Метод отрыва со скалыванием. Методы определения прочности бетона Метод отрыва

Главная / Коммуникации

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Требуется построить градуировочную зависимость?

Мы выполним все расчеты и поможем построить индивидуальную градуировочную зависимость. Напишите нам, заполните форму ниже.

Форма заявки

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластической деформации 5 ... 50 ± 30 ... 40%
2 Упругого отскока 5 ... 50 ± 50%
3 Ударного импульса 10 ... 70 ± 50%
4 Отрыва 5 ... 60 нет данных
5 Отрыва со скалыванием 5 ... 100 нет данных
6 Скалывания ребра 10 ... 70 нет данных
7 Ультразвуковой 10 ... 40 ± 30 ... 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;
** по данным источника без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по , методы ударного импульса и упругого отскока по . Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы . В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона .

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.


Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям . При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля . Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

1 РАЗРАБОТАН Структурным подразделением АО «НИЦ «Строительство» Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им. А.А. Гвоздева (НИИЖБ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 18 июня 2015 г. № 47)

Краткое наименование страны
по МК (ИСО 3166) 004-97

Код страны
по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа
по стандартизации

Армения

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова

Молдова-Стандарт

Россия

Росстандарт

Таджикистан

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 сентября 2015 г. № 1378-ст межгосударственный стандарт ГОСТ 22690-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2016 г.

5 В настоящем стандарте учтены основные нормативные положения в части требований к механическим методам неразрушающего контроля прочности бетона следующих европейских региональных стандартов:

EN 12504-2:2001 Testing concrete in structures - Part2: Non-destructive testing - Determination of rebound number (Испытание бетона в конструкциях. Часть 2. Неразрушающий контроль. Определение критерия отскока);

EN 12504-3:2005 Testing concrete in structures - Determination of pull-outforce (Испытание бетона в конструкциях. Часть 3. Определение усилия отрыва).

Степень соответствия - неэквивалентная (NEQ)

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ГОСТ 22690-2015

Concretes
Determination of strength by mechanical methods of nondestructive testing

Дата введения - 2016-04-01

1 Область применения

Настоящий стандарт распространяется на конструкционные тяжелые, мелкозернистые, легкие и напрягающие бетоны монолитных, сборных и сборно-монолитных бетонных и железобетонных изделий, конструкций и сооружений (далее - конструкции) и устанавливает механические методы определения прочности на сжатие бетонов в конструкциях по упругому отскоку, ударному импульсу, пластической деформации, отрыву, скалыванию ребра и отрыву со скалыванием.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

Примечание - Стандартные схемы испытаний применимы в ограниченном диапазоне прочности бетона (см. приложения и ). Для случаев, не относящихся к стандартным схемам испытаний, следует устанавливать градуировочные зависимости по общим правилам.

4.6 Метод испытания следует выбирать с учетом данных, приведенных в таблице , и дополнительных ограничений, установленных производителями конкретных средств измерений. Применение методов за пределами рекомендуемых в таблице диапазонов прочности бетона допускается при научно-техническом обосновании по результатам исследований с использованием средств измерений, прошедших метрологическую аттестацию для расширенного диапазона прочности бетона.

Таблица 1

Наименование метода

Предельные значения прочности бетона, МПа

Упругий отскок и пластическая деформация

5 - 50

Ударный импульс

5 - 150

Отрыв

5 - 60

Скалывание ребра

10 - 70

Отрыв со скалыванием

5 - 100

4.7 Определение прочности тяжелых бетонов проектных классов В60 и выше или при средней прочности бетона на сжатие R m ≥ 70 МПа в монолитных конструкциях необходимо проводить с учетом положений ГОСТ 31914 .

4.8 Прочность бетона определяют на участках конструкций, не имеющих видимых повреждений (отслоение защитного слоя, трещины, каверны и т. п.).

4.9 Возраст бетона контролируемых конструкций и ее участков не должен отличаться от возраста бетона конструкций (участков, образцов), испытанных для установления градуировочной зависимости, более чем на 25 %. Исключениями являются контроль прочности и построение градуировочной зависимости для бетона, возраст которого превышает два месяца. В этом случае различие в возрасте отдельных конструкций (участков, образцов) не регламентируется.

4.10 Испытания проводят при положительной температуре бетона. Допускается проводить испытания при отрицательной температуре бетона, но не ниже минус 10 °С, при установлении или привязке градуировочной зависимости с учетом требований . Температура бетона при испытаниях должна соответствовать температуре, предусмотренной условиями эксплуатации приборов.

Градуировочные зависимости, установленные при температуре бетона ниже 0 °С, не допускается применять при положительных температурах.

4.11 При необходимости проведения испытаний бетона конструкций после тепловой обработки при температуре поверхности T ≥ 40 °С (для контроля отпускной, передаточной и распалубочной прочности бетона) градуировочную зависимость устанавливают после определения прочности бетона в конструкции косвенным неразрушающим методом при температуре t = (T ± 10) °С, а испытания бетона прямым неразрушающим методом или испытания образцов - после остывания при нормальной температуре.

5 Средства измерений, аппаратура и инструмент

5.1 Средства измерений и приборы для механических испытаний, предназначенные для определения прочности бетона, должны быть аттестованы и поверены в установленном порядке и должны соответствовать требованиям по приложению .

5.2 Показания приборов, градуированных в единицах прочности бетона, следует рассматривать как косвенный показатель прочности бетона. Указанные приборы следует использовать только после установления градуировочной зависимости «показание прибора - прочность бетона» или привязки зависимости, установленной в приборе в соответствии с .

5.3 Инструмент для измерения диаметра отпечатков (штангенциркуль по ГОСТ 166), используемый для метода пластических деформаций, должен обеспечивать измерение с погрешностью не более 0,1 мм, инструмент для измерения глубины отпечатка (индикатор часового типа по ГОСТ 577 и др.) - с погрешностью не более 0,01 мм.

5.4 Стандартные схемы проведения испытаний методом отрыва со скалыванием и скола ребра предусматривают применение анкерных устройств и захватов в соответствии с приложениями и .

5.5 Для метода отрыва со скалыванием следует применять анкерные устройства, глубина заделки которых должна быть не менее максимального размера крупного заполнителя бетона испытуемой конструкции.

