Система тушения сухой водой. Система пожаротушения сухой водой
В России для тушения пожаров в музеях и библиотеках начали использовать новинку - уникальную жидкость "сухую воду", которая справляется в огнем не хуже обычной воды.
Вспоминается прошлогодний пожар в столице в Центре имени Грабаря. Полыхало на площади около двух тысяч квадратных метров. Верхний этаж здания реставрационного центра выгорел практически полностью. Сгорели десятки картин и икон, старинная мебель. К сожалению, не обошлось только материальным ущербом. Произошла трагедия - погиб пожарный.
Музейщики знают, что в случае пожара многие ценности страдают даже не от огня, а от воды. До недавних пор кроме интенсивной проливки здания из брандспойтов, а в последние годы и с вертолетов, вариантов тушения пожаров не было. Ведь, как правило, музеи занимают старые здания, в которых перекрытия обычно деревянные. Искра от неисправной проводки или от сварки на крыше способна спровоцировать мощное возгорание за считанные минуты. Что же делать при пожаре там, где нельзя тушить водой?
Современное решение по защите музеев найдено давно. Это системы газового пожаротушения, которые установлены во многих федеральных музеях и хранилищах. В случае повышения температуры в отдельно взятом помещении срабатывает система, распыляемый газ вытесняет кислород, и огонь не распространяется. Но до недавнего времени все эти системы были смертельно опасны для людей. Так, в Киеве в Национальной библиотеке имени Вернадского была установлена система газового пожаротушения на основе популярного хладона 125. В конце сентября прошлого года сотрудники библиотеки проводили там обычные регламентные работы по замене ламп освещения. Случайно задели провод, управляющий системой пожаротушения. В помещении произошел выброс хладона, и из трех человек, которые там находились, двое погибли на месте, а одного успели доставить в больницу. Как показывает практика, для людей пагубно использование для тушения пожара не только этого газа, но и фреона. Только что закончился судебный процесс во Владивостоке, где судили командира подводной лодки и трюмного моториста, который несанкционированно включил в отсеке систему газового пожаротушения с использованием фреона. Погибло двадцать человек.
Наконец, ученым недавно удалось разработать вещество, которое оказалось не только безвредным при распылении для людей, но и сохраняет культурные ценности. В Центре безопасности культурных ценностей при Минкультуры России было проведено комплексное исследование воздействия реагента на образцы произведений искусства столетней давности. Оказалось, что под струями "сухой воды" сохраняются не только полотна, написанные маслом, но и не "текут" фотографии и даже акварели, выживают и гравюры, и кожа. Кроме того, сам выпуск газа из системы не создает настолько большого потока воздуха, который мог бы сорвать картины со стен. Когда новый газ пускают в помещение, не происходит резкого падения температуры. Как известно, старинные картины очень чувствительны к перепадам температуры, и любой реставратор скажет, что падение температуры на 15-20 градусов фактически - минус сто лет хранения для картины.
Для того чтобы убедиться в безопасности нового способа тушения уже для людей, были проведены комплексные исследования на лабораторных животных в Институте железнодорожной гигиены. Было доказано, что новое вещество относится к классу нетоксичных веществ.
Новую систему газотушения начинают монтировать в новых помещениях Музея изобразительных искусств имени Пушкина. Может, стоит подсуетиться и остальным хранилищам бесценных экспонатов?
Во всяком случае, соотношение цены на установку и качества огнетушащего эффекта, если говорить об объектах культурного наследия, наверное, обсуждать неуместно. Применение такого метода тушения пожаров в музеях наверняка оправдает вложенные деньги. Стоимость, уверяют эксперты, вполне сравнима с ценой установок обычного газового пожаротушения.
Александр Галкин, начальник штаба гражданской обороны библиотеки Российской Академии Наук :
Интенсивная проливка загоревшихся пятнадцать лет назад архивов Библиотеки РАН, расположенных на Биржевой линии, 1 в Санкт-Петербурге привела к гибели около четырех миллионов книг. Причем три с половиной миллиона погибло от воды. Пожар начался в газетном фонде. Чтобы спасти книги, мы обратились к нашим постоянным читателям. Они забирали фолианты и сушили их вручную, страничку за страничкой дома.
В настоящее время у нас стоит система газопожаротушения и используется по старинке газ CO2. Принцип использования: при возникновении пожара производится оповещение персонала всей библиотеки. Сотрудники должны быстро покинуть помещение, иначе они погибнут. СО2 - газ отравляющий. Подаваемый в случае пожара в помещения газ выдавливает очаг. Поэтому новые технологии "сухой воды" мы всячески приветствуем.
Сергей Терехин, начальник кафедры автоматики и сетевых технологий, проектно-экспертного центра Санкт-Петербургского университета ГПС :
Обеспечение необходимого уровня пожарной безопасности и минимизация потерь вследствие пожаров является важным фактором устойчивого социально-экономического развития Российской Федерации. Федеральная целевая программа "Пожарная безопасность в Российской Федерации на период до 2012 года" утверждена постановлением Правительства Российской Федерации от 29 декабря 2007 г. №972 в целях обеспечения необходимого уровня пожарной безопасности и минимизации потерь вследствие пожаров.
