Расчет числа оборотов. Расчет ременной передачи

Главная / Выгребная яма

Классификация передач. В зависимости от формы поперечного сечения ремня передачи бывают: плоскоременные, клиноременные, круглоременные, поликлиноременные (рис. 69). Плоскоременные передачи по расположению бывают перекрестные и полуперекрестные (угловые), рис. 70. В современном машиностроении наибольшее применение имеют клиновые и поликлиновые ремни. Передача с круглым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

Разновидность ременной передачи является Зубчатоременная , передающая нагрузку путем зацепления ремня со шкивами.

Рис. 70. Виды плоскоременных передач: а – перекрестная, Б – полуперекрестная (угловая)

Назначение. Ременные передачи относится к механическим передачам трения с гибкой связью и применяют в случае если необходимо передать нагрузку между валами, которые расположены на значительных расстояниях и при отсутствии строгих требований к передаточному отношению. Ременная передача состоит из ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива преобразуется во вращение ведомого благодаря трению, развиваемому между ремнем и шкивами. По форме поперечного сечения различают Плоские , Клиновые , Поликлиновые и Круглые приводные ремни. Различают плоскоременные передачи - Открытые , которые осуществляют передачу между параллельными валами, вращающимися в одну сторону; Перекрестные, Которые осуществляют передачу между параллельными валамиПри вращении шкивов в противоположных направлениях; в Угловых (полуперекрестных) плоскоременных передачах шкивы расположены на скрещивающихся (обычно под прямым углом) валах. Для обеспечения трения между шкивом и ремнем создают натяжение ремней путем предварительного их упругого деформирования, путем перемещения одного из шкивов передачи или с помощью натяжного ролика (шкива).

Преимущества. Благодаря эластичности ремней передачи работают плавно, без ударов и бесшумно. Они предохраняют механизмы от перегрузки вследствие возможного проскальзывания ремней. Плоскоременные передачи применяют при больших межосевых расстояниях и, работающие при высоких скоростях ремня (до 100М/с ). При малых межосевых расстояниях, больших передаточных отношениях и передаче вращения от одного ведущего шкива к нескольким ведомым предпочтительнее клиноременные передачи. Малая стоимость передач. Простота монтажа и обслуживания.

Недостатки. Большие габариты передач. Изменение передаточного отношения из-за проскальзывания ремня. Повышенные нагрузки на опоры валов со шкивами. Необходимость устройств для натяжения ремней. Невысокая долговечность ремня.

Сферы применения. Плоскоременная передача проще, но клиноременная обладает повышенной тяговой способностью и вписывается в меньшие габариты.

Поликлиновые ремни - плоские ремни с продольными клиновыми выступами-ребрами на рабочей поверхности, входящими в клиновые канавки шкивов. Эти ремни сочетают достоинства плоских ремней - гибкость и клиновых - повышенную сцепляемость со шкивами.

Круглоременные передачи применяют в небольших машинах, например машинах швейной и пищевой промышленности, настольных станках, а также различных приборах.

По мощности ременные передачи применяются в различных машинах и агрегатах при 50КВ Т, (в некоторых передачах до 5000КВт ), при окружной скорости - 40М/с , (в некоторых передачах до 100М/с ), по передаточным числам 15, КПД передач: плоскоременные 0,93…0,98, а клиноременные – 0,87…0,96.

Рис. 71 Схема ременной передачи.

Силовой расчет. Окружная сила на ведущем шкиве

. (12.1)

Расчет ременных передач выполняют по расчетной окружной силе с учетом коэффициента динамической нагрузки И режима работы передачи:

Где - коэффициент динамической нагрузки, который принимается =1 при спокойной нагрузке, =1,1 – умеренные колебания нагрузки, =1.25 – значительные колебания нагрузки, =1,5 – ударные нагрузки.

