Запрет светодиодных светильников в школах. Светодиодное освещение в школах

Главная / Выгребная яма

Многие задают вопрос – можно ли применять светодиодные светильники в школах?


Ученые, работающие в сфере гигиены, провели исследование, которое позволило ответить на этот вопрос.
В исследовании принимали участие взрослые и дети, а в его основе лежала сравнительная оценка условий работы в свете традиционных люминесцентных светильников и набирающих обороты светодиодных энергосберегающих светильников - рассказывает заведующая отделом гигиенического нормирования и экспертизы НИИ гигиены и охраны здоровья детей и подростков НЦЗД РАМН Любовь Текшева.


Как известно, искусственное освещение нормируется СНиПом и Санпином, одним из них является СНиП 23-05-2010, согласно которому освещенность на рабочей поверхности стола должна составлять не менее 400 Лк, уровень дискомфорта – менее 15%, коэффициент пульсаций – менее 10%.


В ходе исследования снимались показания со зрительного аппарата, центральной и вегетативной нервной системы, показатели умственной работоспособности, а так же реакцию организма на воздействие света.


Результатом стала реакция организма ученика одной из московских школ на различные источники света: светодиодный офисный светильник и люминесцентный ламповый. Результат несколько удивил ученых, т.к. неожиданно для них все показатели свидетельствовали в пользу светодиодного светильника. Эксперимент, поставленный на учениках с 4-го по 11 класс показал, что к концу дня все школьники показывали выраженное утомление в свете люминесцентного освещения. При светодиодном освещение дети тоже уставали, но не так сильно. Глазная система, по мнению ученых, чувствует себя комфортнее в свете светодиодных потолочных светильников, число жалоб на невозможность сосредоточится становиться меньше. Не было зафиксировано и ни одного ухудшения зрения.


Возникает вопрос – чем объяснить подобную разницу в реакции организма? Во-первых, это спектральный состав светодиодного светильника. Спектр света светодиодного светильника приближен к естественному свету, во-вторых, снижен уровень пульсаций светового потока, который так же влияет на мозговую деятельность. В-третьих, можно выделить такой показатель как цветовую температуру 5000К, которая как раз соответствует уровню Солнца в полдень: то самое время, когда вся живая природа максимально активна, в т. ч. и человек, в-четвертых, это уровень шума от пуско-регулирующей арматуры. Как известно, ПРА люминесцентных светильников издают неприятный шум, который влияет на работоспособность. Светодиодные светильники абсолютно бесшумный. Все это в совокупности позволяет ребенку успешнее осваивать школьный материал.


В итоге, ученые пришли к выводу, что светодиодное освещение в школах имеет право на жизнь , необходимо лишь внести изменения в соответствующие законы и нормативные документы. Уже подготовлен проект по внесению изменений в СанПиН «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий». Будут сняты ограничения на использование светодиодного освещения в школах и профтехучилищах.

С 50-х годов двадцатого века и до недавнего времени в учебных заведениях безальтернативно применялись люминесцентные лампы. Светодиоды, только появившиеся в начале двухтысячных, во-первых, не могли конкурировать с разрядными лампами по световому потоку. Во-вторых, были дороже. А в-третьих – недостаточно изучены, чтобы их разрешили использовать в помещениях, где дети проводят целый день. С момента появления светодиодов каждые 10 лет их эффективность увеличивалась в 20 раз, а стоимость, наоборот, снижалась в 10 раз (Haitz’s Law). Световая отдача светодиодов 0.08$ сейчас составляет 110 лм/Вт. Научных исследований на тему безопасности новых источников света также накопилось большое количество. Теперь стало возможно рассмотреть, какие характеристики должны быть у светодиодных светильников, чтобы их можно было применять в образовательных учреждениях: школах, колледжах, институтах.

Рассмотрим особенности освещения классных комнат и аудиторий. Если представить себе класс с рядами парт, полный школьников или студентов, то каким должно быть освещение в нём? Любой человек может сформулировать ответ на этот вопрос, если вспомнит, как сам часами сидел на занятиях.

Рис. 1. Освещение в учебном классе.

Светильники для учебных заведений должны:

  • Обеспечивать на партах, столах, доске преподавателя оптимальную и равномерную освещённость. При недостаточной освещённости глаза устают, при избыточной тоже устают. Люди должны комфортно читать и писать, различать мелкие детали учебных пособий.
  • Обеспечивать хорошую цветопередачу, не искажать цвета освещаемых объектов.
  • Быть комфортными для глаз, не слепить даже при прямом взгляде на светильник. И взрослые, и дети, задумавшись, часто водят глазами по потолку, это не должно приводить к кратковременному ослеплению и «зайчикам» в глазах.
  • Быть одного цвета. Светильники или лампы разного цвета вызывают неприятное ощущение что «что-то не так», отвлекают.
  • Не мигать, не пульсировать, не гудеть и не жужжать. Частая ситуация с вышедшими из строя люминесцентными лампами – они входят в циклический режим или в резонанс, при этом сложно концентрировать внимание.
  • Быть безопасными при повреждении. Бывает, что энергия юности находит выход в неожиданном направлении. Если светильник разбился, не должны: выливаться ртуть, лететь осколки, бить ток.
  • Специалисту останется к вышесказанному добавить, что светильник должен быть энергоэффективным.