Одним из основных направлений предусмотренных данной программой является: развитие экспериментальной базы пожарно-технических научно-исследовательских и образовательных учреждений, также разработка и внедрение новых инновационных технологий в области обеспечения пожарной безопасности.
Особое внимание при этом уделяется современному оснащению и технологиям, применяемым в образовательной деятельности Высших учебных заведений МЧС России при подготовке специалистов в области обеспечения пожарной безопасности.
В настоящее время это применение современных огнетушащих веществ в установках пожаротушения, а именно применение технологии "сухая вода", которая получила официальное название "Novec1230". Мировая тенденция развития автоматических систем пожаротушения на объектах культурного наследия направлена на использование установок с применением "чистых газов", которые безопасны для человека и окружающей среды, а также обладают высокой эффективностью тушения пожара, не нанося при этом даже минимального ущерба защищаемому объекту. Применение "чистых газов" связано с принятием международных протоколов по защите окружающей среды и человека, которые ввели ограничение применения составов, которые разрушают озоновый слой, в частности - это хладоны.
Отличительной особенностью данной технологии является чувствительность - система начинает тушить пожар, когда реакция горения только началась. Сама технология "сухая вода" обладает всеми противопожарными свойствами воды, но в отличие от "настоящей воды" не повреждает электронику, произведения искусства, мебель и другие предметы, так как является фактически сухим веществом. Точнее, в процессе распыления вещество обращается в пар, а в виде жидкости храниться в баллонах автоматической установки пожаротушения, где хранится под давлением. Еще одна особенностью данного огнетушащего состава огнетушащий механизм, он основан на комбинации физических и механических свойств, состав не понижает содержание кислорода в помещении, а клинические испытания показали его безвредность для человека.
В рамках Федеральной целевой программы, приказов министра Российской Федерации генерала армии Сергея Шойгу, а так же приказов и распоряжений начальника Санкт-Петербургского университета ГПС МЧС России генерал-полковника Артамонова В.С. к 105-летию университета развернут "Учебно-экспериментальный комплекс для решения задач по предупреждению и ликвидации чрезвычайных ситуаций и пожаров".
Одной из основных задач данного комплекса является модернизация научно-инновационной деятельности на основе интеграции науки, образования и практической деятельности в области обеспечения пожарной безопасности. В рамках совместной деятельности с ведущими российскими производителями в Санкт-Петербургском университете ГПС МЧС России создана и модернизуется современная лабораторная база автоматических систем противопожарной защиты. Цель данной базы повышение уровня защищенности населения, сокращение материального ущерба, в результате профессиональных действий специалистов, прошедших обучение в Санкт-Петербургском университете ГПС МЧС России.
Досье "РГ"
Самые крупные пожары в музеях России:
14 мая 2010 года. Пожар уничтожил двухэтажный деревянный дом в деревне Кабона (Ленинградская область), в котором располагались Музей "Дороги жизни" и Музей поэта Александра Прокофьева. В огне погибла вся уникальная экспозиция музея "Дороги жизни".
19 мая 2010 года . Пожар в доме-музее Паустовского в Тарусе уничтожил жилую половину мемориального здания.
10 марта 2009 года . Пожар в музее "Брянский лес" (Брянск). В огне погибли четыре диорамы, растения, разные виды чучел животных и птиц.
20 августа 2009 года . Пожар в музее авиации и космонавтики на Ходынском поле в Москве. Сгорел самолет-экспонат Ил-14.
22 сентября 2009 года . Пожар в музее истории Новоржевского края (филиал Псковского музея-заповедника). От огня пострадали 122 картины.
19 февраля 2008 года . Пожар на территории музея-заповедника "Царицыно". Площадь пожара составила 500 квадратных метров.
25 декабря 2008 года. Пожар в доме-музее Сандры Курлиной в центре Самары. Площадь возгорания составила 250 квадратных метров.
20 июля 2007 . Пожар в музее Восковых фигур на территории Аничкова дворца (Санкт-Петербург). Сгорели строительные конструкции павильона и восковые фигуры.
28 июля 2006 года. Пожар в музее-усадьбе Федора Тютчева в селе Мураново (Московская область). Коллекцию удалось вовремя вынести из горящего здания. Здание серьезно пострадало.
Конечно, это шутка. Сухую воду не едят. Вернее, не пьют. Это вещество
было разработано в США в 2004 году с чисто практическими целями. И если
бы не его необычные свойства в сочетании со сходством с обычной водой,
наверное, никто, кроме специалистов, и не узнал бы о нем.
В нашей стране интерес к нему возник после появления сюжета о сухой воде в программе Галилео.
Загадочная жидкость без цвета и запаха, так похожая на воду, заинтересовала многих.
