,33 раза.

Коэффициент, учитывающий фактические условия обработки, в данном случае зависит только от материала обрабатываемой заготовки и определяется выражение

Значения коэффициента К МР приведены для стали и чугуна в прил. 9.

Для определения крутящего момента при развертывании каждый зуб инструмента можно рассматривать как расточной резец. Тогда при диаметре инструмента D крутящий момент, Н∙м,

здесь s z – подача, мм на один зуб инструмента, равная s/z, где s – подача, мм/об, z – число зубьев развертки. Значения коэффициентов и показателей степени представлены в табл.

Мощность резания, кВт, определяют по формуле

где частота вращения инструмента или заготовки, об/мин,

При использовании табл. 4.1 следует руководствоваться следующими рекомендациями:

1.Приведенную подачу при сверлении применяют для жестких деталей с допуском не выше 12-го квалитета под последующую обработку сверлом, зенкером или резцом при глубине сверления / < 3D. Если это условие не соблюдается, то вводят поправочный коэффициент: 0,9 при / < 5D; 0.8 при/< 7D; 0,75 при/< 10D.

2.Подачу при сверлении следует уменьшать, учитывая следующие
технологические факторы:

а) при сверлении отверстий в деталях средней жесткости с допуском не выше 12-го квалитета или под последующую обработку сверлом, зенкером или резцом вводят коэффициент 0,75;

б) при сверлении точных отверстий под последующую обработку развертками или под нарезание резьбы метчиками, при сверлении

центровочными сверлами, при сверлении отверстий в деталях малой жесткости и с неустойчивыми опорными поверхностями вводят коэффициент 0,5.

© 2020 reabuilding.ru -- Портал о правильном строительстве