Начальную силу натяжения ремня F O (предварительное натяжение) принимают такой, чтобы ремень мог сохранять это натяжение достаточно длительное время, не подвергаясь большой вытяжке и не теряя требуемой долговечности. Соответственно этому начальное напряжение в ремне для плоских стандартных ремней без автоматических натяжных устройств =1,8МПа ; с автоматическими натяжными устройствами = 2МПа ; для клиновых стандартных ремней =1,2...1,5МПа ; для полиамидных ремней = 3...4МПа .

Начальная сила натяжения ремня

Где А - Площадь поперечного сечения ремня плоскоременной передачи либо площадь поперечного сечения всех ремней клиноременной передачи.

Силы натяжения ведущей И ведомой S2 Ветвей ремня в нагруженной передаче можно определить из условия равновесия шкива (рис. 72).

Рис. 72. Схема к силовому расчету передачи.

Из условия равновесия ведущего шкива

(12.4)

С учетом (12.2) окружная сила на ведущем шкиве

Натяжение ведущей ветви

, (12.6)

Натяжение ведомой ветви

. (12.7)

Давление на вал ведущего шкива

. (12.8)

Зависимость между силами натяжения ведущей и ведомой ветвей приближенно определяют по формуле Эйлера, согласно которой натяжений концов гибкой, невесомой, нерастяжимой нити, охватывающей барабан связаны зависимостью

Где - коэффициент трения между ремнем и шкивом, - угол обхвата шкива.

Среднее значение коэффициента трения для чугунных и стальных шкивов можно принимать: для резинотканевых ремней =0,35, для кожаных ремней = 0,22 и для хлопчатобумажных и шерстяных ремней = 0,3.

При определении сил трения в клиноременной передаче в формулы вместо – коэффициента, трения надо подставлять приведенный коэффициент трения для клиновых ремней

, (12.10)

Где - угол клина ремня .

При совместном рассмотрении приведенных силовых соотношений для ремня получим окружную силу на ведущем шкиве

, (12.11)

Где - коэффициент тяги, который определяется по зависимости

Увеличение окружного усилия на ведущем шкиве можно достичь увеличением предварительного натяжения ремня либо повышением коэффициента тяги, который повышается с увеличением угла обхвата и коэффициента трения.

В таблицах со справочными данными по характеристикам ремней указаны их размеры с учетом необходимых коэффициентов тяги.

Геометрический расчет. Расчетная длина ремней при известном межосевом расстоянии и диаметрах шкивов (рис.71):

Где . Для конечных ремней длину окончательно согласовывают со стандартными длинами по ГОСТ. Для этого выполняют геометрический расчет согласно схемы показанной на рис.73.

Рис.73. Схема к геометрическому расчету ременной передачи

По окончательно установленной длине плоскоременной или клиноременной открытой передачи действительное межосевое расстояние передачи пои условии, что

Расчетные формулы без учета провисания и начальной деформации ремня.

Угол обхвата ведущего шкива ремнем в радианах:

, (12.14)

В градусах .

Порядок выполнения проектного расчета. Для ременной передачи при проектном расчете по заданным параметрам (мощность, момент, угловая, скорость и передаточное отношение) определяются размеры ремня и приводного шкива, которые обеспечивают необходимую усталостную прочность ремня и критический коэффициент тяги при максимальном КПД. По выбранному диаметру ведущего шкива из геометрического расчета определяются остальные размеры:

Проектный расчет плоскоременной передачи по тяговой способности производят по допускаемому полезному напряжению, Которое определяют по кривым скольжения. В результате расчета определяется ширина ремня по формуле:

, (12.15)

Где - окружная сила в передаче; - допустимая удельная окружная сила, которая соответствует максимальному коэффициенту тяги, которая определяется при скорости ремня =10 м/с и угле обхвата =1800; - коэффициент расположения передачи в зависимости от угла наклона линии центров к горизонтальной линии: =1,0, 0,9, 0,8 для углов наклона =0…600, 60…800, 80…900; - коэффициент угла обхвата шкива ; - скоростной коэффициент: ; - коэффициент режима работы, который принимается: =1,0 спокойная нагрузка; =0,9 нагрузка с небольшими изменениями, =0,8 – нагрузка с большими колебаниями, =0,7 – ударные нагрузки.