Ведь сухая вода:
- не проводит электричество;
- кипит при температуре 49°C;
- не смачивает поверхности.
Сухая вода: применение
Может показаться, что сухая вода – это просто ингредиент для фокусов и приколов, и никакой практической пользы от нее нет. Но все как раз наоборот. Это вещество разрабатывалось для решения очень серьезных задач. И, если еще раз посмотреть его свойства, можно даже догадаться, с какими именно.Для тех, кто не догадался, рассказываем. Сухая вода была создана для систем автоматического пожаротушения. Те, кто хотя бы раз сталкивался с последствиями тушения даже небольшого возгорания, обязательно оценят преимущества сухой воды.
Представьте себе, что в офисе сработала система пожаротушения. Очаг возгорания потушен, но какой ценой! Важная документация безнадежно испорчена, офисная техника, залитая водой и пеной, не работает, а мебель проще заменить, чем приводить в порядок.
Но если при тушении пожара использовалась сухая вода, всех этих проблем не возникнет. С огнем это вещество борется не хуже, а возможно, и лучше, чем обычная вода. При этом, бумага, мебель и техника остаются неповрежденными.Да что там офис! Ведь пожар может случиться где угодно, например, в библиотеке или музее, крупном дата-центре или на телестанции, или в любом другом месте, где много дорогостоящей аппаратуры, важных документов, бесценных произведений искусства. Представляете, какие потери помогает предотвратить сухая вода!
3M Novec 1230: сухая вода тушит пожары в зданиях
Американские учёные создали вещество, которое выглядит, как вода, течёт, как вода, и быстро тушит огонь, как вода. Однако вещество является совершенно сухим и не смачивает поверхности. Новую жидкость будут применять в системах пожаротушения.
13 апреля 2004 года компания Tyco Fire & Security
из Флориды продемонстрировала возможности противопожарной системы, использующей "сухую воду".
Новая система подавления огня получила торговую марку ANSUL Sapphire (ANSUL — это линейка противопожарной техники компании).
Из её особенностей нужно отметить чувствительность — система начинает тушить пожар, когда реакция горения только-только началась, и пламени фактически ещё нет.
Сама "сухая вода" выпускается американской компанией 3M
под торговой маркой 3M Novec 1230.
Эта жидкость обладает всеми противопожарными свойствами воды, и будучи вылитой (разбрызганной) на очаг пожара также эффективно (если не лучше "мокрой воды") подавляет пламя.
Но в отличие от воды настоящей новая "вода" не повреждает электронику, произведения искусства, мебель и тому подобные вещи, так как является фактически сухим веществом.
Точнее, в процессе распыления новое вещество обращается в пар, а в виде жидкости оно ждёт своего часа в баллонах автоматической противопожарной системы, где хранится под давлением.
При этом новая система занимает существенно меньше места, чем конкурирующие противопожарные комплексы с баллонами, накачанными инертными газами.
На недавней демонстрации в передаче "Доброе утро, Америка" в плошку с этой жидкостью погружали книги и электронные приборы.
После того, как предметы вынимали, жидкость испарялась с них за секунду, не оставляя абсолютно никаких следов и не производя никаких изменений в структуре, например, бумаги.
Это идеальное решение для встроенных противопожарных систем для больниц, музеев, библиотек, узлов телекоммуникаций и вычислительных центров, полагают американские изобретатели.Интересно, что новая жидкость химически вмешивается в реакцию горения и подавляет её, в то время, как вода просто охлаждает очаг возгорания и, испаряясь, перекрывает доступ кислорода к огню.
Интересно сравнить физические свойства воды и 3M Novec 1230. Их температуры кипения — 100 и 49 градусов Цельсия соответственно.
Температура замерзания — ноль и минус 108 градусов. Давление насыщенного пара при 25 градусах Цельсия — 3,2 и 40,4 килопаскаля у воды и "сухой воды" соответственно
Теплота парообразования — 2442 килоджоулей на килограмм у воды, и всего 95 у нового вещества.Секрет его в том, что оно не содержит атомы водорода и поэтому не имеет водородных химических связей.Взаимодействие между молекулами новой жидкости намного слабее, чем между молекулами воды, которое в последнем случае определяется именно водородными связями.
Это слабое притяжение между молекулами "сухой воды" и придаёт ей такие уникальные свойства. Они позволяют 3M Novec 1230 быстро переходить от жидкости до газообразного состояния даже при холодном распылении, когда пожар только начался и большого пламени (и высокой температуры) ещё нет.Нужно заметить, что жидкости с подобными свойствами были известны химикам и раньше. Почему же они не применялись в системах пожаротушения?Ответ прост — предшественники "сухой воды" были токсичны и опасны для озонового слоя. Чего нельзя сказать о 3M Novec 1230.
Общеизвестно, что вода может пребывать в жидком, твердом и газообразном состояниях. А знаете ли вы, что вода также может быть сухой, как бы парадоксально это не звучало.
