Электрические печи для варки стекла. Способ варки стекла

Главная / Выгребная яма

Каждый из нас ежедневно имеет дело со стеклянными изделиями. Но мало кто интересовался тем, из чего они состоят. А процесс создания данного материала очень увлекателен и интересен. Область использования его очень велика.

Компоненты для варки стекла

Основным компонентом, из которого получают стекло, является кварцевый песок. И чтобы из данного непрозрачного сыпучего материала получился чистый монолит, его нагревают до очень большой температуры в печах непрерывной работы.

Варка стекла является самым сложным и ответственным процессом. На этом этапе песчинки начинают сплавляться между собой. В связи с тем, что остывание стеклянной массы происходит довольно быстро, то они не успевают возвратиться в свое изначальное состояние.

Помимо этого, в состав стекла еще входят следующие ингредиенты:

  • вода;

  • известняк;

  • сода.

А для получения цветного изделия, в расплавленную стеклянную массу добавляют оксиды различных металлов.

Процессы варки стекла

Варка стекла состоит из следующих процессов:

  1. Тщательное перемешивание всех ингредиентов, которые вымерены при помощи точных весов.

  2. Отправление полученной массы в печь, где происходит их нагрев до температуры в 1600°С. Во время данного процесса, расплавляются самые тугоплавкие компоненты.

  3. Формирование однородной массы (гомогенизация). Тут удаляются все пузырьки газа. Получается однородный расплав.

  4. «Купание» стеклянной массы в расплавленном олове. Его температура достигает 1000°С. Благодаря тому, что олово имеет меньшую плотность, стекло не перемешивается с ним, оставаясь на поверхности. Оно так быстрее остывает и становится идеально гладким.

  5. Варка стекла завершается охлаждением стекломассы. После «оловянной ванны» температура его снижается до 600°С, но для затвердевания это еще очень много. Поэтому стеклянное изделие охлаждают еще раз, помещая на вращающиеся ролики. Остается оно там до температуры в 250 градусов. Для того, чтобы стекло не треснуло, процесс его охлаждения должен происходить медленно.

  6. Фиксация формы стеклянного изделия осуществляется при помощи быстрого охлаждения.

В связи с тем, что стекло имеет маленькую теплопроводность, возникают большие перепады температуры. Это приводит к напряжению внутри самого стеклянного изделия. В связи с этим, после формирования обязательным процессом идет отжиг. Данный процесс основывается на охлаждении полученного изделия по специальному режиму. Это быстро до момента затвердевания. Медленное, когда стекло начинает переходить из пластичного состояния в хрупкое. И затем опять быстрое охлаждение, до достижения уже нормальной температуры.

Отжиг можно осуществлять сразу после формирования изделия либо после повторного нагревания (до температуры размягчения стеклянной массы).

Толщина материала напрямую связана с количеством расходного вещества, которое попадает в ванную. Чем его меньше, тем тоньше получается стекло.

После обрезки полученного листа стекла до необходимых размеров, остатки помещаются обратно в печь. Таким образом, данный процесс является безотходным производством.

Печи для варки стекла

Для варки стекла используются печи с периодическим действием горшкового и ванного типа с не большой емкостью. Принцип их действия непрерывный. Периодическая печь для варки стекла имеет последовательные процессы. Они протекают один за другим через определенный промежуток времени. Печь для варки стекла с непрерывным принципом работы и основанная на ванном типе, включает в себя одновременные процессы, каждый из которых сопровождается определенным объемом работы.

Конфигурации и размеры ванн печей для варки стекла

В стеклянной промышленности очень часто применяются ванные печи для варки стекла различной конфигурации и размеров.

Все эти параметры напрямую связаны со следующими особенностями:

  • составом стекла;

  • способом его выработки;

  • производительностью и многим другим.

В зависимости от вида передаваемого тепла, печи для варки стекла могут быть пламенными, с разным направлением самого пламени, электрическими и пламенно-электрическими. Последний тип основан на верхнем пламенном и глубоком электрическом прогреве стекла.

Принцип варки стекла в печах

Принцип варки в электрической печи основывается на самих особенностях стекломассы, которые проявляются при сильно высокой температуре, более 1100°С. В результате выделения тепла стекло может проводить ток.