Для расчета предварительно по эмпирическим формулам определяется диаметр ведущего шкива

, (12.16)

Где - передаваемая мощность в кВт, - частота вращения.

Диаметр ведущего шкива округляется до ближайшего стандартного.

Принимается тип ремня, по которому определяется допустимая удельная окружная сила по таблице 12.1.

Таблица 12.1

Параметры плоских приводных ремней

Расчетную ширину ремня округляют до ближайшей стандартной ширины по табл.12.2.

Таблица 12.2 Стандартная ширина плоских приводных ремней

20, 25,32, 40, 50, 63, 71, 80, 90, 110, 112, 125, 140, 160, 180, 200, 224, 250, 280…

30, 60, 70, 115, 300…

Таблица 12.3 Ширина обода шкива плоскоременной передачи.

Проектный расчет клиноременной передачи по тяговой способности производят по допускаемой мощности передаваемой одним ремнем выбранного поперечного сечения, которое также определяют по кривым скольжения. В результате расчета определяется количество ремней выбранного сечения по формуле:

, (12.17)

Где - допускаемая мощность, передаваемой одним поперечного сечения; - коэффициент угла обхвата шкива: ; - коэффициент длины ремня: ; - коэффициент, который учитывает неравномерность нагружения между ремнями .

Для расчета по формуле (12.17) предварительно по эмпирическим зависимостям определяется тип поперечного сечения ремня (рис.74), а по нему предварительно принимается диаметр ведущего шкива по передаваемой мощности и частоте вращения, согласно таблице 12.3.

Таблица 12.4

Мощность N 0, которая передается одним клиновым ремнем при α =180o, длине ремня 0 спокойном нагружении и передаточном отношении U = 1

d 1, мм

Р0 (кВт) при скорости ремня υ, м/с

l 0=1320мм

l 0=1700мм

l 0=2240мм

l 0=3750мм

l 0=6000мм

Перевод системы обозначений сечений клиновых ремней по ГОСТ 1284 в международные стандарты: О – Z, А – A, Б – B, В – C, Г – D, Д – E, Е – E0

Межосевое расстояние может быть задано в исходных данных, либо приниматься в диапазоне

,

Где - высота, выбранного сечения ремня.

В результате геометрического расчета передачи уточняются значения параметров определяются расчетная длина ремня , которая округляется до ближайшего стандартного значения, согласно таблице 12.5.Таблица 12.5

Стандартная длина клиновых ремней

Длина , мм

Сечение ремня

400; 425; 450; 475; 500; 530

*

560; 600; 630; 670; 710; 750

* *

800; 850; 900; 950; 1000; 1060

* * *

1120; 1180; 1250; 1320; 1400; 1500; 1600; 1700; 1800; 1900; 2000; 2120; 2240; 2360;2500

* * * *

2650; 2800; 3000; 3150; 3350; 3550; 3750; 4000

* * *

4250; 4500; 4750; 5000; 5300; 5600; 6000

* *

6300; 6700; 7100; 7500; 8000; 8500; 9000; 9500; 10000; 10600

*

Расчетное число клиновых ремней округляют до ближайшего большего целого числа.

Проверочный расчет на долговечность. Долговечность ремня определяется его сопротивлением усталости при циклическом нагружении. Сопротивление усталости определяется числом циклов нагружений, которое возрастает с увеличением при скорости ремня и уменьшении его длины. Для обеспечения долговечности ремня в пределах 1000…5000 часов работы проверяется число пробегов ремня в секунду, которое соответствует числу нагружений в секунду

Таблица 12.7

Таблица 12.7

Размеры и параметры клиновых ремней

Обозначение

сечения, мм

F , мм2

Нормального сечения

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в секунду. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому - рёбра или ручьи. Количество их может быть от трёх до двадцати.