«Сухая вода» на 95% состоит из воды и представляет собой крошечные капельки воды, каждая из которых заключена в оболочку из диоксида кремния, препятствующего расплыванию и соединению молекул воды. По виду «сухая вода» напоминает порошок. Если мы посмотрим на химическую формулу сухой воды (CF3CF2C(O)CF(CF3)2) , то увидим, что в ней в отличие от обычной воды отсутствует водород и, как следствие, водородные связи, а это значит, что взаимодействие между молекулами этой воды намного слабее. Другими отличиями «сухой воды» являются ее температура замерзания, которая равняется?108°C, температура кипения, составляющая 49°C, а также неспособность проводить ток. В такой воде нельзя заварить чай или кофе, в ней не растворяются сахар и соль. Среди сходств же с обычной водой числятся отсутствие цвета и запаха.
«Сухая вода» была изобретена еще в 1968 году, однако в то время она не нашла практического применения и на долгие годы была предана забвению.
Вспомнили о ней лишь в 2004 году, когда корпорация ЗМ усовершенствовала «сухую воду» удалив из нее вредный для экологии хладон, и зарегистрировала ее под торговой маркой Novec 1230. С тех пор «сухая вода» стала использоваться в пожаротушении, и быстро приобрела популярность, поскольку показала свои преимущества перед обычной водой. Так, даже при оперативном тушении пожара обычной водой, уцелевшие в огне документы, книги, техника, мебель и другие вещи могут быть безнадежно испорчены этой самой водой. С «сухой водой» такого не произойдет, так как при тушении огня она превращается в пар, который, оседая на предметах, исчезает через несколько секунд не нанося им никакого вреда. Ведущие одной передачи даже проводили наглядный эксперимент, опуская в емкость с «сухой водой» мобильный телефон и лист бумаги, при этом телефон продолжал исправно работать, а бумага даже не намокла. Подобные свойства «сухой воды» были в первую очередь оценены сотрудниками музеев и библиотек, а также владельцами предприятий, где имеется большое количество оборудования под высоким напряжением.
«Сухая вода» даже тушит огонь иначе, вмешиваясь в реакцию горения и поглощая тепло, обычная же вода понижает температуру в очаге возгорания и, испаряясь, перекрывает доступ кислорода к пламени. К тому же Novec 1230 быстро переходит в газообразное состояние даже при небольшой температуре, когда пожар только начался.
Помимо этого, еще одним плюсом «сухой воды» при тушении огня является тот факт, что при ее использовании не снижается концентрация кислорода в помещении, тем самым, увеличивая время эвакуации людей.
Попадая в атмосферу, Novec 1230 под воздействием ультрафиолета распадается за 3-5 дней, не нанося урона озоновому слою Земли. Для человека «сухая вода» также безопасна, но пить ее все же не стоит.
Однако «сухая вода» может применяться не только в пожаротушении. В 2006 году изучая свойства данного вещества, специалисты Ливерпульского Университета обнаружили, что «сухая вода» может оказать большую услугу нашей планете. Дело в том, что она способна активно поглощать углекислый газ, который относится к парниковым газам, способствующим разрушению озонового слоя и, как следствие, глобальному потеплению. Эксперименты показали, что за один и тот же промежуток времени «сухая вода» поглощает в три раза больше углекислого газа, чем обычная вода. Все это дает возможность значительно снизить концентрацию парниковых газов в атмосфере.
Есть предположения о том, что благодаря своей способности абсорбировать газы, «сухая вода» также может помочь в добыче находящегося на дне океанов замерзшего метана, а также других труднодоступных газов.
Также ведутся поиски способа, который смог бы обезопасить хранение топлива для автомобилей, работающих на водороде.
Кроме того, один из специалистов Ливерпульского Университета доктор Бен Картер на 240-м национальном собрании американского химического сообщества в Бостоне рассказал о том, что помимо прочего «сухая вода» является катализатором, ускоряющим реакцию между водородом и малеиновой кислотой, в результате которой образуется янтарная кислота, широко используемая в производстве потребительских товаров. При этом отпадает необходимость помешивать водород и янтарную кислоту, таким образом, процесс становится более энергоэффективным и безопасным для окружающей среды.
К тому же данная технология может использоваться для создания «сухих» порошковых эмульсий, состоящих из нескольких жидкостей, которые не смешиваются между собой, например, воды и масла. Эти эмульсии помогут сделать более безопасными хранение и транспортировку потенциально опасных жидкостей.
Справка:
Фторкетоны – это синтетические органические вещества, в молекуле которого все атомы водорода заменены на прочно связанные с углеродной решеткой атомы фтора. Такие свойства делают вещество инертным во взаимодействии с другими молекулами и ингибитором тепловых реакций. Многочисленные лабораторные исследования и испытания показали, что фторкетоны являются эффективными огнетушащими веществами с положительным экологическим и токсикологическим профилем. Это бесцветная прозрачная жидкость со слабовыраженным запахом, которая тяжелее воды в 1,6 раз. Это эффективный диэлектрик с электрической проницаемостью 2,3, поэтому погруженные даже в «сухую воду» электронные устройства продолжают работать. Поскольку температура кипения этого вещества при давлении 1 атм. составляет 49,2°С, он мгновенно испаряется, не оставляя налета на стенках оборудования.