Печи ванного типа с постоянной работой используют для варки и производства: листового, тарного, сортового, посудного и других типов стекла. В таких установках присутствует механическая загрузка и автоматическая проверка, с регулированием самого процесса.

Особенностью данных устройств является непрерывное движение стекломассы и самой шихты от загрузочного блока к выработочному. В таких печах варка стекла происходит в верхних слоях.

Бассейн печи может иметь произвольное построение, но обязательно должен быть обустроен стандартными зонами, такими как: загрузка, варка, осветление, охлаждение и выработка. Обладают такие конструкции и стандартными тепловыми режимами.

Температуры стекла в таких печах (в самом начале зоны осветления) составляет порядка 1450 – 1500 градусов. Благодаря специальному разграничению бассейна цельными либо же решетчатыми перегородками, существенно улучшается регулировка режима варки стекла. Такие заградительные конструкции способствуют преграждению пути плохо проваренной массы.

Для того, чтобы уровень стекла в бассейне был на постоянном уровне, загрузка выполняется в постоянном режиме. Это позволяет:

  • обеспечить надлежащий уровень питания;

  • предотвратить своевременный износ огнеупорной конструкции самого бассейна.

Для изготовления листового стекла используются регенеративные печи с постоянной работой и большой производительностью. Они способны вырабатывать до 250 тонн стекла за один день.

В электрических и пламенно-электрических печах варочный процесс основывается на нескольких этапах (аналогично пламенным установкам). Но в данном случае они осуществляются подряд друг за другом в вертикальном направлении. Благодаря мощным конвекционным потокам, процесс варки стекла проходит быстрее.

Стоит помнить, что КПД электрических установок в несколько раз (от 3 до 5) больше, по сравнению с пламенными печами. Тепловые потери тут меньше.

Печи для варки стекла на выставке

Крупнейшая выставка стеклянной промышленности, которая пройдёт в ЦВК «Экспоцентр» каждый год позволяет производителям данной сферы проявить себя. В павильонах демонстрируется продукция от разных стран мира.

Здесь можно заключить очень выгодные контракты сотрудничества с одной из сотни иностранных компаний-производителей стекла. А может даже и с несколькими.

Представленное оборудование отвечает всем международным нормам и стандартам. Оно способно усовершенствовать и ускорить производство. Это позволит сэкономить существенные материальные затраты и привести к росту качества продукции, что не останется не замеченным клиентами.

Процесс перехода порошкообразной шихты при нагревании в стекломассу сопровождается сложными физико- химическими превращениями и проходит в несколько стадий. Важнейшие из них; силикатообразование, стек- лообразование, дегазация (осветление), гомогенизация и студка стекломассы. На первой стадии - силикатооб- разования - при нагреве шихты до 800-900 °С происходит испарение влаги шихты, диссоциация углекислых и сернокислых солей кальция, магния и натрия с выделением газообразных продуктов (С02, S02 и Н20), взаимодействие между компонентами шихты с образованием силикатов, при этом появляется жидкая фаза за счет плавления соды и эвтектических смесей, и шихта превращается в спекшуюся массу.

На второй стадии - стеклообразования - при повышении температуры до 1150-1200 °С завершаются реакции силикатообразования, образуется неоднородная по составу, пронизанная большим количеством газовых пузырьков стекломасса, а не прореагировавшие зерна кварца, количество которых достигает 25 %, и другие компоненты растворяются в силикатном расплаве. Процесс стеклообразования протекает в 8-9 раз медленнее, чем силикатообразование.

На третьей стадии - дегазации - при повышении температуры до 1400-1500°С за счет снижения вязкости стекломассы до 10 Па-с происходит ее дегазация и осветление, при этом устанавливается равновесие между растворенными газами и стекломассой, а мельчайшие газовые пузырьки перестают быть видимыми. Эта стадия наиболее продолжительна по времени, так как газы из стекломассы удаляются медленно.

На четвертой стадии - гомогенизации - происходит усреднение состава стекломассы за счет интенсивного перемешивания поднимающимися к поверхности пузырьками воздуха, что необходимо для выработки стек- лоизделий. Процесс гомогенизации происходит параллельно с дегазацией, но по времени несколько дольше.