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти - двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Обозначение PH PJ PK PL PM
Шаг ребер, S, мм 1.6 2.34 3.56 4.7 9.4
Высота ремня, H, мм 2.7 4.0 5.4 9.0 14.2
Нейтральный слой, h0, мм 0.8 1.2 1.5 3.0 4.0
Расстояние до нейтрального слоя, h, мм 1.0 1.1 1.5 1.5 2.0
13 20 45 75 180
Максимальная скорость, Vmax, м/с 60 60 50 40 35
Диапазон длины, L, мм 1140…2404 356…2489 527…2550 991…2235 2286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Как для ремня, так и для ответного шкива имеется соответствующая таблица с характеристиками для изготовления шкивов.

Сечение PH PJ PK PL PM
Расстояние между канавками, e, мм 1,60±0,03 2,34±0,03 3,56±0,05 4,70±0,05 9,40±0,08
Суммарная погрешность размера e, мм ±0,3 ±0,3 ±0,3 ±0,3 ±0,3
Расстояние от края шкива fmin, мм 1.3 1.8 2.5 3.3 6.4
Угол клина α, ° 40±0,5° 40±0,5° 40±0,5° 40±0,5° 40±0,5°
Радиус ra, мм 0.15 0.2 0.25 0.4 0.75
Радиус ri, мм 0.3 0.4 0.5 0.4 0.75
Минимальный диаметр шкива, db, мм 13 12 45 75 180

Минимальный радиус шкива задаётся не спроста, этот параметр регулирует срок службы ремня. Лучше всего будет если немного отступить от минимального диаметра в большую сторону. Для конкретной задачи мы выбрали самый распространённый ремень типа «РК». Минимальный радиус для данного типа ремней составляет 45 миллиметров. Учтя это, мы будем отталкиваться ещё и от диаметров имеющихся заготовок. В нашем случае имеются заготовки диаметром 100 и 80 миллиметров. Под них и будем подгонять диаметры шкивов.

Начинаем расчёт. Приведём ещё раз наши исходные данные и обозначим цели. Скорость вращения вала электродвигателя 2790 оборотов в минуту. Ремень поликлиновидный типа «РК». Минимальный диаметр шкива, который регламентируется для него, составляет 45 миллиметров, высота нейтрального слоя 1,5 миллиметра. Нам нужно определить оптимальные диаметры шкивов с учётом необходимых скоростей. Первая скорость вторичного вала 1800 оборотов в минуту, вторая скорость 3500 оборотов в минуту. Следовательно, у нас получается две пары шкивов: первая 2790 на 1800 оборотов в минуту, и вторая 2790 на 3500. Первым делом найдём передаточное отношение каждой из пар.

Формула для определения передаточного отношения:

, где n1 и n2 - скорости вращения валов, D1 и D2 - диаметры шкивов.

Первая пара 2790 / 1800 = 1.55
Вторая пара 2790 / 3500 = 0.797

, где h0 нейтральный слой ремня, параметр из таблицы выше.

D2 = 45x1.55 + 2x1.5x(1.55 - 1) = 71.4 мм

Для удобства расчётов и подбора оптимальных диаметров шкивов можно использовать онлайн калькулятор.

Инструкция как пользоваться калькулятором . Для начала определимся с единицами измерений. Все параметры кроме скорости указываем в милиметрах, скорость указываем в оборотах в минуту. В поле «Нейтральный слой ремня» вводим параметр из таблицы выше столбец «PК». Вводим значение h0 равным 1,5 миллиметра. В следующем поле задаём скорость вращения валя электродвигателя 2790 оборотов в минуту. В поле диаметр шкива электродвигателя вводим значение минимально регламентируемое для конкретного типа ремня, в нашем случае это 45 миллиметров. Далее вводим параметр скорости, с которым мы хотим, чтобы вращался ведомый вал. В нашем случае это значение 1800 оборотов в минуту. Теперь остаётся нажать кнопку «Рассчитать». Диаметр ответного шкива мы получим соответствующем в поле, и оно составляет 71.4 миллиметра.