5.6 Для метода отрыва следует использовать стальные диски диаметром не менее 40 мм, толщиной не менее 6 мм и не менее 0,1 диаметра, с параметрами шероховатости приклеиваемой поверхности не менее Ra = 20 мкм по ГОСТ 2789 . Клей для приклейки диска должен обеспечивать прочность сцепления с бетоном, при которой разрушение происходит по бетону.

6 Подготовка к испытаниям

6.1.1 Подготовка к испытаниям включает в себя проверку используемых приборов в соответствии с инструкциями по их эксплуатации и установление градуировочных зависимостей между прочностью бетона и косвенной характеристикой прочности.

6.1.2 Градуировочную зависимость устанавливают на основании следующих данных:

Результатов параллельных испытаний одних и тех же участков конструкций одним из косвенных методов и прямым неразрушающим методом определения прочности бетона;

Результатов испытаний участков конструкций одним из косвенных неразрушающих методов определения прочности бетона и испытаний образцов-кернов, отобранных из тех же участков конструкции и испытанных в соответствии с ГОСТ 28570 ;

Результатов испытаний стандартных бетонных образцов одним из косвенных неразрушающих методов определения прочности бетона и механических испытаний по ГОСТ 10180 .

6.1.3 Для косвенных неразрушающих методов определения прочности бетона градуировочную зависимость устанавливают для каждого вида нормируемой прочности, указанной в для бетонов одного номинального состава.

Допускается строить одну градуировочную зависимость для бетонов одного вида с одним типом крупного заполнителя, с единой технологией производства, отличающихся по номинальному составу и значению нормируемой прочности при соблюдении требований .

6.1.4 Допустимое отличие возраста бетона отдельных конструкций (участков, образцов) при установлении градуировочной зависимости от возраста бетона контролируемой конструкции принимают по .

6.1.5 Для прямых неразрушающих методов по допускается использовать зависимости, приведенные в приложениях и для всех видов нормируемой прочности бетона.

6.1.6 Градуировочная зависимость должна иметь среднеквадратическое (остаточное) отклонение S T . H. M , не превышающее 15 % среднего значения прочности бетона участков или образцов, использованных при построении зависимости, и коэффициент (индекс) корреляции не менее 0,7.

Рекомендуется использовать линейную зависимость вида R = a + bK (где R - прочность бетона, K - косвенный показатель). Методика установления, оценки параметров и определения условий применения линейной градуировочной зависимости приведена в приложении .

6.1.7 При построении градуировочной зависимости отклонения единичных значений прочности бетона R i ф от среднего значения прочности бетона участков или образцов, использованных для построения градуировочной зависимости, должны быть в пределах:

От 0,5 до 1,5 среднего значения прочности бетона при ≤ 20 МПа;

От 0,6 до 1,4 среднего значения прочности бетона при 20 МПа < ≤ 50 МПа;

От 0,7 до 1,3 среднего значения прочности бетона при 50 МПа < ≤ 80 МПа;

От 0,8 до 1,2 среднего значения прочности бетона при > 80 МПа.

6.1.8 Корректировка установленной зависимости для бетонов в промежуточном и проектном возрасте должна проводиться не реже одного раза в месяц с учетом дополнительно полученных результатов испытаний. Число образцов или участков дополнительных испытаний при проведении корректировки должно быть не менее трех. Методика корректировки приведена в приложении .

6.1.9 Допускается применять косвенные неразрушающие методы определения прочности бетона, используя градуировочные зависимости, установленные для бетона, отличающегося от испытуемого по составу, возрасту, условиям твердения, влажности, с привязкой в соответствии с методикой по приложению .

6.1.10 Без привязки к конкретным условиям по приложению градуировочные зависимости, установленные для бетона, отличающегося от испытуемого, допускается использовать только для получения ориентировочных значений прочности. Не допускается использовать ориентировочные значения прочности без привязки к конкретным условиям для оценки класса бетона по прочности.

Затем выбирают участки в количестве, предусмотренном , на которых получены максимальное, минимальное и промежуточные значения косвенного показателя.

После испытания косвенным неразрушающим методом участки испытывают прямым неразрушающим методом или отбирают образцы для испытания по ГОСТ 28570 .

6.2.4 Для определения прочности при отрицательной температуре бетона участки, выбранные для построения или привязки градуировочной зависимости, сначала испытывают косвенным неразрушающим методом, а затем отбирают образцы для последующего испытания при положительной температуре или отогревают внешними источниками тепла (инфракрасные излучатели, тепловые пушки и др.) на глубину 50 мм до температуры не ниже 0 °С и испытывают прямым неразрушающим методом. Контроль температуры отогреваемого бетона проводят на глубине установки анкерного устройства в подготовленном отверстии или по поверхности скола бесконтактным способом с помощью пирометра по ГОСТ 28243 .

Отбраковка результатов испытаний, используемых для построения градуировочной зависимости при отрицательной температуре, допускается только в том случае, если отклонения связаны с нарушением процедуры испытания. При этом отбраковываемый результат должен быть заменен результатами повторного испытания в той же зоне конструкции.

6.3.1 При построении градуировочной зависимости по контрольным образцам зависимость устанавливают по единичным значениям косвенного показателя и прочности бетона стандартных образцов-кубов.

За единичное значение косвенного показателя принимают среднее значение косвенных показателей для серии образцов или для одного образца (если градуировочную зависимость устанавливают по отдельным образцам). За единичное значение прочности бетона принимают прочность бетона в серии по ГОСТ 10180 или одного образца (градуировочная зависимость по отдельным образцам). Механические испытания образцов по ГОСТ 10180 проводят непосредственно после испытаний косвенным неразрушающим методом.

6.3.2 При построении градуировочной зависимости по результатам испытаний образцов-кубов используют не менее 15 серий образцов-кубов по ГОСТ 10180 или не менее 30 отдельных образцов-кубов. Образцы изготовляют в соответствии с требованиями ГОСТ 10180 в разные смены, в течение не менее 3 сут из бетона одного номинального состава, по одной технологии, при том же режиме твердения, что и конструкция, подлежащая контролю.

Единичные значения прочности бетона образцов-кубов, используемых для построения градуировочной зависимости, должны соответствовать ожидаемым на производстве отклонениям, при этом быть в пределах диапазонов, установленных в .