На последнем этапе варки стекла - студке стекломассы - происходит равномерное снижение ее температуры на 200-300 °С. Этот этап является подготовительной операцией к выработке стекломассы. При выработке стекла вязкость стекломассы должна быть не менее 100 Па-с, что соответствует температуре 1150-1200 °С.

Для варки стекла применяют печи периодического действия (горшковые и ванные малой емкости) и непрерывного действия (ванные печи с большой производительностью). В печах периодического действия все стадии стекловарения протекают в одном и том же рабочем объеме последовательно одна за другой (в различное время), а в ванных печах непрерывного действия все процессы стекловарения происходят одновременно, причем каждому из них соответствует определенная часть рабочего объема печи.

В стекольной промышленности широко применяют ванные печи различных конструкций и размеров (6.3), зависящих от состава стекла, способа выработки, производительности и др. По способу передачи теплоты стекломассе различают ванные печи пламенные с различным направлением пламени, электрические и пламен- но-электрические, в которых сочетается верхний пламенный нагрев с глубинным электропрогревом стекломассы. Применение электропечей для варки стекла основано на свойстве стекломассы при высоких температурах (свыше 1000-1100 °С) проводить электрический ток с выделением тепла.

Ванные печи непрерывного действия применяют для варки и выработки листового, сортового, тарного, посудного и другого стекла. Они оборудованы механическими загрузчиками и системами автоматического контроля и регулирования. Особенностями варки стекла в ванных печах непрерывного действия являются постоянное перемещение шихты и стекломассы от загрузочной части к выработочной, а также варка стекломассы в поверхностных слоях.

Бассейны ванных печей могут быть разнообразными по конструкции, но в любом бассейне имеются зоны загрузки, варки стекла, осветления, студки и выработки, в которых поддерживается определенный температурный режим (6.4). Максимальную температуру (1450- 1500°С) стекломасса имеет в начале зоны осветления, расположенной в средней части варочного бассейна. Регулирование режима варки стекла облегчается при разделении бассейна печи сплошными или решетчатыми перегородками (экранами), заградительными лодками и др., преграждающими путь непроваренной стекломассе.

Для поддержания постоянного уровня стекломассы в бассейне в целях обеспечения надлежащего режима питания выработочных машин и предотвращения преждевременного разрушения огнеупорного материала бассейна загрузка шихты в ванную печь осуществляется непрерывным способом. После варки и осветления стекломасса поступает в студочную часть и далее в выработоч- ные каналы, ведущие к подмашинным камерам. Передвижение стекломассы в бассейнах происходит в связи с непрерывной выработкой стекла, различными плотностями проваренной и непроваренной стекломассы, разницей температуры по длине и ширине бассейна, приводящей к возникновению конвекционных потоков.

Для варки листовых стекол применяют, как правило, регенеративные печи непрерывного действия большой производительности (до 250 т стекломассы в сутки) с поперечным направлением пламени, с разделением между варочной и выработочной частями заградительными лодками. В электрических и пламенно-электрических печах варка стекла осуществляется также в несколько стадий (как в пламенных печах), но все процессы протекают последовательно в вертикальном направлении, и в результате сильных конвекционных потоков процесс варки протекает более интенсивно. Коэффициент полезного действия электрических печей в 3-5 раз выше, чем пламенных, вследствие лучшего использования тепла и уменьшения тепловых потерь, удельный съем стекломассы высок - 1200-3000 кг/м2 сут.

1.Назначение печи.

В данном курсовом проекте будет рассмотрена ванная печь непрерывного действия. Тип печи-регенеративная,проточная с подковообразным направлением пламени. Конструктивно печь имеет варочный и выработочный бассейн, соединенные между собой по стекломассе протоком.

Для загрузки шихты и стеклобоя печь оборудована двумя герметизированными загрузочными карманами,расположенными по ее боковым сторонам.

Варочный бассейн печи отапливается природным газом. Для отопления варочного бассейна, печь оборудована шестью горелками, расположенными с торцевой стены ванной печи, противоположной ее выработочной части.

Удаление дымовых газов из варочного бассейна стекловаренной печи осуществляется через систему дымовых каналов, оснащенных дымовоздушными клапанами, отсечным, поворотным шиберами и металлической дымовой трубой при помощи основного и резервного дымососов ДН-9У.