Вот что сообщает компания ЗМ:
Известно, что последствия тушения пожара зачастую бывают столь же тяжелыми, как и воздействие самого огня. Вода, порошок портят оборудование, документацию, произведения искусства и все ценное, что находится в помещении; газы - инерген, хладон, углекислота воздействуют на материальные ценности не так сильно, но они смертельно опасны для людей, находящихся в защищаемом помещении, поэтому требуют их немедленной эвакуации.
В поиске сочетания параметров эффективности и безопасности пожаротушащих веществ за последние десятилетия сменилось несколько их поколений от углекислоты и инертных газов – до хладонов. Однако в большинстве своем они обладают серьезными ограничениями по применению. Как я упоминала ранее, системы на углекислоте смертельно опасны для человека, а хладоны первого поколения запрещены во всем мире в связи с колоссальным негативным воздействием на атмосферу. А это немаловажный фактор, ведь глобальное потепление идет рекордными темпами. К примеру, ледник на горе Килиманджаро, который по подсчетам ученых должен был растаять к 2015 году, растаял уже в 2005 году
Понимая недостатки существующих агентов для газового пожаротушения, группа ученых 3М не стала модифицировать хладоны, а направила свои усилия в совершенно новое русло. Было принято решение использовать одну из базовых технологических платформ 3М – химию перфторированных органических соединений. К слову, эта технология позволяет компании добиваться успеха в области сверхтонкой очистки различных деталей, нанесения защитных покрытий на стекло, металлы и пластик, а также охлаждения электронных устройств.
10-летний период исследовательской работы увенчался настоящим успехом – был создан и введен в международную практику новый класс газовых огнетушащих веществ – фторированные кетоны. Многочисленные тестовые испытания, проведенные ведущими мировыми организациями, специализирующимися в области пожарной безопасности, вызвали удивление у экспертов: фторкетоны оказались не только отличными огнетушащими веществами (с эффективностью аналогичной хладонам), но при этом, показали весьма положительный экологический и токсикологический профиль.
Немного скучной химии
Итак, фторкетоны. Это синтетические органические вещества, в молекуле которых все атомы водорода заменены на прочно связанные с углеродным скелетом атомы фтора. Такие изменения делают вещество инертным с точки зрения взаимодействия с другими молекулами. Почему «сухая» вода?
Novec 1230 (ФК-5-1-12) (флуорокетон С-6) представляет собой бесцветную прозрачную жидкость со слабовыраженным запахом, которая тяжелее воды в 1,6 раз и, что особенно важно - не проводит электричество. Его диэлектрическая проницаемость - 2,3 (за единицу в качестве эталона принят осушенный азот).
Инновационные свойства этого огнетушащего вещества объясняются строением его шестиуглеродной молекулы, имеющей слабые связи. Они позволяют Novec 1230 быстро переходить из жидкого состояния в газообразное и активно поглощать тепловую энергию огня. Подавление пожара осуществляется за счет эффекта охлаждения (70%). Также происходит химическая реакция ингибирования пламени (30%). При этом не снижается концентрация кислорода в помещении (что важно для увеличения времени эвакуации людей из помещения). Вещество мгновенно испаряется, не вступая в химические реакции, что позволяет не наносить ущерб материалам и дорогостоящему оборудованию, а диэлектрические свойства предотвращают короткое замыкание.
Как это работает?
Другое важное свойство фторкетонов - крайне низкая растворимость в воде, которая не позволяет веществу пройти через клеточные мембраны в организм, т.е. обеспечивает их низкую токсичность и высокую теплоемкость паров, приводящую к активному охлаждению пламени и его тушению. А это значит, что люди, находящиеся в помещении в момент срабатывания системы, не подвергаются опасности. Системой пожаротушения на основе Novec 1230 оборудованы Центры управления полетами аэропортов Внуково и Кольцово, диспетчеры могут выполнять свою работу при срабатывании системы не подвергая свою жизнь риску.
Как это воздействует на человека?
Отдельно остановлюсь на таком показателе как степень безопасности пожаротушащего агента для людей. Она определяется разницей между рабочей концентрацией и предельно допустимой концентрацией. В мировой практике применяется параметр, называемый NOAEL (No Observed Adverse Effect Level - концентрация, не вызывающая вредного воздействия). Он устанавливает пороговую концентрацию веществ по кардиосенсибилизирующему и кардиотоксическому воздействию на организм. Иногда эту разницу называют запасом безопасности, который компенсирует неточности в расчете количества газового агента в системе, неравномерность распределения по объему помещения, использование повышающих коэффициентов для расчетной концентрации и другие факторы. Отрицательное значение этого параметра свидетельствует об опасности агента в рабочей концентрации после срабатывания системы.