По всем требованиям проходит светодиодный светильник, и по некоторым пунктам даже намного лучше, чем люминесцентная лампа. Но! Важное уточнение: проходит не любой светодиодный светильник, а только качественный! Именно дешёвые, ненадёжные светильники вредят и теме светодиодного общего освещения, и глазам, вызывают опасения. К сожалению, рынок наводнён некачественными светильниками, и чтобы сделать правильный выбор, нужно знать, из чего сделаны светильники и как они работают.

Люминесцентные лампы в своё время тоже встречали с опасениями – были сомнения и по спектральному составу излучения, и по яркости, и по безопасности… Но, в итоге люминесцентные лампы вытеснили лампы накаливания из области общего освещения и доминировали 50 лет. Теперь их вытесняют новые источники света.

Устройство светодиодного светильника для общего освещения.

Основа светодиодного светильника – светоизлучающий кристалл или чип. Именно он при протекании тока генерирует излучение. Цвет излучения зависит от материалов кристалла. Чаще всего в светильниках общего освещения используются люминофорные белые светодиоды: кристалл излучает синий свет, который заставляет светиться жёлтым люминофор, нанесённый на кристалл или внутреннюю поверхность линзы. Смешение синего света от чипа и жёлтого от люминофора мы воспринимаем как белый свет.


Рис. 2. Строение белого люминофорного светодиода марки Cree (США).

В зависимости от типа и толщины слоя люминофора светодиод может иметь различную цветовую температуру излучения: от тёпло-белой (2600-3500 К) до холодно-белой (5000-8000 К). Чем меньше пик в левой, синей части спектра (это свет от самого кристалла) и чем больше доля люминофорного излучения (это правый пик на рис. 3), тем более «тёплым» будет свет.


Рис. 3. Примерный вид спектров излучения белых люминофорных светодиодов (в относительных единицах).

Линза светодиода позволяет вывести больше света из кристалла, перераспределяя его излучение в пространстве, а также защищает его от механических воздействий. Для формирования нужной кривой силы света (КСС) в светильнике могут быть дополнительно установлены отражатели или линзы вторичной оптики.

Светодиоды располагают на печатных платах из алюминия, стеклотекстолита, или гетинакса, получаются светодиодные линейки. Линейки и источник питания соединяют между собой и устанавливают в корпус светильника.


Рис. 4. Вид светодиодного потолочного светильника GALAD Юниор 600 без рассеивателя.

Каковы ключевые моменты, характеризующие качество светодиодного светового прибора?

1. Марка и тип светодиодов.

Производство светодиодных кристаллов – высокотехнологичный процесс. Методом металлоорганической эпитаксии на сапфировой подложке по очереди выращивается несколько слоёв, каждый из которых имеет свой состав, а толщина – от нескольких микрометров до сотых долей микрометра. Здесь важны и чистота и качество исходных материалов, и точность резки, и тщательность последующей сортировки по параметрам (биннирования).


Рис. 5. Строение кристалла светодиода с указанием материала слоёв и их толщины. Кристалл с контактами на подложке.

Купив светильник с поддельным или просто низкокачественным «ноунейм» светодиодом, нельзя быть уверенным ни в его эксплуатационных, ни в светотехнических характеристиках. Его световой поток может быть меньше заявленного, он может иметь другую цветовую температуру (а значит, возможно, большее количество вредного для зрения синего света в спектре излучения), выйти из строя через несколько месяцев работы. Нередки в подобных изделиях механические дефекты: неаккуратно припаянные контакты, неотцентрованные кристаллы и тому подобные вещи.


Рис. 6. Дефекты некачественных светодиодов: кристалл находится не по центру, кристалл сколот, присутствуют остатки клея и токопроводящих частиц.

Кристалл светодиода чрезвычайно чувствителен к перегреву. При подобных дефектах кристалл нагревается неравномерно, в нём возникают механические напряжения и происходит деградация, которые в лучшем случае приводит к спаду светового потока, а в худшем – к выходу светодиода из строя. Температура кристалла влияет и на срок жизни люминофора: из-за перегрева люминофор и соприкасающиеся с ним материалы быстрее диффундируют друг в друга, и снижается эффективность излучения. Естественно, дешёвый люминофор более чувствителен к нагреванию, и быстрее деградирует.