6.3.3 Градуировочную зависимость для методов упругого отскока, ударного импульса, пластической деформации, отрыва и скалывания ребра устанавливают на основе результатов испытаний изготовленных образцов-кубов сначала неразрушающим методом, а затем разрушающим методом по ГОСТ 10180 .

При установлении градуировочной зависимости для метода отрыва со скалыванием изготовляют основные и контрольные образцы по . На основных образцах определяют косвенную характеристику, контрольные образцы испытывают по ГОСТ 10180 . Основные и контрольные образцы должны быть изготовлены из одного бетона и твердеть в одинаковых условиях.

6.3.4 Размеры образцов следует выбирать в соответствии с наибольшей крупностью заполнителя в бетонной смеси по ГОСТ 10180 , но не менее:

100×100×100 мм для методов отскока, ударного импульса, пластической деформации, а также для метода отрыва со скалыванием (контрольные образцы);

200×200×200 мм для метода скалывания ребра конструкции;

300×300×300 мм, но с размером ребра не менее шести глубин установки анкерного устройства для метода отрыва со скалыванием (основные образцы).

6.3.5 Для определения косвенных характеристик прочности проводят испытания согласно требованиям раздела на боковых (по направлению бетонирования) гранях образцов-кубов.

Общее число измерений на каждом образце для метода упругого отскока, ударного импульса, пластической деформации при ударе должно быть не менее установленного числа испытаний на участке по таблице , а расстояние между местами ударов - не менее 30 мм (15 мм для метода ударного импульса). Для метода пластической деформации при вдавливании число испытаний на каждой грани должно быть не менее двух, а расстояние между местами испытаний - не менее двух диаметров отпечатков.

При установлении градуировочной зависимости для метода скалывания ребра проводят по одному испытанию на каждом боковом ребре.

При установлении градуировочной зависимости для метода отрыва со скалыванием проводят по одному испытанию на каждой боковой грани основного образца.

6.3.6 При испытаниях методом упругого отскока, ударного импульса, пластической деформации при ударе образцы должны быть зажаты в прессе с усилием не менее (30 ± 5) кН и не более 10 % ожидаемого значения разрушающей нагрузки.

6.3.7 Образцы, испытанные методом отрыва, устанавливают на прессе так, чтобы к опорным плитам пресса не прилегали поверхности, на которых проводили вырыв. Результаты испытаний по ГОСТ 10180 увеличивают на 5 %.

7 Проведение испытаний

7.1.1 Число и расположение контролируемых участков в конструкциях должны соответствовать требованиям ГОСТ 18105 и указываться в проектной документации на конструкции или устанавливаться с учетом:

Задач контроля (определение фактического класса бетона, распалубочной или отпускной прочности, выявление участков пониженной прочности и т. п.);

Вида конструкции (колонны, балки, плиты и др.);

Размещения захваток и порядка бетонирования;

Армирования конструкций.

Правила назначения числа участков испытаний монолитных и сборных конструкций при контроле прочности бетона приведены в приложении . При определении прочности бетона обследуемых конструкций число и расположение участков должны приниматься по программе проведения обследования.

7.1.2 Испытания проводят на участке конструкции площадью от 100 до 900 см 2 .

7.1.3 Общее число измерений на каждом участке, расстояние между местами измерений на участке и от края конструкции, толщина конструкций на участке измерений должны быть не менее значений, приведенных в таблице в зависимости от метода испытаний.

Таблица 2 - Т ребования к участкам испытаний

Наименование метода

Общее число
измерений
на участке

Минимальное
расстояние между
местами измерений
на участке, мм

Минимальное
расстояние от края
конструкции до места
измерения, мм

Минимальная
толщина
конструкции, мм

Упругий отскок

Ударный импульс

Пластическая деформация

Скалывание ребра

Отрыв

2 диаметра
диска

Отрыв со скалыванием при рабочей глубине заделки анкера h :

≥ 40мм

< 40мм

7.1.4 Отклонение отдельных результатов измерений на каждом участке от среднего арифметического значения результатов измерений для данного участка не должно превышать 10 %. Результаты измерений, не удовлетворяющие указанному условию, не учитывают при вычислении среднего арифметического значения косвенного показателя для данного участка. Общее число измерений на каждом участке при вычислении среднего арифметического должно соответствовать требованиям таблицы .

7.1.5 Прочность бетона в контролируемом участке конструкции определяют по среднему значению косвенного показателя по градуировочной зависимости, установленной в соответствии с требованиями раздела , при условии, что вычисленное значение косвенного показателя находится в пределах установленной (или привязанной) зависимости (между наименьшим и наибольшим значениями прочности).

7.1.6 Шероховатость поверхности участка бетона конструкций при испытании методами отскока, ударного импульса, пластической деформации должна соответствовать шероховатости поверхности участков конструкции (или кубов), испытанных при установлении градуировочной зависимости. В необходимых случаях допускается зачищать поверхности конструкции.

При использовании метода пластической деформации при вдавливании, если нулевой отсчет снимают после приложения начальной нагрузки, требований к шероховатости поверхности бетона конструкции не предъявляют.

7.2.1 Испытания проводят в следующей последовательности:

Положение прибора при испытании конструкции относительно горизонтали рекомендуется принимать таким же, как и при установлении градуировочной зависимости. При другом положении прибора необходимо вносить поправку на показатели в соответствии с инструкцией по эксплуатации прибора;

7.3.1 Испытания проводят в следующей последовательности:

Прибор располагают так, чтобы усилие прикладывалось перпендикулярно испытуемой поверхности в соответствии с инструкцией по эксплуатации прибора;

При применении сферического индентора для облегчения измерений диаметров отпечатков испытание допускается проводить через листы копировальной и белой бумаги (в этом случае испытания для установления градуировочной зависимости проводят с применением такой же бумаги);

Фиксируют значения косвенной характеристики в соответствии с инструкцией по эксплуатации прибора;

Вычисляют среднее значение косвенной характеристики на участке конструкции.