Примечание: Если необходимо выполнить оценочный расчёт для плоского ремня или клиновидного, то значением нейтрального слоя ремня можно пренебречь, выставив в поле «ho» значение «0».

Теперь мы можем (если это нужно или требуется) увеличить диаметры шкивов. К примеру, это может понадобится для увеличения срока службы приводного ремня или увеличить коэффициент сцепления пара ремень-шкив. Также большие шкивы иногда делают намеренно для выполнения функции маховика. Но мы сейчас хотим максимально вписаться в заготовки (у нас имеются заготовки диаметром 100 и 80 миллиметров) и соответственно подберём для себя оптимальные размеры шкивов. После нескольких переборов значений мы остановились на следующих диаметрах D1 - 60 миллиметров и D2 - 94,5 миллиметров для первой пары.

Вопрос господ Рабынина и Новикова, Нижегородская область.

Просим ответить, как правильно рассчитать диаметры шкивов , чтобы ножевой вал деревообрабатывающего станка вращался со скоростью 3000...3500 оборотов в минуту. Частота вращения электрического двигателя 1410 оборотов в минуту (двигатель трехфазный, но будет включен в однофазную сеть (220 В) с помощью системы конденсаторов. Ремень клиновой.

Сначала несколько слов о клиноременной передаче - одной из самых распространенных систем для передачи вращательного движения при помощи шкивов и приводного ремня (такую передачу используют в широких диапазонах нагрузок и скоростей). У нас выпускают приводные ремни двух типов - собственно приводные (по ГОСТ 1284) и для автотракторных двигателей (по ГОСТ 5813). Ремни того и другого типа несколько отличаются друг от друга по размерам. Характеристики некоторых ремней приведены в таблицах 1 и 2, поперечное сечение клинового ремня показано на рис. 1. Оба типа ремней имеют клиновидную форму с углом при вершине клина в 40° с допуском ± 1°. Минимальный диаметр меньшего шкива также указан в таблицах 1 и 2. Однако при выборе минимального диаметра шкива следует еще учитывать линейную скорость движения ремня, которая не должна превышать 25...30 м/с, а лучше (для большей долговечности ремня), чтобы эта скорость находилась в пределах 8... 12 м/с.

Примечание. Названия тех или иных параметров приведены в подрисуночных надписях к рис. 1.

Примечание. Название тех или иных параметров приведены в подрисуночных подписях к рис. 1.

Диаметр шкива, в зависимости от частоты вращения вала и линейной скорости шкива, определяют по формуле:

D1=19000*V/n,

где D1 - диаметр шкива, мм; V - линейная скорость шкива, м/с; n - частота вращения вала, об/мин.

Диаметр ведомого шкива вычисляют по следующей формуле:

D2 = D1x(1 - ε)/(n1/n2),

где D1 и D2 - диаметры ведущего и ведомого шкивов, мм; ε - коэффициент скольжения ремня, равный 0,007...0,02; n1 и n2 - частота вращения ведущего и ведомого валов, об/мин.

Так как значение коэффициента скольжения весьма мало, то поправку на скольжение можно и не учитывать, то есть вышестоящая формула приобретет более простой вид:

D2 = D1*(n1/n2)

Минимальное расстояние между осями шкивов (минимальное межцентровое расстояние) составляет:

Lmin = 0,5x(D1+D2)+3h,

где Lmin - минимальное межцентровое расстояние, мм; D1 и D2 - диаметры шкивов, мм; h - высота профиля ремня.

Чем меньше межцентровое расстояние, тем сильнее изгибается ремень при работе и тем меньше срок его службы. Целесообразно принимать межцентровое расстояние больше минимального значения Lmin, причем делают его тем больше, чем ближе значение передаточного отношения к единице. Но во избежание чрезмерной вибрации применять очень длинные ремни не следует. Кстати, максимальное межцентровое расстояние Lmax легко вычислить по формуле:

Lmax <= 2*(D1+D2).