Для использования тепла отходящих дымовых газов, печь оборудована регенераторами с насадкой типа «Лихте» с ячейками 170х170.

Тепло отходящих газов используется также в котле-утилизаторе.

Производительность печи-70 тонн в сутки.Вырабатываемый ассортимент-бутылка из темнозеленого стекла.

2.Обоснование производительности.

Тип печи-регенеративная, проточная с подковообразным направлением пламени. Производительность печи-70 тонн в сутки. Форма и размеры выработочного бассейна приняты конструктивно из условия размещения одной машинолинии АЛ-118-2 (восьми секционная, двух-капельная). Автомат обслуживается одной бригадой из трех человек в смену(два машиниста и один наладчик стеклоформующей машины). Всего смены три. Вырабатываемый ассортимент- бутылка из темнозеленого стекла. Масса бутылки- 340 грамм. Количество резов составляет-80(в минуту). Коэффициент использования стекломассы (КИС)-0,95.

Данная стекловаренная печь предусматривает эффективную тепловую изоляцию стен и днабассейна,стен пламенного пространства, горелок, сводов варочного, выработочного бассейнов, горелок и регенераторов, что заметно увеличит производительность стеклотары на данном участке производства.

3.Выбор удельного съема и расчет основных геометрических размеров печи.

Химический состав стекла:

SiO 2 -72 %

Fe 2 O 3 +AL 2 O 3 -2,3 %

Na 2 O 2 О-14%

CaO+MgO-11,5%

SO 3 -0 ,2 %

Максимальная температура варки-1500˚ C

В температурном интервале от 23 до 1500˚С вязкость стекол изменяется на 18 порядков. В твердом состоянии вязкость составляет примерно 10 19 Па с, в расплавленном состоянии-10 Па с. Температурный ход вязкости показан на рисунке. При низких температурах вязкость меняется незначительно. Наиболее резкое снижение вязкости происходит в интервале 10 15 -10 7 Пас.

Кривая температурного хода вязкости.

Определяем основные размеры рабочей камеры.

Площадь варочной части печи, м 2 :

F=G* 10 3 /g ;

Где G -производительность печи, кг/сутки;

g -удельный съем стекломассы с зеркала варочной

части, кг/(м 2 *сут).

Принимаем g =1381 кг/(м 2 *сут.).

Тогда F =70000/1381=50,68 м 2 .

Длина варочной части для печи с подковообразным направлением пламени рассчитывается из соотношения

L:B=1,2:1

L * B =50,68

1,2*х*х=50,68

х2=50,68:1,2

х=6,5м (ширина B )

6,5*1,2=7,8 м (длина L )

Соотношение длины и ширины L / B =7,8/6,5=1,2

Ширина пламенного пространства на 120 мм больше ширины бассейна, т.е. 6,5+0,12=6,62 м

Высота подъема свода f =6,62/8=0,83 м.

Длина пламенного пространства 7,8+0,2=8 м.

Глубина бассейна: студочного мм, варочного мм.

Площадь студочной части при температуре варки 1500С принята равной площади варочной части: F ст= 50,68м 2 .

Ширина студочной части составляет 80% ширины варочной части: 6,5*0,8=5,2 м. Принимаем ширину загрузочных карманов (6,5-0,9)/2=2,8 м, где 0,9 м – ширина разделительной стенки. Длина загрузочного кармана 1 м.

4.Обоснование распределения температур в печи.

Термический процесс, в результате которого смесь разнородных компонентов образует однородный расплав, называется стекловарением.

Сыпучую или гранулированную шихту нагревают в ванной печи, в результате чего она превращается в жидкую стекломассу, претерпевая сложные физико-химические взаимодействия компонентов, происходящие на протяжении значительного температурного интервала.

Различают пять этапов стекловарения: силикатообразование, стеклообразование, осветление (дегазация), гомогенизация (усреднение), студка (охлаждение).