7.4.1 Испытания проводят в следующей последовательности:

Прибор располагают так, чтобы усилие прикладывалось перпендикулярно испытуемой поверхности в соответствии с инструкцией по эксплуатации прибора;

Положение прибора при испытании конструкции относительно горизонтали рекомендуется принимать таким же, как и при испытании при установлении градуировочной зависимости. При другом положении прибора необходимо вносить поправку на показания в соответствии с инструкцией по эксплуатации прибора;

Фиксируют значение косвенной характеристики в соответствии с инструкцией по эксплуатации прибора;

Вычисляют среднее значение косвенной характеристики на участке конструкции.

7.5.1 При испытании методом отрыва участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

7.5.2 Испытание проводят в следующей последовательности:

В месте приклейки диска снимают поверхностный слой бетона глубиной 0,5 - 1 мм и очищают поверхность от пыли;

Диск приклеивают к бетону, прижимая диск и удаляя излишки клея за пределами диска;

Прибор соединяют с диском;

Нагрузку плавно увеличивают со скоростью (1 ± 0,3) кН/с;

Измеряют площадь проекции поверхности отрыва на плоскости диска с погрешностью ± 0,5 см 2 ;

Определяют значение условного напряжения в бетоне при отрыве как отношение максимального усилия отрыва к площади проекции поверхности отрыва.

7.5.3 Результаты испытаний не учитывают, если при отрыве бетона была обнажена арматура или площадь проекции поверхности отрыва составила менее 80 % площади диска.

7.6.1 При испытании методом отрыва со скалыванием участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

7.6.2 Испытания проводят в следующей последовательности:

Если анкерное устройство не было установлено до бетонирования, то в бетоне выполняют отверстие, размер которого выбирают в соответствии с инструкцией по эксплуатации прибора в зависимости от типа анкерного устройства;

В отверстие закрепляют анкерное устройство на глубину, предусмотренную инструкцией по эксплуатации прибора, в зависимости от типа анкерного устройства;

Прибор соединяют с анкерным устройством;

Нагрузку увеличивают со скоростью 1,5 - 3,0 кН/с;

Фиксируют показание силоизмерителя прибора Р 0 и величину проскальзывания анкера Δh (разность между фактической глубиной вырыва и глубиной заделки анкерного устройства) с точностью не менее 0,1 мм.

7.6.3 Измеренное значение силы вырыва Р 0 умножают на поправочный коэффициент γ, определяемый по формуле

где h - рабочая глубина заделки анкерного устройства, мм;

Δh - величина проскальзывания анкера, мм.

7.6.4 Если наибольший и наименьший размеры вырванной части бетона от анкерного устройства до границ разрушения по поверхности конструкции отличаются более чем в два раза, а также, если глубина вырыва отличается от глубины заделки анкерного устройства более чем на 5 % (Δh > 0,05h , γ > 1,1), то результаты испытаний допускается учитывать только для ориентировочной оценки прочности бетона.

Примечание - Ориентировочные значения прочности бетона не допускается использовать для оценки класса бетона по прочности и построения градуировочных зависимостей.

7.6.5 Результаты испытания не учитывают, если глубина вырыва отличается от глубины заделки анкерного устройства более чем на 10 % (Δh > 0,1h ) или была обнажена арматура на расстоянии от анкерного устройства, меньшем, чем глубина его заделки.

7.7.1 При испытании методом скалывания ребра на участке испытания не должно быть трещин, околов бетона, наплывов или раковин высотой (глубиной) более 5 мм. Участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

7.7.2 Испытание проводят в следующей последовательности:

Прибор закрепляют на конструкции, прикладывают нагрузку со скоростью не более (1 ± 0,3) кН/с;

Фиксируют показание силоизмерителя прибора;

Измеряют фактическую глубину скалывания;

Определяют среднее значение усилия скалывания.

7.7.3 Результаты испытания не учитывают, если при скалывании бетона была обнажена арматура или фактическая глубина скалывания отличалась от заданной более чем на 2 мм.

8 Обработка и оформление результатов

8.1 Результаты испытаний представляют в таблице, в которой указывают:

Вид конструкции;

Проектный класс бетона;

Возраст бетона;

Прочность бетона каждого проконтролированного участка по ;

Среднюю прочность бетона конструкции;

Зоны конструкции или ее части при соблюдении требований .

Форма таблицы представления результатов испытаний приведена в приложении .

8.2 Обработку и оценку соответствия установленным требованиям значений фактической прочности бетона, полученных с применением приведенных в настоящем стандарте методов, проводят по ГОСТ 18105 .

Примечание - Статистическую оценку класса бетона по результатам испытаний проводят по ГОСТ 18105 (схемы «А», «Б» или «В») в тех случаях, когда прочность бетона определяется по градуировочной зависимости, построенной в соответствии с разделом . При использовании ранее установленных зависимостей путем их привязки (по приложению ) статистический контроль не допускается, а оценку класса бетона проводят только по схеме «Г» ГОСТ 18105 .

8.3 Результаты определения прочности бетона механическими методами неразрушающего контроля оформляют в заключении (протоколе), в котором приводят следующие данные:

Об испытанных конструкциях с указанием проектного класса, даты бетонирования и проведения испытаний или возраста бетона на момент проведения испытания;

О применяемых методах контроля прочности бетона;

О типах приборов с заводскими номерами, сведения о поверках приборов;

О принятых градуировочных зависимостях (уравнение зависимости, параметры зависимости, соблюдение условий применения градуировочной зависимости);

Используемые для построения градуировочной зависимости или ее привязки (дата проведения и результаты испытаний неразрушающими косвенными и прямыми или разрушающими методами, корректирующие коэффициенты);

О числе участков определения прочности бетона в конструкциях с указанием их расположения;

Результаты испытаний;

Методику, результаты обработки и оценки полученных данных.

Приложение А
(обязательное)
Стандартная схема испытания методом отрыва со скалыванием

А.1 Стандартная схема испытания методом отрыва со скалыванием предусматривает проведение испытаний при соблюдении требований - .

А.2 Стандартная схема испытаний применима в следующих случаях:

Испытания тяжелого бетона прочностью на сжатие от 5 до 100 МПа;

Испытания легкого бетона прочностью на сжатие от 5 до 40 МПа;

Максимальная фракция крупного заполнителя бетона не более рабочей глубины заделки анкерных устройств.