Зарекомендовавшие себя производители светодиодов (Nichia, Cree, Osram, Lumileds, Seoul Semiconductor, Honglitronic и др.) гарантируют соответствие всех параметров заявленным в технической документации, и их светодиоды работают, как указано в паспорте. Без неприятных сюрпризов.

2. Система линз и/или отражателей, рассеиватель.

В светильнике должна быть продумана светоперераспределяющая часть. Сами по себе светодиоды обладают высокой яркостью при малых размерах. На такие источники света нельзя смотреть напрямую: чрезмерная яркость, во-первых, вызывает кратковременное ослепление и «зайчики» в глазах, что само по себе дискомфортно. А во-вторых, хоть свет люминофорных светодиодов и воспринимается нами как белый, но имеет в своём составе синюю составляющую, а с синим светом нужно быть особенно осторожным. Исследования показали , что именно свет коротковолновой части спектра наиболее опасен для сетчатки глаза и при прямом наблюдении может вызывать её повреждение. При этом важно упомянуть, что стекловидное тело детского глаза более прозрачно, чем у взрослых, на сетчатку попадает больше синего света. Поэтому детские глаза особенно уязвимы. В светильнике для детей не должны применяться холодно-белые светодиоды (больше синего в спектре), а яркость светильника должна быть максимально равномерной.

Чтобы снизить слепящее действие, нужен рассеиватель, который сгладит и выровняет яркость по всей своей площади. Но одного рассеивателя мало, здесь также имеет значение количество, мощность и расположение светодиодов.


Рис. 7. Светодиодные светильники: а). 4 линейки по 8 светодиодов и призматический рассеиватель б). 4 линейки по 20 светодиодов и призматический рассеиватель в). 14 линеек по 14 светодиодов и рассеиватель микропризма-опал.

Чем меньше светодиодов в светильнике и чем они мощнее, тем ярче они будут, и с любым рассеивателем неравномерность яркости выходного отверстия светильника будет велика. Отчётливо будут видны светящиеся точки, полосы, либо «кресты», в зависимости от типа используемого материала. Поэтому наилучшим вариантом с точки зрения равномерности яркости будет большое количество маломощных светодиодов и матовый либо опаловый рассеиватель.

3. Блок питания.

Светодиоды управляются током. Чем выше ток, тем выше излучаемый световой поток (cм. рис. 7). В технической документации для каждой конкретной модели указан диапазон рабочих токов, при соблюдении которого гарантируется соответствие всем заявленным параметрам.


Рис. 8. Зависимость светового потока (в отн. ед.) от тока для белого люминофорного светодиода мощностью 0,3 Вт.

Некоторые недобросовестные производители намеренно используют более дешёвые маломощные светодиоды, но задают через них повышенный ток, «разгоняют» их, чтобы они светили ярче. Такой светильник на первый взгляд будет неотличим по светотехническим характеристикам от «правильного». Но кристалл маломощного светодиода не рассчитан на большие токи, светодиод перегревается, в нём растёт количество дефектов – участков, которые не излучают свет. Чем выше температура, тем сильнее деградирует кристалл, и тем быстрее заканчивается срок службы светодиода. Вместо 50 тысяч часов такой светильник может отслужить, например, лишь 2 тысячи.

Кроме того, именно схемотехническое решение драйвера определяет коэффициент пульсаций светового потока светильника, а также его защищённость от скачков напряжения в сети и высоковольтных микросекундных импульсов.

Какие научные исследования проводились по теме светодиодного освещения в школах в России? Каковы их результаты?

В 2012 году в Москве в центре образования «Феникс» №1666 был открыт первый в России демонстрационный и методический ресурсный кабинет по светодиодному освещению в школах. Кабинет был создан НИИ гигиены и охраны здоровья детей и подростков ФГБУ «Научный центр здоровья детей» РАМН при поддержке Роснано, Фонда инфраструктурных и образовательных программ и Некоммерческого Партнерства Производителей Светодиодов и Систем на их основе (НП ПСС).

Евгений Долин, генеральный директор НП ПСС (ныне АПСС) в интервью журналу «Энергосовет» рассказал об исследованиях, проведённых при поддержке Роснано: «Сначала обследовались взрослые, и было чётко установлено, что при соответствии параметров световой среды нормам офисного освещения воздействие светодиодного освещения ничем не отличалось, а по ряду показателей было позитивнее, чем люминесцентных ламп. Люди меньше уставали, повышалась производительность труда, уменьшалось время «врабатывания» в тестовую задачу. Затем провели обследование в школе на разных возрастных группах. Там эффект был настолько разителен, что сомнений не осталось – правильно созданные светильники со светодиодами, собранные в световую установку под руководством профессионалов, дают только положительный эффект. У детей в конце года в группе, обучавшейся под светодиодами 2 месяца, острота зрения выросла в 80 % случаев, а не снизилась, как это обычно бывает весной, особенно у подростков».