Отдельные стадии процесса стекловарения следуют в определенной последовательности по длине печи и требуют создания необходимого температурного режима газовой среды, который должен быть строго неизменным во времени. Распределение температур по длине и ширине ванной печи зависит от свойств стекла и условий варки. При варке темнозеленого стекла температура в начале зоны варки (у загрузочного кармана) 1400-1420˚С, так как в этой части бассейна печи происходят нагрев, расплавление и провар шихты, т. е. завершение стадий силикатообразования, стеклообразования и частичное осветление стекломассы. Температура стекломассы у загрузочного кармана 1200-1250˚С. В зоне осветления температура газовой среды поддерживается максимальной-1500˚С, так как при такой температуре вязкость стекломассы снижается, происходит интенсивное осветление и завершается гомогенизация. В зоне студки температура газовой среды плавно понижается до 1240˚С, что приводит к увеличению вязкости стекломассы. В зоне выработки температурный режим устанавливается в зависимости от требований, необходимых для нормальной выработки стекломассы и формования из нее стеклоизделий.

Для установления стационарного температурного режима газовой среды в печи необходимо регулировать количество и соотношение топлива и воздуха, подаваемого в печь, тщательно их смешивать и своевременно отводить отходящие дымовые газы.

Возможность установления определенного температурного режима предусматривается конструкцией ванной печи.

На изменение температурного режима оказывает влияние давление газов в рабочей камере печи. Повышение давления до определенных пределов способствует более равномерному прогреву отдельных частей печи, так как объем рабочей камеры максимально заполняется пламенем. Создание разряжения в печи приводит к уменьшению распространения пламени и присосу холодного воздуха через отверстия. Это ухудшает равномерность распределения температур и вызывает понижение температур в тех участках печи, куда проникает холодный воздух.

Температурный режим печи зависит также и от температуры факела пламени и ее распределения по длине факела. Температура факела регулируется подачей воздуха.

5.Расчет горения топлива, действительной температуры факела и минимальной температуры подогрева воздуха.

Теплоту сгорания топлива определяют по его составу:

Q н =358CH 4 +637C 2 H 6 +912C 3 H 8 +1186C 4 H 10 ;

Q н=358*93,2+637*0,7+912*0,6+1186*0,6=35200 кДж/м 3

Уравнения реакций горения составных частей топлива:

CH 4 +2O 2 =CO 2 +2H 2 O+Q;

C 2 H 6 +3,5О 2 =2СО 2 +3Н 2 О+ Q ;

C 3 H 8 +5O 2 =3CO 2 +4H 2 O+Q;

C 4 H 10 +6,5O 2 =4CO 2 +5H 2 O+Q.

Коэффициент избытка воздуха L =1,1.

Расчет горения сводим в таблицу:

Состав топлива, % Содержание газа, м 3 /м 3 Расход воздуха на 1м 3 топлива, м 3 Выход продуктов горения на 1 м 3 топлива,м 3
О О N 2 Д V L CO 2 H 2 O N 2 O 2 V Д
CH 4 -93,2 0,932 1,8 6 4 1,96х1,1 2,16х х3,76 2,16+ +8,10 0,932 1,864 - - 2,796
С 2 Р 6 -0,7 0,007 0,025 0,014 0,021 Из воздуха Из воздуха 0,035
С 3 H 8 -0,6 0,006 0,030 0,018 0,024 8,1 0,2 8,142
C 4 H 10 -0,6 0,006 0,039 0,024 0,030 - - 0,054
N 2 -4,4 0,044 - - - - - - 0,044 - 0,044
СО 2 -0,5 0,005 - - - - 0,005 - - - 0,205
Сумма-100 1 1,96 2,16 8,1 10,26 0,993 1,939 8,144 0,2 11,276

О 2Т иО 2Д -расход кислорода соответственно теоретический и действительный, при L =1,1; N - действительный объем азота из воздуха; V L -действительный расход воздуха для горения 1 м 3 газа; V Д -объем продуктов горения на 1 м 3 газа.

Объемный состав продуктов горения, %:

CO2=0,993*100/11,28=8,80

H2O=1,939*100/11,28=17,20

N 2=8,144*100/11,28=72,23

O 2=0,2*100/11,28=1,77

_________________________

Сумма-100

Определим расход топлива:

Составим тепловой баланс варочной части печи.

Приходная часть

Требуемая производительность печи достигается соблюдением установленных технол. и теплового режимов и необх-мым текущим обслуживанием печи.