Так, системы, использующие «инертные» газы (не поддерживающие горение), используют принцип тушения огня путем разбавления кислорода воздуха до значений, значительно ниже уровня в нормальной воздушной среде (12-13% против 21% в обычном воздухе). Это приводит к риску возникновения удушья у находящихся в помещении людей, хотя токсическим действием такие газы не обладают. Отдельно следует сказать об углекислом газе, для которого рабочие концентрации всегда являются смертельными для человека. Это связано с его физиологическим воздействием на организм при концентрациях выше 5% (для сравнения нормативная огнетушащая концентрация для СО2 составляет 35%).
Химические агенты не снижают концентрацию кислорода в помещении. Поэтому для них решающим фактором безопасности для персонала является коэффициент запаса, рассмотренный ранее. Для помещений, где по производственной необходимости могут находиться люди, пусть даже и кратковременно, следует выбирать агенты с максимальным запасом безопасности.
Спринклерные системы пожаротушения – это автоматические средства тушения возгорания. Оросители создают завесу из огнетушащего вещества (ОТВ), локализуя и ликвидируя пожар.
Нормы по эксплуатации систем спринклерного типа:
- СП 5.13130.2009;
- ГОСТ Р51043-2002;
- ФЗ № 123-ФЗ (техрегламент);
- Пост. №390 (противопожарный режим);
- НПБ 88-2001 (проектирование, монтаж).
Что такое спринклерная система
Спринклерные автоматические системы пожаротушения (АСПТ) представляют собой магистраль и разводку трубопроводов, содержащую под напором огнетушащее вещество или заполняемую ОТВ при обнаружении возгорания.В охраняемом помещении создается разветвленная сеть, а на местах распыления вкручиваются специальные реагирующие на огонь, открывающие выход ОТВ самосрабатывающие водяные оросители – спринклеры.
Как работает спринклерная система
Суть работы АСПТ спринклерного типа состоит в выпуске огнетушащего состава на очаг возгорания. Система непрерывно готова к подаче ОТВ. Давление в трубах постоянное, создаваемое насосом-жокеем. Активируется выход воды спринклером – распылителем с тепловым замком.Спринклерная система срабатывает и тушит этапами:
- При возникновении пожара температура повышается.
- Тепловой замок спринклера разрушается (разбивается колба или расплавляется пломба), открывая отверстие для воды.
- ОТВ выходит через ороситель, сначала самотеком.
- Узел управления фиксирует снижение давление (Мпа) – подает сигнал на БУ.
- «Жокей» насос поддерживает напор небольшое время. Далее включается основная насосная станция.
- Теплового – в спринклере.
- Гидравлического/воздушного – в узле управления между разводкой с распылительными головками с жидкостью или воздухом, и источником ОТВ, перекрытым пружинным клапаном.
Варианты :
Как работает |
|
Водозаполненная |
|
Водовоздушная («сухая») | Для неотапливаемых (ниже +5°C) и отапливаемых объектов:
Спринклеры монтируют только вертикально розетками вниз или горизонтально. |
Комбинированные АСПТ |
|
Области применения
Системы пожаротушения спринклерного типа используются на:- объекты хранения данных;
- автостоянки под землей, надземные – выше 1 этажа;
- сооружения с фасадом от 30 м. Для категорий опасности Д, Г высота не имеет значения;
- одноэтажки из металлических элементов с горючим утеплителем. Для общественных зданий данного типа площадь – больше 800 м², административных и бытовых – от 1200 м²;
- торговые предприятия с наземной частью от 2500 м², с подвальной (цокольной) – от 200 м². Исключения: реализация негорючих товаров (металлы, стекло, фарфор, пища);
- постройки, где торгуют легко воспламеняемыми материалами. Исключение: розница упаковками до 20 л.;
- выставочные ангары, залы, галереи от 1000 м²;
- объекты для массового отдыха от 800 посадочных мест;
- склады со стеллажами от 5,5 м.
Применить сеть со спринклерами можно даже в квартире или в других помещениях. Но оборудование тушит только пожары класса A, реже B (специальной пеной). Для других возгораний, объектов под напряжением применяют АСПТ , углекислотой. Учитывают, что вода может повредить материалы.
Автоматическая система полива характерна для тушения:
- водные судна – есть неограниченный доступ к ОТВ;
- пенные и спринклерные устройства применяют для опасных зон с ГСМ, топливом, полимерами, резиной (производства, цеха, склады);
- открытые, технологические проемы: водные завесы на арках, атриумах, стройплощадках;
- противопожарные отсеки больших помещений.