Рис. 9. Первый в России демонстрационный и методический ресурсный кабинет по светодиодному освещению в школах, ГОУ Центр образования «Феникс» №1666.

Сотрудники НИИ гигиены и охраны здоровья детей и подростков НЦЗД РАМН под руководством Текшевой Л. М. провели в центре образования «Феникс» масштабное исследование среди учащихся 4-11х классов – 16 классных коллективов, всего 370 человек. Исследовательский коллектив состоял из гигиенистов, психофизиологов, офтальмологов-педиатров, а также врачей диагностической клинической медицины. Изучалось влияние двух типов освещения, с люминесцентными лампами и светодиодного, на изменения функционального состояния систем детского организма (психоэмоциональное состояние, умственная работоспособность) и состояния зрительного анализатора. В обоих кабинетах были созданы равные условия: уровень освещённости – 400 лк; коэффициент пульсации – не более 10%; показатель дискомфорта – не более 15 у.е. При этом коррелированная цветовая температура источников света составляла в обоих случаях 4500 К.

Рис. 10. Светораспределение использовавшихся в работе светильников с люминесцентными (а) и светодиодными (б) источниками света и относительные спектры их излучения (в).

По результатам исследования, при работе в классе со светодиодными светильниками по сравнению с освещением люминесцентными лампами:

  • Наблюдаются более высокие количественные и качественные показатели умственной работоспособности у учащихся начальных классов, а у учащихся 5–11 классов к тому же и значительно меньшая (в 2–2,5 раза) распространённость случаев явно выраженного утомления.
  • У большинства школьников в процессе занятий отмечается меньшая распространённость дискомфортных эмоциональных состояний, а у младших школьников – и меньшая распространённость жалоб неврозоподобного характера.
  • Более 90% участников образовательного процесса (учащиеся и педагоги) оценивают освещение светодиодными источниками света как комфортное.
  • Комплексная оценка состояния зрения и умственной работоспособности учащихся 5–11 классов при работе с компьютерами показала, что светодиодная световая среда эффективно снижает негативное воздействие от компьютерной нагрузки по сравнению с люминесцентной.
Таким образом, исследования показали, что светодиодное освещение в учебных классах по сравнению с люминесцентным создает более благоприятную световую среду для зрительной и умственной работы учащихся разного возраста, их психофизиологического и функционального состояния.

Что говорится о применении светодиодных светильников в образовательных учреждениях в действующих российских нормативных документах?

  • Официальный сайт Управления Роспотребнадзора по городу Москве http://77.rospotrebnadzor.ru

    О применении светодиодных ламп в образовательных учреждениях

    В соответствии с требованиями ФЗ от 23.11.2009 № 261-Ф «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» с 2010 года на рынке осветительного оборудования Российской Федерации предлагаются светодиодные источники освещения, которые имеют ряд преимуществ. Они более экономичны, обладают ударной и вибрационной устойчивостью. В светодиодных лампах отсутствует газонаполнение, они почти не нагреваются, срок службы может доходить до 100000 часов. Самое главное, что такие лампы не содержат ртути, что делает их безопасными в плане загрязнения окружающей среды.

    Проведенные исследования светодиодных светильников НИИ гигиены и охраны здоровья детей и подростков Учреждения РАМН ФГБУ «Научный центр здоровья детей» РАМН при участии сотрудников ГП «Научно-технологический центр уникального приборостроения РАН» и Научно-исследовательского института строительной физики Российской Академии Архитектуры и строительных наук показали возможность применения светодиодного освещения и светодиодных светильников в жилых и общественных зданиях.

    В соответствии с письмом № 01/11157-12-32 от 01.10.2012 г. руководителя Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Г. Г. Онищенко при использовании в системах общего освещения в помещениях в учебном процессе светильники со светодиодами должны соответствовать ряду качественных и количественных показателей освещения:

    1. Условный защитный угол светильников должен быть не менее 90° для ограничения слепящего действия светодиодных ламп.
    2. Габаритная яркость светильников не должна превышать 5000 кд/м2. Использовать светильники с открытыми светодиодами для общего освещения помещений нельзя. Осветительная арматура должна иметь в своем составе эффективные рассеиватели, снижающие габаритную яркость до требуемых значений.
    3. Допустимая неравномерность яркости выходного отверстия светильников Lmax:Lmin должна составлять не более 5:1.
    4. Цветовая коррелированная температура светодиодов белого света не должна превышать 4000 К.
    5. Не рекомендуется использовать в осветительных установках светодиоды мощностью более 0,3 Вт.