Стекловар. печи явл. сложными теплотехнич. агрегатами, состоящими из узлов с разными режимами работы. Осн. частью печи явл. раб. камера и поэтому режим работы всех остальных узлов подчиняется режиму работы раб. камеры.

Каждая печь имеет свой тепловой и технологич. режимы, кот. зависят от типа печи, ее размеров и производительности, состава стекла и шихты, от вида источника тепла, а для пламенных печей от вида топлива и др.

Основными видами стекловаренных печей в настоящее время являются горшковые, в которых процессы стекловарения протекают последовательно во времени в одной и той же емкости, и ванные печи непрерывного действия, в которых процессы варки происходят в отдельных частях печи. Наибольшее применение в производстве стекла находят ванные печи непрерывного действия как более производительные, экономичные и механизированные. Горшковые печи применяются при варке оптического, технического и других специальных видов стекла в небольших количествах.

Работа печей разного типа хар-ся производ-ю, кпд и расходом тепла на варку стекла. КПД печей, %: горшковые – 6-8; ванные периодические – 15; непрерывные ванные – 17-28; электрические – 60.

Производительность современных печей достигает 400 т ст. в сутки и более. Эл-кие печи – 80 т/сут.

Наиболее эффективны по доле полезно затраченного тепла на варку ст. электрические печи. Но их распространение сдерживается высокой стоимостью электроэнергии по сравнению со стоимостью природного газа и др. топлива.

Самыми неэкономичными явл. горшковые печи.

Работа печи хар-ся режимом, кот. зав. от расхода тепла, давления и состава газов. В зав-ти от Т по отдельным зонам печи устанавливают расход топлива. Ур-нь Т определяют разностью приход-расход тепла: чем >эта разность, тем выше Т печи.

  1. Стекловаренные печи: назначение, общая классификация, показатели эффективности работы.

Процесс получения из шихты годной к выработке стекломассы происх-ит в стекловар. печах, обеспеч. необх. температурные условия и тепловые потоки к материалам.

Печи делятся: 1) Стекловаренная; 2)Отжигательная и 3) Специального назначения (Печи закалки, вспенивания).

Стекловар. печь – осн. теплотехнич. агрегат в технологии стекла. Сущ. много конструкций и типов печей, кот. имеют общ. признаки.

Стекловар. печи по назначению дел. на: печи для пр-ва тарного, листового, сортового стекол.

По принципу действия: 1) Периодического действия – все стадии стекловарения: силикатаобразования, стеклообразования, осветления, гомогенизация, студка – протекают в одном объеме печи, но в разные промежутки времени. Периодические бывают: ванные, горшковые. 2) Непрерывного действия – все стадии стекловарения происх. одновременно, но в разных объемах печи (ванные печи).

По типу топлива, кот. исп-ся для обогрева печи: 1) Печи на жидком топливе; 2) На газообразном; 3)Электрич. печи.

По способу подачи топлива: 1) С поперечным направление пламени; 2) С подковообразным; 3) С продольным направлением пламени.

По способу исп-ния тепла отходящих газов: 1) Регенеративные (теплообменник периодич. дейсвия); 2) Рекуперативные (теплообменник непрерывного действия – труба в тубе); 3) Печи прямого нагрева (тепло никак не исп-ся).

По конструкции: 1) Проточные; 2) С общим бассейном и т.д.

По производительности: 1) Печи малой мощности (производительность до 15 т в сутки); 2) Средней мощности (15-100); 3) Большой мощности (больше 100).

Теловой баланс:

Приходные статьи: хим. и физ. теплота топлива, физ. теплота воздуха, идущего на горение.

Расходные статьи: 1) Затраты тепла на стекловарение (полезно затраченное тепло); 2)Потери тепла в окр. среду через кладку печи; 3) С выбивающимися дымовыми газами; 4)Излучение через открытое отверстие печи; 5) С отходящими дымовыми газами.

Показатели эф-сти работы печи:

1)ТКПД – тепловой КПД. Расчет: 1 способ – по хим. теплоте топлива (μ = Q стекловар./Q топлива); 2 способ – по фактически затраченному теплу (μ = Q

стекловар./Q факт.).