Преимущества и недостатки
Достоинства АСПТ спринклерного типа:- нет ограничений по размеру помещений, количеству персоналу. ОТВ безопасное;
- не надо заправлять;
- экономичность – вода дешевая;
- не требует герметизации помещения;
- магистраль модифицируется под особенности (формы) объекта;
- удобно при централизованном водоснабжении – тушащий состав постоянно циркулирует в трубах на месте возгорания, любые объемы доступны, время распыления неограниченное;
- простая замена спринклеров, большой выбор распылителей (орошение струей, пылью, в точку);
- полная автоматизация, автономность;
- независимость от питания в очаге пожара;
- охват больших площадей;
- долговечность (от 10 лет).
- инерционность (время с момента срабатывания). Тепловой замок разрушается продолжительно – до 300 или 600 сек.;
- реагируют только на температуру;
- риск ложных срабатываний, при этом процесс трудно остановить;
- сложность проектировки, монтажа: соблюдают обширные НПБ;
- ограниченность классами пожара A, B (пенные), видами тушащих составов (вода, пена);
- при отсутствии централизованного водоснабжения – потребность в емкостях для ОТВ, дополнительных насосах;
- тепловые замки делают невозможным применение спринклеров, где неравномерно, непредвиденно нагревается воздух;
- вода замерзает – установка не работает при отрицательных температурах, кроме «сухого» варианта или с теплым водоснабжением;
- спринклеры нужно менять после активации.
Спринклерная и дренчерная системы: отличия
Оба варианта имеют инерционность, но при термочувствительном запорном устройстве она больше. У оборудования с открытыми распылителями период ожидания выпуска тушащей смеси зависит лишь от доставки воды по магистрали.Отличие спринклерной системы от :
Оборудование |
|
Спринклерное | Дренчерное |
Ороситель закрытого типа, автономный, самодостаточный, активирующийся самостоятельно. | Простой распрыскиватель. Открытый, без теплового запора, не влияет на активацию. |
Вскрывается только реагирующая на огонь головка, орошая строго защищенную площадь, не заливая остальное пространство. Требуется замена тепловых замков после срабатывания. | Задействуются все оросители, заливая все помещение, но не требуют замены. |
Побудительная цепь не нужна: спринклер сам является таковой (обнаружитель плюс побудитель). Можно использовать без дополнительных датчиков. | Необходима сигнализация, датчики и активация с пульта. |
Устройство спринклерного пожаротушения
АСПТ может включать в себя два варианта: «сухой» и водозаполненной с переключением по мере необходимости.Водозаполненная часть:
- подача воды, источник с дозатором;
- пожарный резервуар с переливным, тестовым трубопроводом;
- насос с всасывающим шлангом, около него – водяной узел управления (спринклерный клапан);
- обратный клапан для перекрытия или обеспечения постоянного напора.
- источник;
- воздушный узел управления (сухой клапан);
- насос для резервуара;
- компрессор;
- резервуар (пневмоцистерна, водопитатель).
Общие элементы:
- магистраль со спринклерными распылителями;
- гибкая подводка;
- шкафы, блоки управления;
- пожарные извещатели.
- запорная арматура;
- резервные, откачивающие насосы;
- дренажные приямки;
- датчики контроля ОТВ;
- для вспененного тушащего состава:
- пенный ороситель;
- емкости для хранения с устройством контроля уровня;
- пеногенераторы;
- дозатор.
Спринклерная система пожаротушения в больших помещениях может иметь несколько секций (зон), индивидуальные сигнальные клапаны, устройства подачи сжатого воздуха для повышения давления.
Спринклерный узел управления
Тип узла управления определяет режим работы, вариант компоновки. Задачи механизма – сигнализировать на пульт или БУ для включения насоса. От узла зависит активация и будет ли включена подача огнетушащего состава.Узел водозаполненный
«Мокрый» клапан внутри заполнен жидкостью под высоким давлением. Варианты:- угловой;
- прямоточный.
- Плюс : нет потребности в дополнительных сигнальных клапанах.
- Минус : возможность ложных самозапусков из-за гидроударов, неисправностей оросителей, вода может замерзнуть. Для уменьшения риска есть замедляющая камера (время выставляется от 0 до 16 сек.). Если движение жидкости в спринклерной АСПТ вызвано посторонней причиной, то вода стравливается в канализацию.
Узел воздушный
Управляющий узел может наполняться вместо жидкости сжатым кислородом или азотом. Второе название – спринклерный мембранный воздушный клапан.Используется дифференциальный принцип, равновесие:
- Напор воздуха со стороны магистрали с оросителями и от части поступления воды на задвижку создает баланс.
- При открытии оросителя происходит разгерметизация – давление падает, равновесие нарушается, запор отодвигается, тушащее вещество поступает в трубы.
Воздушный контрольно-пусковой
Принцип работы КПУУ дополненный контролем целостности цепей оборудования (изменение Мпа, разрывы, поломки), что полностью исключает ложную тревогу.Разновидности включения:
- предварительного действия – после реагирования пожарных извещателей или оросителей;
- предварительного срабатывания с контролем пуска – только после сигнала датчиков;
- с двойным контролем старта установки – активация от пожарных датчиков и при запуске хотя бы одного спринклерного распрыскивателя.