А.3 Опоры нагружающего устройства должны равномерно прилегать к поверхности бетона на расстоянии не менее 2h от оси анкерного устройства, где h - рабочая глубина заделки анкерного устройства. Схема испытания приведена на рисунке .

1 2 - опора нагружающего устройства;
3 - захват нагружающего устройства; 4 - переходные элементы, тяги; 5 - анкерное устройство;
6 - вырываемый бетон (конус отрыва); 7 - испытуемая конструкция

Рисунок А.1 - Схема испытания методом отрыва со скалыванием

А.4 Стандартной схемой испытания методом отрыва со скалыванием предусмотрено применение анкерных устройств трех типов (см. рисунок ). Анкерное устройство типа I устанавливают в конструкции при бетонировании. Анкерные устройства типов II и III устанавливают в предварительно подготовленные в конструкции отверстия.

1 - рабочий стержень; 2 - рабочий стержень с разжимным конусом; 3 - сегментные рифленые щеки;
4 - опорный стержень; 5 - рабочий стержень с полым разжимным конусом; 6 - выравнивающая шайба

Рисунок А.2 - Типы анкерных устройств для стандартной схемы испытаний

А.5 Параметры анкерных устройств и допустимые для них диапазоны измеряемой прочности бетона при стандартной схеме испытаний указаны в таблице . Для легкого бетона при стандартной схеме испытаний применяются только анкерные устройства с глубиной заделки 48 мм.

Таблица А.1 - Параметры анкерных устройств при стандартной схеме испытаний

Тип анкерного
устройства

Диаметр анкерного
устройства d , мм

Глубина заделки анкерных устройств,
мм

Допустимый для анкерного устройства
диапазон измерений прочности
на сжатие бетона, МПа

рабочая h

полная h"

тяжелого

легкого

45 - 75

10 - 50

10 - 40

40 - 100

5 - 100

5 - 40

10 - 50

А.6 Конструкции анкеров типов II и III должны обеспечивать предварительное (до приложения нагрузки) обжатие стенок отверстия на рабочей глубине заделки h и контроль проскальзывания после испытания.

Приложение Б
(обязательное)
Стандартная схема испытания методом скалывания ребра

Б.1 Стандартная схема испытания методом скалывания ребра предусматривает проведение испытаний при соблюдении требований - .

Б.2 Стандартная схема испытаний применима в следующих случаях:

Максимальная фракция крупного заполнителя бетона не более 40 мм;

Испытания тяжелого бетона прочностью на сжатие от 10 до 70 МПа на гранитном и известняковом щебне.

Б.3 Для проведения испытаний применяют прибор, состоящий из силовозбудителя с блоком силоизмерителя и захвата со скобой для местного скалывания ребра конструкции. Схема испытания приведена на рисунке .

1 - прибор с нагружающим устройством и силоизмерителем; 2 - опорная рама;
3 - скалываемый бетон; 4 - испытуемая конструкция; 5 - захват со скобой

Рисунок Б.1 - Схема испытания методом скалывания ребра

Б.4 При местном скалывании ребра должны быть обеспечены следующие параметры:

Глубина скалывания a = (20 ± 2) мм;

Ширина скалывания b = (30 ± 0,5) мм;

Угол между направлением действия нагрузки и нормалью к нагружаемой поверхности конструкции β = (18 ± 1)°.

Приложение В
(рекомендуемое)
Градуировочная зависимость для метода отрыва со скалыванием

При проведении испытаний методом отрыва со скалыванием по стандартной схеме согласно приложению кубиковую прочность бетона на сжатие R , МПа, допускается вычислять по градуировочной зависимости по формуле

R = m 1 m 2 P ,

где m 1 - коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырывай принимаемый равным 1 при крупности заполнителя менее 50 мм;

m 2 - коэффициент пропорциональности для перехода от усилия вырывав килоньютонах к прочности бетона в мегапаскалях;

Р - усилие вырыва анкерного устройства, кН.

При испытании тяжелого бетона прочностью 5 МПа и более и легкого бетона прочностью от 5 до 40 МПа значения коэффициента пропорциональности m 2 принимают по таблице .

Таблица В.1

Тип анкерного
устройства

Диапазон
измеряемой
прочности бетона
на сжатие, МПа

Диаметр анкерного
устройства d , мм

Глубина заделки анкерного
устройства, мм

Значение коэффициента m 2 для бетона

тяжелого

легкого

45 - 75

10 - 50

40 - 75

5 - 75

10 - 50

Коэффициенты m 2 при испытании тяжелого бетона со средней прочностью выше 70 МПа следует принимать по ГОСТ 31914 .

Приложение Г
(рекомендуемое)
Градуировочная зависимость для метода скалывания ребра
при стандартной схеме испытания

При выполнении испытания методом скалывания ребра по стандартной схеме согласно приложению кубиковую прочность на сжатие бетона на гранитном и известковом щебне R , МПа, допускается вычислять по градуировочной зависимости по формуле

R = 0,058m (30Р + Р 2),

где m - коэффициент, учитывающий максимальный размер крупного заполнителя и принимаемый равным:

1,0 - при крупности заполнителя менее 20 мм;

1,05 - при крупности заполнителя от 20 до 30 мм;

1,1 -при крупности заполнителя от 30 до 40 мм;

Р - усилие скалывания, кН.

Приложение Д
(обязательное)
Требования к приборам для механических испытаний

Таблица Д.1

Наименование характеристик приборов

Характеристика приборов для метода

упругого
отскока

ударного
импульса

пластической
деформации

отрыва

скалывания
ребра

отрыва со
скалыванием

Твердость ударника, бойка или индентора HRCэ, не менее

Шероховатость контактной части ударника или индентора, мкм, не более

Диаметр ударника или индентора, мм, не менее

Толщина кромок дискового индентора, мм, не менее

Угол конического индентора

30° - 60°

Диаметр отпечатка, % диаметра индентора

20 - 70

Допуск перпендикулярности при приложении нагрузки на высоте 100 мм, мм

Энергия удара, Дж, не менее

0,02

Скорость увеличения нагрузки, кН/с Уравнение зависимости «косвенная характеристика - прочность» принимают линейным по формуле

Е.2 Отбраковка результатов испытаний

После построения градуировочной зависимости по формуле () проводят ее корректировку путем отбраковки единичных результатов испытаний, не удовлетворяющих условию:

где среднее значение прочности бетона по градуировочной зависимости рассчитывают по формуле

здесь значения R i H , R i ф, , N - см. экспликации к формулам (), ().