2)Удельный расход тепла – опр-ся как отношение фактически подведенного тепла к производительности. (Q уд. = Q факт./P, кДж/кг)

Самый большой ТКПД у электрич. печей (до 75%) (нет потерь с отходящими газами)

    Горшковые печи: типы, назначение, устройство и конструктивные особенности.

ГП преимущественно исп-ся для варки спец. стекол (технич., оптич., цветн. стекла). В таких печах готовиться небольшое кол-во стекломассы и => возник. возм-сть тщательно их подготовить.

ГП дел-ся: 1)С верхними; 2) С нижними; 3) Комбинир. способ. подвода топлива.

ГП - печи период. действия. В раб. камеру устан. от 1 до 16 горшков. Варка в горшках.

Многогоршковые печи – 10-16 горшков; для варки цветн. стеклол.

1;2-ух ГП - для варки оптич. и технич. стекол.

ГП с верхним подводом пламени – для варки стекол (высокотемпературной)с непродолжительной выработкой (тугоплавкие стекла).

ГП с нижним подводом пламени – для легкоплавких стекол, кот. требуют продолжит. режимов выработки (оптич. и сортов. стекла).

ГП с комбинир. подводом пламени – для варки тугоплавких стекол, кот. требуют длительной выдержки (при варке работает верхн. печь, а при выработке – нижняя печь).

Конструкции ГП:

    раб. камера печи,

    свод печи

    стекловар. горшок

  1. кадиевая горелка

    воздушн. регенератор

    канал для отбора дым. газов

    колодец для сбора стекломассы

9,10- металлич. обвязка

11- дополнит. каналы для отбора дым. газов

Раб. камера ГП по форме м.б.: круглой, прямоуг. или овальной.

Нижн. часть раб. камеры – окружка. В окружке напротив горшков есть окна для вставки или вынятия горшков. Эти окна м.б. заложены кирпичом или закрыты заслонками. В заслонке есть окна для обслуж. горшков – загрузка шихты, выраб. стекломассы. Между окнами есть стенки и наз. простенками. Свод м. опираться на простенки или выполняться подвесным, как в ванной печи. Место, где устан-ся горшки печи наз. стойлом. Стены раб. камеры выпол-ся с небольшим наклоном во внутрь, что позвол. обеспеч. равномер. прогрев горшка. Под печи выпол-ся из шамотных огнеупоров или дел-ся из глиняно-песчаных масс. Окружка дел-ся из шамот. огнеупоров., а верхн. часть раб. камеры и свод из динаса. Регенераторы вып-ют из шамотн. огнеупоров, т.к. высокая темп-ра достиг-ся только при варке стекла. Обвязка – для компенсации напряжений, кот. возник. в кладке при тепловом расшир-нии огнеупоров и для поддерж. всей конструкции. Нижн. обвязка монтируется в кладку печи, а вверху стягивается металлич. связями 10.

Шквара – стекломасса, кот. стекает в колодцы.

Кадиевая горелка – для подачи газо-возд. смеси в раб. камеру печи; для отбора из печи дым. газов; для сбора шквара.

Реализован нижний подвод пламени.

Недостаток: 1) Пламя бьет вверх, => сокращ-ся срок службы печи, за счет жестких условий работы свода и сокр-ся срок службы горшков; 2) Неравномер. прогрев по сечению горшка.

Преимущество: 1) Равномер. прогрев горшка по высоте; 2) Для кажд. горшка м. создать свой опр-ый темп-ный режим.

    Двухгоршковая прямоуг. регенератив. печь

В такой печи, чтоб обеспечить равномерный обогрев раб. камеры печи, ширина лета горелок д. соотв-вать ширине раб. камеры печи; пламя не д.б. направлено не на горелки, не на свод печи, тогда обеспеч-ся надежная работа печи.

Раб. камера – прямоугольник (1). 2 – регенераторы.

Недостаток: 1) неравномер. прогрев горшков по высоте.

Холодный под таких печей может приводить к кристаллизации (замерзанию) стекломассы.

Недостаток решается: под печи делают массивным.

Большинство современн. ГП – рекуперативные.

    Рекуперативная ГП :

Эта конструкция позвол. делать дно не массивным, а теплым и => застывание стекломассы т.о. можно предупредить!