Но в любом случае значение межцентрового расстояния L зависит от параметров используемого ремня:

L = А1+√(A1 2 - А2),

где L - расчетное межцентровое расстояние, мм; А1 и А2 - дополнительные величины, которые придется вычислять. Теперь разберемся с величинами А1 и А2. Зная диаметры обоих шкивов и стандартную длину выбранного ремня, определить значения А1 и А2 совсем несложно:

А1 = /4, а

А2 = [(D2 - D1) 2 ]/8,

где L - стандартная длина выбранного ремня, мм; D1 и D2 - диаметры шкивов, мм.

Размечая плиту для установки электродвигателя и приводимого во вращение устройства, например, круглой пилы, требуется предусмотреть возможность перемещения электродвигателя на плите. Дело в том, что расчет не дает абсолютно точного расстояния между осями двигателя и пилы. Кроме того, необходимо обеспечить возможность натяжения ремня и компенсировать его растяжение.

Конфигурация ручья шкива и его размеры приведены на рис. 2. Размеры, обозначенные на рисунке буквами, имеются в приложениях к соответствующим ГОСТам и в справочниках. Но если ГОСТов и справочников нет, все необходимые размеры ручья шкива можно примерно определить по размерам имеющегося клиновидного ремня (см. рис. 1), считая, что

е = с + h;

b = ацт+2c*tg(ф/2) = а;

s = а/2+(4...10).

Поскольку интересующий нас случай связан с ременной передачей, передаточное отношение которой не очень большое, на угол охвата ремнем меньшего шкива мы при расчете внимания не обращаем.

В качестве практических рекомендаций скажем, что материалом для шкивов может быть любой металл. Добавим также, что для получения максимальной мощности от трехфазного электродвигателя, включенного в однофазную сеть, емкости конденсаторов должны быть следующими:

Ср = 66Рн и Сп = 2Ср = 132Рн,

где Сп - емкость пускового конденсатора, мкФ; Ср - емкость рабочего конденсатора, мкФ; Рн - номинальная мощность двигателя, кВт.

Для клиноременной передачи немаловажным обстоятельством, сильно сказывающимся на долговечности ремня, является параллельность осей вращения шкивов.

В приводах различных машин и механизмов ременные передачи находят очень широкое применение благодаря своей простоте и дешевизне при проектировании, изготовлении и эксплуатации. Передаче не нужен корпус в отличие от червячной или зубчатой передачи, не нужна...

Смазка. Ременная передача бесшумна и быстроходна. Недостатками ременной передачи являются: значительные габариты (в сравнении с той же зубчатой или червячной передачей) и ограниченный передаваемый крутящий момент.

Наибольшее распространение получили передачи: клиноременные, с зубчатым ремнем, вариаторные широкоременные, плоскоременные и круглоременные. В предлагаемой вашему вниманию статье мы рассмотрим проектировочный расчет клиноременной передачи, как самой распространенной. Итогом работы станет программа, реализующая пошаговый алгоритм расчета в программе MS Excel.

Для подписчиков блога внизу статьи, как обычно, ссылка на скачивание рабочего файла.

Предлагаемый вниманию алгоритм реализован на материалах ГОСТ 1284.1-89 , ГОСТ 1284.3-96 и ГОСТ 20889-80 . Эти ГОСТы находятся в свободном доступе в Сети, их необходимо скачать. При выполнении расчетов мы будем пользоваться таблицами и материалами выше перечисленных ГОСТов, поэтому они должны быть «под рукой» .

Что, собственно говоря, предлагается? Предлагается систематизированный подход к решению вопроса проектировочного расчета клиноременной передачи. Вам не нужно детально изучать вышеперечисленные ГОСТы, вам просто необходимо строго последовательно по шагам выполнять предложенную ниже инструкцию – алгоритм расчета. Если вы не занимаетесь постоянно проектированием новых ременных передач, то со временем порядок действий забывается и, восстанавливая в памяти алгоритм, каждый раз приходится затрачивать значительное время. Пользуясь предложенной ниже программой, вы сможете быстрее и эффективнее выполнять расчеты.