    В паспортных данных, а также на упаковке и маркировке цоколя ламп должна быть указана информация о величине мощности, габаритной яркости, неравномерности яркости по выходному отверстию светильника и величине цветовой коррелированной температуры.

  • Таким образом, государство официально поддерживает распространение светодиодных светильников и ламп и разрешает их применение в образовательных учреждениях прямым текстом. Есть лишь ряд требований, которым должен соответствовать светильник. И все эти требования абсолютно логичны и направлены на создание комфортного, качественного освещения в учебных помещениях.

    Однако, среди действующих государственных стандартов существует свод правил СП 256.1325800.2016 “Электроустановки жилых и общественных зданий. Правила проектирования и монтажа” Актуализированная редакция СП 31-110-2003 (Приказ Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 29 августа 2016 г. № 602/пр). В подразделе 5.3.7 данного документа указано: “Для общего освещения учреждений дошкольного, школьного и профессионально-технического образования, а также в основных функциональных помещениях лечебно-профилактических учреждений следует применять люминесцентные (включая компактные) лампы и лампы накаливания, в том числе галогенные. Применение светодиодных источников света в указанных помещениях не допускается».

    Наличие противоречащих друг другу нормативных документов затрудняет внедрение светодиодного освещения в образовательных учреждениях. Сейчас светотехническое сообщество активно обсуждает и пытается разрешить эту коллизию.

    Какие светодиодные светильники российского производства подходят для использования в школах и других образовательных учреждениях?

    1. Светильник GALAD Юниор был специально спроектирован для общего освещения школ, центров образования, колледжей и высших учебных заведений.

    Светильник GALAD Юниор:

    • соответствует требованиям ГОСТ-Р-54350-2015, предъявляемым к светильникам для детских учреждений;
    • соответствует СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;
    • соответствует требованиям письма Руководителя Роспотребнадзора Г.Г.Онищенко от 01.10.2012 № 01/11157-12-32 «Об организации санитарного надзора за использованием энергосберегающих источников света».

    Рис. 11. Светильник GALAD Юниор 600 LED-35/П/М/4000

    GALAD является ведущим производителем светотехнической продукции и входит в крупнейший в России светотехнический холдинг БЛ ГРУПП. Светильники под маркой GALAD выпускаются на двух крупных российских заводах: Лихославльском заводе светотехнических изделий «Светотехника» (ЛЗСИ) и Кадошкинском электротехническом заводом (КЭТЗ). В изделиях GALAD применяются светодиоды компаний Cree, Nichia, Osram, Honglitronic и источники питания собственной разработки, Helvar, Аргос, Mean Well. Прежде чем пойти в серийное производство, новая модель светильника испытывается в испытательных центрах холдинга, а после выхода на рынок – в независимых лабораториях.

    В октябре 2016 года светильник GALAD Юниор 600 LED-35/П/М/4000 был испытан по программе независимых исследований Проверено и показал полное соответствие характеристик заявленным в каталоге.

    Подтвержденные характеристики для GALAD Юниор 600 LED-35/П/М/4000

    Заявленные Измеренные
    Световой поток, лм 3150 3164
    Мощность, Вт 35 35,6
    Коэффициент мощности 0,98 0,98
    Световая отдача, лм/Вт 90 88,9
    Номинальное значение Тцв, К 4000 4000
    Индекс цветопередачи, Ra > 80 83,5
    Коэффициент пульсаций светового потока, % 2 0,4
    Защита от пыли и влаги, IP 20 -
    Срок службы, лет 10 -
    Гарантия, лет 3 -
    Темп. диапазон,°С +1…+35 -
    Диапазон напряжений, В 198…264 -
    Материал корпуса Листовая сталь, окрашенная порошковой краской
    Тип рассеивателя Микропризма-опал

    В Испытательном центре ООО «ВНИСИ» светильник исследовался по параметрам равномерности яркости выходного отверстия, и также прошёл все испытания на соответствие требованиям, указанным выше.



    Рис. 12. Вид включённого светильника GALAD Юниор 600 и визуализация его габаритной яркости

    Измеренные характеристики для GALAD Юниор 600

    Таким образом, по результатам испытаний светильник полностью удовлетворяет условиям Российских нормативных документов и может быть рекомендован для использования в образовательных учреждениях.

    В 2016 году светильники отечественного производства GALAD Юниор LED были установлены в кабинете машинного вязания Центра внешкольного образования «Творчество» городского округа Самара. В нем занимаются дети в возрасте от 7 до 18 лет, а дети с ограниченными возможностями здоровья и инвалиды - до 23 лет. В кабинете машинного вязания обучаются и педагоги, в нем часто проводятся мастер-классы в рамках мероприятий городского, областного и всероссийского уровней. И ученики и преподаватели довольны новым освещением. Они особенно подчёркивают хорошую цветопередачу светильников, что особенно важно при работе с большим разнообразием цветной пряжи.