Рекуператив. ГП по технико-экон. показателям превосходит регенеративные ГП. Они хорошо регулируются, => примен. для варки высокач. стекол.

    Щелевая горелка:

Она расположена в поде печи.

Для обогрева ГП применяют газ или жид. топливо (мазут). Для сжигания мазута исп-ся капельники, т.е. мазут капают на горячую кладку и далее пары поступают в горелку.

Особенности конструкции: 1) Для регенератив. печей на 1 м2 пода печи д. приходиться ~15-20 м2 пов-ти насадки регенератора; 2) Для рекуперативн. печей уд. пов-ть насадки д.б. 15-20 м2 пов-ти нагрева на 1м3 объема печи.

    Процессы варки стекла в горшковых стекловаренных печах. Технико-экономические показатели и эксплуатация горшковых печей. Стекловаренные горшки.

В горшковых печах м. исп-ть круглые и овальные горшки. Лучше исп-ть овальные, т.к. лучше исп-ся площадь пода.

Если исп-ть круглые горшки, то большая часть их пов-сти обращена наружу – к окружке, что ухудшает теплообмен.

Горшки бывают низкие и высокие. Высокие применяются, если стекломасса обладает хорошей теплопрозрачностью. Низкие и широкие – если теплопрозрачность не высокая.

В ГП выделяют температурные режимы работы: нагрев, варка стекла, студка, выработка.

Температурный график работы печи:

В ГП загрузку шихты ведут в печи разогретой до высоких тем-тур. Загрузка шихты и боя осущ. порциями. Шихту загружают на стеклобой. Загрузка осущ. так, чтоб шихта не касалась стенок горшка, т.к. она очень активна. После провара одной порции шихты (оплавления) загружают след. порцию. Итак наваривают стекломассу, пока горшок не будет полным. Затем идет осветление и гомогенизация. Для гомоген-ции исп-ся мешалки. Далее студка (III). Выработка (IV). Вырабатывается только 60-70 % стекломассы.

Первую варку в новом горшке ведут только на стеклобое (у ГП), => повыш-ся срок службы горшков. Если печь многогоршковая, а срок службы горшка ограничен (4 месяца), горшки приходится менять на работающей печи. Для этого горшок нагревают в печах до 900 градусов, а саму печь пристуживают до 1100 градусов и уже горячий горшок ставят в печь.

Горшки изгот-ют из шамотных огнеупоров методов набивки в металл. или гипсовые формы. Бывают кварцевые и др. горшки.

Технико-экон. пок-ли ГП

КПД < 5%, ГП применяются при пр-ве сортового, оптич. стекла, уд. расход тепла – 30 000-75 000 кДж/кг, производительность – 800-1300 кг/за цикл работы печи.

Преимущества ГП: 1) Высокое кач-во подготавливаемой стекломассы; 2) Можно часто менять состав или цвет стекла.

Недостатки: 1) Высокий уд. расход тепла на варку стекла; 2) Низкая производительность.

    Ванные печи периодического действия: назначение, конструктивные особенности, принцип действия.

Такие печи исп-ся для варки стекломассы высокого кач-ва небольших объемов.

В отличие от ГП, в ВП варка стекломассы осущ-ся в нижней части раб. камеры печи – бассейне. Т.к. стены бассейна снаружи охлаждаются воздухом, то срок службы бассейна по срав-нию с ГП будет больше. Глубина бассейна опр-ся составом вырабатываемого стекла и может находиться в пределах 700-300 м.

Режим работы ВП анлогичен ГП, т.е. есть те же темп-ные режимы (нагрев, варка стекла, студка, выработка) и один цикл работы печи.

    свод печи

    пламенное пространство

    выработочное окно

  1. канал для слива стекломассы

    канал для отбора дым. газов

  2. рекуператор

    стены пламенного пространства

Как и в ГП стекломасса полностью не вырабатывается (только 60-70%). Для смены ассортимента в конструкция таких печей предусм. систему слива стекломассы. Если надо слить стеломассу, то канал разогревают и она выливается.

Хар-ки печи: производительность – 480-3500 кг стекломассы в сутки, уд. расход тепла на варку – 11000-27000 кДж/кг.

Шихту в ВП загружают шуфлей.

© 2020 reabuilding.ru -- Портал о правильном строительстве