Проектировочный расчет в Excel клиноременной передачи.

Если у вас на компьютере не установлена программа MS Excel, то расчеты можно выполнить в программе OOo Calc из пакета Open Office, которую всегда можно свободно скачать и установить.

Расчет будем выполнять для передачи с двумя шкивами – ведущим и ведомым, без натяжных роликов. Общая схема клиноременной передачи изображена на представленном чуть ниже этого текста рисунке. Запускаем Excel, создаем новый файл и начинаем работать.

В ячейках со светло-бирюзовой заливкой пишем исходные данные и данные, выбранные пользователем по таблицам ГОСТов или уточненные (принятые) расчетные данные. В ячейках со светло-желтой заливкой считываем результаты расчетов. В ячейках с бледно-зеленой заливкой помещены мало подверженные изменениям исходные данные.

В примечаниях ко всем ячейкам столбца D даны пояснения, как и откуда выбираются или по каким формулам рассчитываются все значения!!!

Начинаем «шагать» по алгоритму — заполняем ячейки исходными данными:

1. Коэффициент полезного действия передачи КПД (это КПД ременной передачи и КПД двух пар подшипников качения) пишем

в ячейку D2: 0,921

2. Предварительное значение передаточного числа передачи u записываем

в ячейку D3: 1,48

3. Частоту вращения вала малого шкива n 1 в об/мин пишем

в ячейку D4: 1480

4. Номинальную мощность привода (мощность на валу малого шкива) P 1 в КВт заносим

в ячейку D5: 25,000

Далее в диалоговом режиме пользователя и программы выполняем расчет ременной передачи:

5. Вычисляем вращательный момент на валу малого шкива T 1 в н*м

в ячейке D6: =30*D5/(ПИ()*D4)*1000 =164,643

T 1 =30* P 1 /(3,14* n 1 )

6. Открываем ГОСТ1284.3-96, назначаем по п.3.2 (таблице 1 и таблице 2) коэффициент динамичности нагрузки и режима работы Cp и записываем

в ячейку D7: 1,0

7. Расчетную мощность привода Р в КВт, по которой будем выбирать сечение ремня считаем

в ячейке D8: =D5*D7 =25,000

P = P 1 *Cp

8. В ГОСТ1284.3-96 выбираем по п.3.1 (рис.1) типоразмер сечения ремня и заносим

в объединенную ячейку C9D9E9: C (B )

9. Открываем ГОСТ20889-80, назначаем по п.2.2 и п.2.3 расчетный диаметр малого шкива d 1 в мм и записываем

в ячейку D10: 250

Желательно не назначать расчетный диаметр малого шкива равным минимально возможному значению. Чем больше диаметр шкивов, тем дольше прослужит ремень, но тем больше будут габариты у передачи. Здесь необходим разумный компромисс.

10. Линейная скорость ремня v в м/с, рассчитывается

в ячейке D11: =ПИ()*D10*D4/60000 =19,0

v = 3.14* d 1 *n1 /60000

Линейная скорость ремня не должна превышать 30 м/с!

11. Расчетный диаметр большого шкива (предварительно)d 2’ в мм рассчитывается

в ячейке D12: =D10*D3 =370

d 2’ = d 1 * u

12. По ГОСТ20889-80, назначаем по п.2.2 расчетный диаметр большого шкива d 2 в мм и пишем

в ячейку D13: 375

13. Уточняем передаточное число передачиu

в ячейке D14: =D13/D10 =1,500

u =d2 /d1

14. Рассчитываем отклонение передаточного числа окончательного от предварительного delta в % и сравниваем с допустимым значением, приведенным в примечании

в ячейке D15: =(D14-D3)/D3*100 =1,35

delta =(u — u ’) / u’

Отклонение передаточного числа желательно не должно превышать 3% по модулю!