Е.4 Корректировка градуировочной зависимости

Корректировка установленной градуировочной зависимости с учетом дополнительно получаемых результатов испытаний должна проводиться не реже одного раза в месяц.

При корректировке градуировочной зависимости к существующим результатам испытаний добавляют не менее трех новых результатов, полученных при минимальном, максимальном и промежуточном значениях косвенного показателя.

По мере накопления данных для построения градуировочной зависимости результаты предыдущих испытаний, начиная с самых первых, отбраковывают, чтобы общее число результатов не превышало 20. После добавления новых результатов и отбраковки старых минимальное и максимальное значения косвенной характеристики, градуировочную зависимость и ее параметры устанавливают вновь по формулам () - ().

Е.5 Условия применения градуировочной зависимости

Применение градуировочной зависимости для определения прочности бетона по настоящему стандарту допускается только для значений косвенной характеристики, попадающей в диапазон от H min до Н mах.

Если коэффициент корреляции r < 0,7 или значение , то проведение контроля и оценка прочности по полученной зависимости не допускаются.

Приложение Ж
(обязательное)
Методика привязки градуировочной зависимости

Ж.1 Значение прочности бетона, определяемое с использованием градуировочной зависимости, установленной для бетона, отличающегося от испытуемого, умножают на коэффициент совпадения K с. Значение K с вычисляют по формуле

где R ос i - прочность бетона в i -м участке, определяемая методом отрыва со скалыванием или испытанием кернов по ГОСТ 28570 ;

R косв i - прочность бетона в i -м участке, определяемая любым косвенным методом по используемой градуировочной зависимости;

n - число участков испытаний.

Ж.2 При вычислении коэффициента совпадения должны быть соблюдены условия:

Число участков испытаний, учитываемых при вычислении коэффициента совпадения, n ≥ 3;

Каждое частное значение R ос i /R косв i должно быть не менее 0,7 и не более 1,3:

1 на 4 м длины линейных конструкций;

1 на 4 м 2 площади плоских конструкций.

Приложение К
(рекомендуемое)
Форма таблицы представления результатов испытаний

Наименование конструкций
(партии конструкций),
проектный класс прочности
бетона, дата бетонирования
или возраст бетона испытанных
конструкций

Обозначение 1)

№ участка по схеме
или расположение
в осях 2)

Прочность бетона, МПа

Класс прочности
бетона 5)

участка 3)

средняя 4 )

1) Марка, условное обозначение и (или) расположение конструкции в осях, зоны конструкции, или части монолитной и сборно-монолитной конструкции (захватки), для которой определяется класс прочности бетона.

2) Общее число и расположение участков в соответствии с .

3) Прочность бетона участка в соответствии с .

4) Средняя прочность бетона конструкции, зоны конструкции или части монолитной и сборно-монолитной конструкции при количестве участков, отвечающих требованиям .

5) Фактический класс прочности бетона конструкции или части монолитной и сборно-монолитной конструкции согласно пунктам 7.3 - 7.5 ГОСТ 18105 в зависимости от выбранной схемы контроля.

Примечание - Представление в графе «Класс прочности бетона» оценочных значений класса или значений требуемой прочности бетона для каждого участка отдельно (оценка класса прочности по одному участку) не допустимо.

Ключевые слова: конструктивные тяжелые и легкие бетоны, монолитные и сборные бетонные и железобетонные изделия, конструкции и сооружения, механические методы определения прочности на сжатие, упругий отскок, ударный импульс, пластическая деформация, отрыв, скалывание ребра, отрыв со скалыванием

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.

Который определяет его эксплуатационные свойства. Поэтому при возведении важных несущих конструкций, строители тщательно следят за этим показателем. Наиболее распространенным способом контроля является определение прочности бетона методом отрыва со скалыванием. Однако, существует и масса других способов.

Поэтому в данной статье мы подробно рассмотрим, как определить прочность бетона наиболее распространенными современными методами.

Виды способов проверки прочности

Наиболее достоверным способом контроля качества бетона является испытание бетонной конструкции, после того, как материал наберет свою проектную прочность.

Что касается испытания отдельно выполненных контрольных образцов, то оно позволяет определить лишь , но не прочности материала в конструкции. Связано это с невозможностью обеспечение одинаковых условий набора прочности опытного образца (вибрирование, нагрев и пр.) и бетонного изделия.

Все существующие методы контроля подразделяются на три группы:

  • Прямые неразрушающие;
  • Разрушающие;
  • Косвенные неразрушающие.

Нередко используют неразрушающие способы контроля, однако, чаще всего работу выполняют косвенными методами. К последней группе относится испытание контрольных образцов, а также образцов отобранных из бетонной конструкции.

Обратите внимание! По показателю прочности при сжатии определяют класс бетона. Для этого бетонные кубики раздавливают при помощи гидравлического пресса, который выдает результат.

Надо сказать, что разрушающие способы также широко распространены в строительстве, однако применяют их реже, так как они нарушают целостность конструкции. Кроме того, цена таких испытаний очень высокая.

Поэтому на сегодняшний день наиболее распространенными являются следующие методы определения прочности:

  • Способ упругого отскока;
  • Ультразвуковой метод;
  • Способ ударного импульса.

Надо сказать, что разные способы проверки имеют разную погрешность:

Основные требования к проверке прочности

Согласно требованиям, изложенным в СП 13-102-2003, выборку бетона для исследования косвенным и прямым методами необходимо выполнять более чем на 30 участках, однако, этого недостаточно для построения и использования градуировочной зависимости.

Еще необходимо, чтобы зависимость, полученная парным корреляционно-регрессивным исследованием, имела коэффициент корреляции не меньше 0,7, а также среднеквадратическое отклонение составляло менее 15 процентов средней прочности. Для выполнения этих условий, точность измерений должна быть очень высокой, при этом прочность бетона должна меняться в широком диапазоне.