    Рис. 13. Светильники GALAD Юниор 600 в кабинете машинного вязания ЦВО «Творчество» г. Самара.

    2. Светильник GALAD Вектор предназначен для освещения классных досок в образовательных учреждениях.

    Он устанавливается на специальных кронштейнах над доской. Линейка светодиодов (мощность каждого менее 0,2 Вт) полностью скрыта от глаз. Отражатель спроектирован таким образом, что весь свет попадает на доску, создавая на ней равномерное заливающее освещение.


    Рис. 14. Светильники GALAD Вектор LED-20-4000.

    Характеристики для GALAD Вектор LED-20-4000

    Заключение

    1. Исследования показывают, что освещение качественными светодиодными светильниками не хуже, а напротив, во многом гораздо лучше, чем светильниками с люминесцентными лампами.
    2. На уровне государственных стандартов и норм использование светодиодных светильников в образовательных учреждениях разрешено, если они соответствуют ряду условий.
    3. На российском рынке световые приборы, удовлетворяющие полному списку этих условий, присутствуют, и процесс замены устаревших осветительных систем на современные и эффективные уже идёт.

    Ошуркова Е. С.

    ЛИТЕРАТУРА
    1. Retinal damage induced by commercial Light Emitting Diodes (LED), Imene Jaadane, Pierre Boulenguez, et al.
    2. Потенциальная опасность освещения светодиодами для глаз детей и подростков, П.П. Зак, М.А. Островский, «Светотехника» №3, 2012.
    3. Проблемы надежности светодиодов, И. В. Васильев, А.Т. Овчаров, Т. Г. Коржнева,https://alternativenergy.ru/tehnologii/321-neispravnosti-svetodiodov.html
    4. О светодиодах, безопасности и нормативной базе. Интервью с Е. В. Долиным, «Энергосовет» №6, 2013.
    5. Гигиенические аспекты применения светодиодных источников света для общего освещения в школах, В. Р. Кучма, Л. М. Сухарева, Л. М. Текшева, М. И. Степанова, З. И. Сазанюк, НИИ гигиены и охраны здоровья детей и подростков НЦЗД РАМН, Москва, «Гигиена и санитария» №5, 2013.
    6. Сравнительная гигиеническая оценка условий освещения с люминесцентными лампами и светодиодными источниками света в школах, Л. М. Текшева, «Светотехника» №5, 2012.
    7. Открыт первый в России ресурсный кабинет по светодиодному освещению учебных помещений, 12 марта 2012, http://www.rusnano.com/about/press-centre/news/75766
    8. Сравнительная гигиеническая оценка условий освещения с люминесцентными лампами и светодиодными источниками света, Л. М. Текшева, НИИ гигиены и охраны здоровья детей и подростков НЦЗД РАМН, Москва, 2010.
    9. GALAD Юниор 600 LED-35: результаты испытаний светильника для образовательных учреждений (окт. 2016), «LUMEN&Expertunion»,

    СанПин 2.2.1/2.1.1.1278-03 "Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий" (действующая редакция с изменениями на 15 марта 2010 года )

    3.1.5.
    ...В учреждениях дошкольного , школьного и профессионально-технического образования, а также следует применять разрядные лампы и лампы накаливания.


    Отсюда следует что в указанных учреждениях светодиодных источников света в общем случае быть не должно

    3.1.9. Замена ламп накаливания на новые источники света (компактные люминесцентные лампы, светодиоды) в эксплуатируемых осветительных установках допускается при соблюдении нормативных требований (таблицы 1 и 2)


    Отсюда следует, что в разрешенных случаях (разрешенных данным или иными документами, но в области действия данного документа, т.е. там, где светодиодные светильники и КЛЛ не запрещаются; например - в бане) помещениях в существующих светильниках с ЛН можно установить СД или КЛЛ при выполнении норм таблиц 1, 2. Этот пункт (3.1.9) юридически не разрешает нарушать пункт 3.1.5, он только дополняет требования норм (для сведения - оба уточнения вводились одним изменением)

    СанПиН 2.4.2.2821-10 "Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях" (с изменениями на 24 ноября 2015 года)

    7.2.1. Во всех помещениях общеобразовательной организации обеспечиваются уровни искусственной освещенности в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий.
    7.2.2. В учебных помещениях система общего освещения обеспечивается потолочными светильниками с люминесцентными лампами и светодиодами. Предусматривается освещение с использованием ламп по спектру цветоизлучения: белый, тепло-белый, естественно-белый.
    7.2.3. Не используются в одном помещении для общего освещения источники света различной природы излучения.