15. Частоту вращения вала большого шкива n 2 в об/мин считаем

в ячейке D16: =D4/D14 =967

n2 =n1 /u

16. Мощность на валу большого шкива P 2 в КВт определяем

в ячейке D17: =D5*D2 =23,032

P2 =P1 *КПД

17. Вычисляем вращательный момент на валу большого шкива T 2 в н*м

в ячейке D18: =30*D17/(ПИ()*D16)*1000 =227,527

T 2 =30* P 2 /(3,14* n 2 )

в ячейке D19: =0,7*(D10+D13) =438

a min =0,7*(d 1 + d 2 )

19. Рассчитываем максимальное межцентровое расстояние передачи a max в мм

в ячейке D20: =2*(D10+D13) =1250

a max =2*(d 1 + d 2 )

20. Из полученного диапазона и опираясь на конструктивные особенности проекта назначаем предварительное межцентровое расстояние передачи a в мм

в ячейке D21: 700

21. Теперь можно определить предварительную расчетную длину ремня Lp в мм

в ячейке D22: =2*D21+(ПИ()/2)*(D10+D13)+(D13-D10)^2/(4*D21) =2387

Lp" =2*a" +(3,14/2)*(d1 +d2 )+((d2 -d1 )^2)/(4*a" )

22. Открываем ГОСТ1284.1-89 и выбираем по п.1.1 (таблица 2) расчетную длину ремня Lp в мм

в ячейке D23: 2500

23. Пересчитываем межцентровое расстояние передачи a в мм

в ячейке D24: =0,25*(D23- (ПИ()/2)*(D10+D13)+((D23- (ПИ()/2)*(D10+D13))^2-8*((D13-D10)/2)^2)^0,5) =757

a =0,25*(Lp — (3,14 /2)*(d1 +d2 )+((Lp — (3,14 /2)*(d1 +d2 ))^2-8*((d2 -d1 ) /2)^2)^0,5)

в ячейке D25: =2*ACOS ((D13-D10)/(2*D24))/ПИ()*180 =171

A =2*arccos ((d2 -d1 )/(2*a ))

25. Определяем по ГОСТ 1284.3-96 п.3.5.1 (таблицы 5-17) номинальную мощность, передаваемую одним ремнем P 0 в КВт и записываем

в ячейку D26: 9,990

26. Определяем по ГОСТ 1284.3-96 п.3.5.1 (таблица18) коэффициент угла обхвата CA и вводим

в ячейку D27: 0,982

27. Определяем по ГОСТ 1284.3-96 п.3.5.1 (таблица19) коэффициент длины ремня CL и пишем

в ячейку D28: 0,920

28. Предполагаем, что число ремней будет 4. Определяем по ГОСТ 1284.3-96 п.3.5.1 (таблица20) коэффициент числа ремней в передаче CK и записываем

в ячейку D29: 0,760

29. Определяем расчетное необходимое число ремней в приводе K

в ячейке D30: =D8/D26/D27/D28/D29 =3,645

K" =P /(P0 *CA *CL *CK )

30. Окончательно определяем число ремней в приводе K

в ячейке D31: =ОКРВВЕРХ(D30;1)=4

K =округление вверх до целого (K ’ )

Мы выполнили проектировочный расчет в Excel клиноременной передачи с двумя шкивами, целью которого было определение основных характеристик и габаритных параметров на основе частично заданных силовых и кинематических.

Буду рад видеть ваши комментарии, уважаемые читатели!!!

Чтобы получать информацию о выходе новых статей вам следует подписаться на анонсы в окне, расположенном в конце статьи или вверху страницы.

Введите адрес своей электронной почты, нажмите на кнопку «Получать анонсы статей», подтвердите подписку в письме, которое тут же придет к вам на указанную почту .

С этого момента к вам на почту примерно раз в неделю будут приходить небольшие уведомления о появлении на моем сайте новых статей. (Отказаться от подписки можно в любой момент.)

ОСТАЛЬНЫМ можно скачать просто так... — никаких паролей нет!

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

© 2020 reabuilding.ru -- Портал о правильном строительстве