Надо сказать, что при исследовании конструкций, эти условия соблюдаются довольно редко. Дело в том, что базовый метод испытаний сопровождается значительной погрешностью.

Кроме того, прочность бетона на поверхности может отличаться от прочности на некоторой глубине. Однако, если бетонирование выполнено качественно и бетон соответствует своему проектному классу, то параметры однотипных конструкций не меняются в широком диапазоне.

Чтобы определить прочность без нарушения действующих норм, следует воспользоваться прямыми неразрушающими или разрушающими способами.

По ГОСТ 22690-88 к прямым способам относятся:

  • Метод отрыва;
  • Отрыв бетона со скалыванием;
  • Скалывание ребра.

Теперь подробней рассмотрим наиболее распространенные технологии определения качества бетона.

Технология определения прочности

Способ отрыва

Принцип данного метода базируется на измерении усилия, которое нужно приложить для отрыва участка бетонной конструкции. Отрывающую нагрузку применяют к ровной поверхности бетонной конструкции. Для этого к ней приклеивается стальной диск, который при помощи тяги соединяется с измерительным прибором.

Диск приклеивают при помощи клея на эпоксидной смоле. ГОСТ 22690-88 рекомендует использовать клей ЭД20 с цементным наполнителем. Правда, в наше время существуют надежные двухкомпонентные клеи.

Данная технология подразумевает приклеивание диска без дополнительных мер по ограничению участка отрыва. Что касается площади отрыва, то она непостоянная и определяется после каждого испытания.

Правда, в зарубежной практике участок отрыва предварительно ограничивается бороздой, выполняемой кольцевыми сверлами. В этом случае площадь отрыва постоянная и известная.

После определения необходимого для отрыва усилия, получают устойчивость материала к растяжению.

По нему, при помощи эмпирической зависимости вычисляют прочность на сжатие при помощи такой формулы – Rbt = 0,5∛(R^2), где:

  • Rbt – прочность на растяжение.
  • R – прочность на сжатие.

Для исследования бетона методом отрыва применяются те же приборы, что и для метода отрыва со скалыванием, это:

  • ОНИКС-ОС;
  • ПОС-50МГ4;
  • ГПНС-5;
  • ГПНВ-5.

Обратите внимание! Чтобы выполнить испытание, также понадобится захватное устройство, а именно – диск с закрепленной на нем тягой.

На фото — проверка качества бетона отрывом со скалыванием

Отрыв со скалыванием

Данный способ имеет много общего с вышеописанным методом. Основное его отличие заключается в способе монтажа устройства к бетонной конструкции. Чтобы приложить к ней отрывающее усилие применяют лепестковые анкеры, которые могут быть разных размеров.

Анкеры вставляются в отверстия, пробуренные в области измерения. Как и в предыдущем случае, прибор измеряет разрушающее усилие.

Вычисление прочности на сжатие осуществляется при помощи зависимости, выраженной формулой — R=m1*m2*P, где:

  • m1 обозначает коэффициент максимального размера крупного наполнителя;
  • m2 обозначает коэффициент перехода к прочности на сжатие. Он зависит от условий вида бетона, а также условий набора прочности.
  • P – разрушающее усилие, полученное в результате исследований.

В нашей стране этот метод является одним из наиболее популярных, так как он достаточно универсальный. Он предоставляет возможность выполнить испытание на любом участке конструкции, так как не требует наличия ровной поверхности. Кроме того, закрепить лепестковый анкер своими руками в толще бетона не составляет труда.

Правда, имеются и некоторые ограничения, которые заключаются в следующих моментах:

  • Густое армирование конструкции – в этом случае измерения будут недостоверными.
  • Толщина конструкции – она должна быть в два раза больше длины анкера.

Скалывание ребра

Данная технология является последним прямым методом неразрушающей проверки контроля. Основной ее особенностью является определение усилия, которое прикладывается для скалывания участка бетона, расположенного на ребре конструкции.

Конструкция прибора, который можно установить на бетонное изделие с одним внешним углом, была разработана относительно недавно. Монтаж устройства к одной из сторон осуществляется при помощи анкера с дюбелем.

После получения данных с прибора, определяют прочность на сжатие по следующей нормированной зависимости, выраженной формулой — R=0,058*m*(30P+P2), где:

  • m – коэффициент, учитывает крупность заполнителя.
  • P — усилие, приложенное для скалывания бетона.

Ультразвуковое определение

Ультразвуковой метод определения прочности бетона основан на взаимосвязи между прочностью материала и скоростью распространения в нем ультразвуковых волн.

Причем существует две градуировочные зависимости:

  • Времени распространения волн ультразвука и прочности материала.
  • Скорости распространения волн ультразвука и прочности материала.

Каждый способ предназначен для определенного типа конструкций:

  • Сквозное прозвучивание в поперечном направлении – применяют для линейных сборных конструкций. При таких исследованиях приборы устанавливают с двух сторон испытываемой конструкции.
  • Поверхностное прозвучивание – применяют для исследования ребристых, плоских, многопустотных плиты перекрытия и стеновых панелей. В этом случае устройство устанавливается только с одной стороны конструкции.

Для обеспечения качественного акустического контакта между испытываемой конструкцией и ультразвуковым преобразователем, применяют вязкие материалы, к примеру, солидол. Также распространен «сухой контакт», но в этом случае используют конусные насадки и протекторы.

Приборы для ультразвукового исследования состоят из двух основных элементов:

  • Датчиков;
  • Электронного блока.

Датчики могут быть:

  • Раздельными – для сквозного прозвучивания.
  • Объединенными – предназначенные для поверхностного прозвучивания.

К достоинствам данного способа проверки относится простота и универсальность.

Исследование молотком Кашкарова

Процесс испытание бетона молотком Кашкарова регламентирован ГОСТом 22690.2-77. Данный способ используют для определения прочности материала в диапазоне 5-50 МПа.

Инструкция по исследованию бетона данным методом выглядит следующим образом:

  • Вначале подыскивается ровный участок конструкции.
  • Если на его поверхности имеется шероховатость или краска, то необходимо выполнить зачистку участка металлической щеткой.
  • Затем на поверхность бетона следует положить копировальную бумагу и сверху лист обычной белой бумаги .