Виды спринклерных оросителей
Спринклер – распрыскиватель АСПТ из легких сплавов с посадочной резьбой, запорным сегментом (колба, распаивающаяся пластина) на выходном отверстии, открывающимся при определенной температуре.Алгоритм работы:
- достигается критическая температура;
- головка устройства:
- распаивается – встречается реже, поскольку плавящиеся пластины ненадежные;
- термочувствительная жидкость расширяется, запирающая колба оросителя трескается;
- замок разрывается;
- открывается отверстие – сдерживаемая вода распыляется.
Температура срабатывания от + 57 до +182°С. Инерционность является основным недостатком распрыскивателя: до 300 сек. у низкотемпературных изделий (+57, +68°С) и у высокотемпературных – до 600 сек. Механизм – одноразовый. После активации заменяют новым. Срок службы оросителя в режиме ожидания – 10 лет.
Колбы в зависимости от значения для начала химической реакции имеют разный цвет жидкости.
Спринклерная декоративная розетка АСПТ имеет и рабочую функцию: обеспечивает требуемое разбрызгивание, направление: завеса из мелкодисперсной водной пыли, крупные капли, струи. В среднем ороситель охватывает радиус 2 м.
Из чего состоит спринклер:
- винты стопорные;
- розетка;
- запорная колба;
- пружина тарельчатого типа или резина (реже, так как она плавится и деформируется);
- корпус с резьбой.
Позиционные
Спринклеры позиционного типа имеют несколько модификаций ориентации розетки для разных вариантов распыления ОТВ в очаг:- универсальные – фиксируется в любом направлении;
- вогнутые – вертикальная установка;
- плоские – разбрызгивающей частью вверх;
- для горизонтальной фиксации.
Угловые
Струя моделируется: устройство с миниатюрным козырьком розетки позволяет выбрать требуемый угол для эффективного распыления. Подобрав правильную настройку, создается наиболее результативная водная завеса, орошающая материалы и оборудование в очаге возгорания.Тонкодисперсные
Спринклеры для тонкого распыления с сетчатым колпачком-калибратором создают плотную завесу ОТВ. Расход воды сниженный, одновременно повышается эффективность, создается огнпреграждающий экран облаком мелкой взвеси огнетушащего вещества.Пониженный уровень повреждения влагой обрабатываемых поверхностей. Часто применяется для пожаров класса A.
Быстродействующие
Конструкция спринклеров с ускоренным действием имеет элементы, обеспечивающие меньшую инерционность. Ликвидируется большая задержка между возникновением возгорания и разрыва замка на оросителе.Огнетушащие составы
Второе название спринклерных систем – установки водяного пожаротушения, поскольку используются составы на основе воды.Максимум, как можно модифицировать ОТВ – создание пены. В пенных системах есть отдельный бак с пеногенератором, специальные калибровщики.
Пена расширяет диапазон тушения классов пожара. Смесь имеет различные химические добавки (фторные). Вспененное вещество меньше повреждает материалы.
Требования к состоянию огнетушащих веществ
Вещества для тушения должны быть без примесей, приводящих к коррозии труб. Используются те же составы, что для обычных водных или .Монтаж спринклерной системы тушения: нормы и требования
Разработку проекта, монтаж и ТО производят лицензированные предприятия. Учитывают высоту потолков, радиус и диаграммы распыления, характеристики вентиляции. Возможен вариант углубленного монтажа оросителей для декоративного вида.Основы процесса установки:
- трубы:
- шовные;
- оцинкованные снаружи и изнутри;
- крепление к потолку. Используются металлические спринклерные подвесные хомуты, шаг 1,5 м;
- соединения: сварка, опрессовка фитингами, установочные муфты;
- расстановка оросителей должна соответствовать инструкции: при радиусе распространения капель в 2 м расстояние между головками около 4 м;
- разводку, аккумуляторы, баки, насосы размещают в отдельном помещении (пристройка, подвал). Там же производится подключение к водоснабжению;
- отдельно устанавливается пульт охраны (дублирующая схема управления).
- в системе должно быть давление до 1 Мпа.
Обслуживание спринклерных систем
- Монтаж спринклерной системы завершается испытанием – имитацией пожара с заменой спринклеров на дренчерные оросители.
- ТО включает осмотр на предмет выявления утечек, коррозии. При обнаружении дефектов тепловые замки и другие элементы заменяются со сливом жидкости. Производится принудительный пуск и перезапуск.
- Гарантированный срок эксплуатации – 10 лет, полная проверка с испытанием, капитальным ремонтом, повторный гидравлический расчет – раз в 3 года.
- Температуры эксплуатации от -50 до +50˚С (для водозаполненных – от +5 ˚С) или рекомендованные производителем.
- Обслуживание системы после срабатывания заключается в возвращении оборудования в рабочее состояние: заменяют термозатворы, приводят узлы управления в режим ожидания.