    Этот документ на общеобразовательные учереждения имеет дату введения позже при равной иерархии, а значит в соответствии с общими положениями законодательства и положениями права в области его действия прямой нерешаемой коллизии нет, и его действие имеет большую силу (точнее, "новым" документом следует руководствоваться при коллизии). Иначе говоря, здесь светодиоды разрешили.

    СП 52.13330.2011 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*

    7.18...В учреждениях дошкольного , школьного и профессионально-технического образования, а также в основных функциональных помещениях лечебно-профилактических учреждений следует применять люминесцентные (в том числе компактные) лампы и галогенные лампы накаливания...


    Видим тот же запрет, что в общем "старом" СанПин. Эти документы разных ведомств и являются инструментами выполнения разных законов. Поэтому, теоретически, существует юридическая коллизия, позволяющая оспорить разрешение "нового" общеобразовательного СанПин. Но это вопрос не нашего уровня (да и, скорее всего, оспаривание обозначенного положения "нового" СанПин - бесперспективное занятие по причине иерархического главенствования над подзаконным документом СП 52.1330 статьи 11 нормативно-правового акта "Положения о государственном санитарно-эпидемиологическом нормировании") . Однако, можно однозначно заключить, что в дошкольных общеобразовательных учереждениях и в в основных функциональных помещениях лечебно-профилактических учреждений применять светодиоды никто (совсем никто и нигде) юридически не разрешал .
    Проверим, лечебные учреждения - перечислять все санпины и своды правил не буду (их немало), но нигде так же не находим разрешения применять светодиоды в вышеуказанных помещениях.
    Таким образом, в случае нарушения рассматриваемых требований имеем нарушения статьи 28

    Какие светодиодные светильники для школ и дошкольных общеобразовательных учреждений.

    Требования к светильникам для школы, особенности кратко:

    светильники :

    • цветовая температуры не более 4000 кельвин
    • рассеиватели, снижающие габаритную яркость до 5000 кд/м2
    • Не рекомендуется использовать в осветительных установках светодиоды мощностью более 0,3 Вт

    освещенность:

    • норма освещенности Е для учебных классов 500 люкс
    • коэффициент цветопередачи CRI не менее 80
    • равномерность освещенности U не менее 0,60
    • дискомфорт блескости UGR не более 40
    • коэффициент пульсации не более 10%

    подробнее:

    "Руководителям Управлений
    Роспотребнадзора по субъектам
    Российской Федерации,
    на железнодорожном
    транспорте

    Исх. № 01/11157-12-32 от 01.10.2012

    Об организации санитарного надзора за использованием энергосберегающих
    источников света

    Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека
    сообщает, что в соответствии с Федеральным законом от 23.11.2009 № 261-ФЗ «Об
    энергосбережении и о повышении энергетической эффективности и о внесении изменений в
    отдельные законодательные акты Российской Федерации» с 1 января 2011 года к обороту на
    территории Российской Федерации не допускаются электрические лампы накаливания
    мощностью сто ватт и более, которые могут быть использованы в цепях переменного тока в
    целях освещения. С 1 января 2011 года не допускается размещение заказов на поставки
    электрических ламп накаливания для государственных или муниципальных нужд, которые могут
    быть использованы в цепях переменного тока в целях освещения.

    Для организации общего и местного искусственного освещения в общественных помещениях
    рекомендуется использовать в качестве источников света люминесцентные и светодиодные
    лампы.

    На российском рынке представлены модели компактных люминесцентных ламп (далее - КЛЛ)
    более чем 40 производителей, которые различаются по мощности, световым характеристикам,
    формам, срокам службы, размеру, цене. Объем потребления энергосберегающих ламп в
    Российской Федерации постоянно возрастает. Импорт компактных люминесцентных ламп достиг в 2011 году 107 млн. штук.

    В связи с развитием современных энергоэффективных источников света, в том числе
    светодиодов и осветительных приборов на их основе необходимо обеспечить гигиенические
    нормы освещения в учреждениях общего и начального профессионального образования и в
    детских оздоровительных организациях.

    Наиболее острым вопросом в использовании КЛЛ по-прежнему является проблема их утилизации
    и безопасности использования. Каждая такая лампа может содержать до 3-5 мг ртути,
    находящейся в агрегатном состоянии в виде паров. Опасность представляет неаккуратное
    обращение с отработанными лампами. Разрушенная или повреждённая колба лампы
    высвобождает пары ртути, которые могут вызвать тяжёлое отравление.

    В настоящее время на территории Российской Федерации производятся лампы с применением
    технологии Amalgam. В составе такой лампы ртуть находится не в чистом виде (жидком и/или
    парообразном состоянии), а в виде амальгамы — химического раствора ртути в другом металле,
    т.е. в твердом агрегатном состоянии. При нагревании амальгамы до 60 0С и выше пары ртути
    высвобождаются и участвуют в процессе свечения лампы. Такое технологическое решение
    исключает попадание паров ртути в помещение с комнатной температурой при нарушении
    целостности стеклянной колбы.