  • Далее по бетонной поверхности наносится удар молотком Кашкарова средней силы перпендикулярно к плоскости бетона. В результате удара остается два отпечатка – на эталонном стержне и листе бумаги.
  • После этого металлический стержень сдвигается не менее чем на 10 мм и наносится еще удар . Для большей точности исследования, процедуру нужно повторить несколько раз.
  • Затем следует измерить отпечатки на эталонном стержне и бумаге с точностью до 0,1 мм.
  • Измерив отпечатки, следует сложить отдельно диаметры, полученные на бумаге, и диаметры на эталонном стержне .

Косвенным параметром прочности бетона является средняя величина отношения отпечатков на эталонном стержне и на бетоне.

Метод отскока

Данный способ исследования является наиболее простым. Испытание выполняется при помощи специального электронного прибора. В нем имеется молоток, вдавливающий шарик в бетон. Электроника определяет прочность материала по отскоку шарика после вдавливания.

Для испытания бетона надо упереть устройство в бетонную поверхность и нажать соответствующую кнопку. Результаты высвечиваются на экране прибора. Надо сказать, что практически так же происходит процесс испытания материала при помощи устройства ударно-импульсного типа.

Вот и все основные способы определения качества бетона, которые чаще всего применяются в современном строительстве.

Вывод

Как мы выяснили, существует довольно много способов определения прочности бетона. Причем, назвать какой-то из них лучшим невозможно, так как разные способы, как правило, предназначены для разных типов бетонных конструкций, а также имеют разные погрешности.

Из видео в этой статье можно получить дополнительную информацию по данной теме.

Метод отрыва со скалыванием занимает в ряду методов определения прочности бетона особое место. Считаясь неразрушающим методом, метод отрыва со скалыванием по своей сущности является разрушающим методом контроля бетона, так как прочность бетона оценивается по усилию, необходимому для разрушения небольшого объема бетона, что позволяет наиболее точно оценить его фактическую прочность. Поэтому этот метод применяется не только для определения прочности бетона неизвестного состава, но и может служить для построения градуировочных зависимостей для других методов неразрушающего контроля. Этот метод применяется на тяжелые бетоны и конструкционные бетоны на легких заполнителях в монолитных и сборных бетонных и железобетонных изделиях, конструкциях и сооружениях и устанавливает метод испытания бетона и определения его прочности на сжатие путем местного разрушения бетона при вырыве из него специального анкерного устройства. Такой метод испытания бетона отрыв со скалыванием позволяет определить прочность на сжатие для бетонов в диапазоне прочностей от 5,0 до 100,0 МПа. При разработке стандарта использованы материалы ГОСТ 22690-88.

Одним из наиболее распространенных и эффективных способов быстрого измерения прочности бетона на сжатие или его марку, является измерение склерометром, или как его еще называют, молоток Шмидта.

Соответствие Марки и Класса бетона показаниям шкалы склерометра (молотка Шмидта) по направлению удара в соответствии с графиком тарировочной кривой
Марка бетона, М Класс бетона,
B Вертикально сверху, ед Горизонтально, ед. Вертикально снизу, ед
М100 7,5 10 13 20
- 10 12 18 23
М150 12,5 20 24 28
М200 15 24 28 32
М250 20 30 34 38
М300 22,5 34 37 41
М350 27,5 38 41 45
М400 30 41 43 47
М450 35 44 47 50
М500 40 47 49 52
М600 45 49 52 55

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 18105-86 Бетоны. Правила контроля прочности
ГОСТ 22690-88 Бетоны. Определения прочности механическими методами неразрушающего контроля

Еще один метод испытания бетона - отрыв со скалыванием. Данный метод заключается в определении степени усилия, которое необходимо для скалывания участка бетона на ребре конструкции. Иногда данный метод заключается в местном разрушении бетона: в рамках данного метода вырывается анкерное устройство. Метод отрыва со скалыванием - это самый точный, но и самый трудоемкий способ контроля, поскольку для установки анкера требуется подготовка специальных шпуров. Более того, такой метод недостаточно универсален: он неприменим в рядах конструкций.

«Прометей» рекомендует метод определения прочности бетона отрывом со скалыванием в натурных обследованиях. Такие методы испытания бетона отрывом также идеальны при освидетельствовании на этапах строительства, приемки, эксплуатации и реконструкции строительных объектов, а также при изготовлении сборных изделий на предприятиях производства железобетонных изделий.

Испытание механических свойств бетона в лабораторных условиях

Для таких материалов, как бетоны, определение прочности механическими методами неразрушающего контроля желателен контроль достоверности результатов путем сопоставления данных, полученных прямым и косвенным путем. Проведением такого рода исследований занимается лаборатория механических испытаний при ООО «Прометей».

В лабораторных условиях производятся физико-механические испытания образцов бетона с применением всех известных подходов, включая базовый разрушающий метод контроля бетона, методы ударного импульса и упругого отскока. Важно, чтобы измерения вел квалифицированный лаборант механических испытаний - влияние человеческого фактора должно быть сведено к минимуму.

Как показывают механические испытания материалов, косвенные методы механических испытаний завышают прочностные характеристики карбонизированного бетона на 40–60%, а наиболее достоверным признан метод отрыва со скалыванием.

Метод отрыва со скалыванием: преимущества и ограничения

Все современные стандарты включают в программу натурных обследований ЖБК механические испытания бетона отрыв со скалыванием.

На практике отрыв со скалыванием дает ряд преимуществ:

  • возможность установки приборов на плоские участки без ребра;
  • независимость от электроснабжения;
  • толерантность к низким температурам;
  • контроль прочности бетонов класса В50 и выше;
  • быстрое и удобное крепление оборудования.

Если кривизна блока не препятствует подключению прибора к анкеру, определение прочности бетона отрывом со скалыванием может производиться и на неровных бетонных поверхностях (от 5 мм). Густое армирование бетона затрудняет испытания на механическую прочность посредством данного метода; при этом толщина бетона в участке измерения не должна быть меньше удвоенной длины анкера.

Используемое оборудование

ПОС-50МГ4"Скол" предназначен для неразрушающего контроля прочности бетона методами скалывания ребра, отрыва со скалыванием и отрыва стальных дисков по ГОСТ 22690-88.

© 2020 reabuilding.ru -- Портал о правильном строительстве