    Кроме того, в продаже доступны КЛЛ, выполненные в силиконовом контуре поверх лампы.
    Силиконовая прокладка предохраняет трубку и колбу, являясь смягчителем удара при падении,
    ограничивает распространение ртути.
    Для минимизации загрязнения закрытых помещений при повреждении КЛЛ, рекомендуется
    использовать лампы, изготовленные по указанным технологиям.

    Кроме компактных люминесцентных ламп на рынке осветительного оборудования Российской
    Федерации с 2010 года предлагаются светодиодные источники освещения, которые имеют ряд
    преимуществ. Светодиодные лампы экономичны и имеют энергопотребление на 80% меньше чем
    у ламп накаливания, обладают высокой ударной и вибрационной устойчивостью. В светодиодных
    лампах отсутствует газонаполнение, они почти не нагреваются, срок их службы может доходить
    до 100 000 часов. Такие лампы не содержат ртути, что делает их безопасными в плане
    загрязнения окружающей среды.

    С целью определения возможности применения светодиодного освещения и светодиодных
    светильников НИИ гигиены и охраны здоровья детей и подростков Учреждения РАМН ФГБУ
    «Научный центр здоровья детей» РАМН при участии сотрудников ГП «Научно-технологический
    центр уникального приборостроения РАН» и Научно-исследовательского института строительной
    физики Российской Академии Архитектуры и строительных наук были проведены исследования
    психофизиологического воздействия светодиодного освещения и светодиодных светильников на
    организм человека.

    Проведенные исследования показали возможность применения светодиодного освещения и
    светодиодных светильников в жилых и общественных зданиях.

    В связи с этим, органы управления образованием по субъектам Российской Федерации,
    юридические лица и индивидуальных предпринимателей, образовательные и детские
    оздоровительные организации, проектные организации должны быть уведомлены о возможности
    обеспечения гигиенических норм освещенности, установленных СанПиН 2.4.2.2821-10
    «Санитарно-эпидемиологические требования к условиям и организации обучения в
    общеобразовательных учреждениях», СанПиН 2.4.3.1186-03 «Санитарно-эпидемиологические
    требования к организации учебно-производственного процесса в образовательных учреждениях
    начального профессионального образования» и СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические
    требования к естественному, искусственному и совмещенному освещению жилых и общественных
    зданий», в учреждениях общего и начального профессионального образования, а также в
    детских оздоровительных учреждениях, путем применения светодиодных источников света и
    осветительных приборов на их основе, при соблюдении ряда условий.

    При использовании в системах общего освещения в помещениях общественных зданий и в
    учебном процессе, светильники со светодиодами должны соответствовать ряду качественных и
    количественных показателей освещения.

    1. Условный защитный угол светильников должен быть не менее 90° . Указанный параметр
    предъявляет требования к конструктивным особенностям осветительной арматуры для
    ограничения слепящего действия светодиодных ламп и измеряется транспортиром и угольником.

    2. Габаритная яркость светильников не должна превышать 5000 кд/м2. В связи с тем, что
    габаритная яркость открытых светодиодов чрезвычайно высока, использовать светильник с
    открытыми светодиодами для общего освещения помещений нельзя. Осветительная арматура
    должна иметь в своем составе эффективные рассеиватели, снижающие габаритную яркость до
    вышеуказанных значений. Указанный параметр измеряется яркомером.

    3. Допустимая неравномерность яркости выходного отверстия светильников Lmax:Lmin должна
    составлять не более 5:1. Может быть оценена после измерений яркомером, как отношение
    максимально измеренной яркости к минимальной.

    4. Цветовая коррелированная температура светодиодов белого света не должна превышать
    4000°К . Оценить цветовую температуру светодиодного источника можно по маркировке на цоколе
    или упаковке лампы.
    Цветовая температура - это температура черного тела (излучателя Планка), при которой его
    излучение имеет ту же цветность, что и излучение рассматриваемого объекта. Она определяет
    цветовую тональность (теплую, нейтральную или холодную) освещаемого этими источниками
    пространства.

    В паспортных данных на светильники со светодиодами, предназначенные для установок общего
    и местного освещения в учреждениях общего и начального профессионального образования,
    должна быть указана информация о величине габаритной яркости, неравномерности яркости по
    выходному отверстию светильника и величине цветовой коррелированной температуры.

    При проведении надзорных мероприятий следует обращать внимание юридических лиц и
    индивидуальных предпринимателей на необходимость своевременности, полноты и
    достоверности осуществления производственного контроля за выполнением требований,
    предъявляемых к общему, местному и комбинированному освещению в зданиях и помещениях.

    © 2020 reabuilding.ru -- Портал о правильном строительстве