Расход теплоэнергии на отопление. Расход тепла на отопление
Расчет расхода теплоты на отопление . Показатель зависит от времени суток, назначения помещения и типа здания, температуры наружного воздуха, продолжительности отопительного периода, наличия в помещении нагретых поверхностей и пр.
Расход теплоты в рабочее время (МДж/ч) рассчитывают по удельным тепловым характеристикам:
В зависимости от времени суток расход теплоты на отопление (МДж/ч) промышленных предприятий определяют по формуле
Температура воздуха в помещении в рабочее время должна соответствовать рекомендациям по эксплуатации вентиляционных установок.
Часовой расход теплоты в нерабочее время определяют по формуле, используемой при расчете расхода теплоты в рабочее время, с учетом снижения температуры воздуха в помещении в нерабочее время до 5 °С.
Удельная тепловая характеристика зависит от назначения помещения и типа здания. Например, для производственных помещений, расположенных в одноэтажном корпусе, q 0 составляет 0,75—2,1 МДж/(м 3 . ч. К); для производственных помещений, расположенных в многоэтажном здании, — 0,20 — 1,05 кДжДм 3 . ч. К); для бытовых и вспомогательных помещений — 1,4 —2,5 кДжДм 3 -ч-К); для складов — 2,50 — 3,35 кДжДм 3 -ч. К); для административных зданий — 1,7 — 2,6 кДжДм 3 . ч. К).
Поправочный коэффициент а зависит от температуры наружного воздуха. Так, для общественных зданий при t H 0 = -10° С а = = 1,45; при t H 0 = -20 °С а = 1,17 и т.д.
в нерабочее время
В зависимости от наличия в помещении нагретых поверхностей поступление теплоты (МДж) рассчитывают по следующим формулам:
от нагретых поверхностей оборудования
от нагретого материала
от электропривода
В зависимости от отопительного периода расход теплоты (МДж) рассчитывают по следующим формулам: в рабочее время
Система отопления промышленных предприятий должна обеспечивать тепловой баланс между количеством теплоты, покупаемой от нагретых поверхностей технологического оборудования, нагретого материала, людей и т.д., и количеством тепловых потерь через наружные ограждения зданий.
от работающих людей
Тепловые потери через строительные ограждения помещений складываются из тепловых потерь через стены здания, покрытие, дверные и оконные проемы.
Перенос теплоты Q через стены здания и оконные проемы протекает в три стадии: от воздуха в помещении к внутренней поверхности стен зданий Q h через стены здания Q 2 и от наружной поверхности стен в окружающую среду Q 3 .
Количество теплоты, теряемой через стены здания, рассчитывают по формуле
Приближенно тепловые потери (кДж/ч) помещений определяют по формуле
Если производственный корпус имеет много окон, то целесообразно учитывать дополнительный расход теплоты на отопление исходя из тепловых потерь оконных проемов в отопительный период.
Расчет проводят по формуле
В случае если стена не аккумулирует теплоту, можно считать, что
где К — коэффициент теплопередачи, зависящий от типа остекления; F 0 K — площадь окон, м 2 ; п 0 — число дней отопительного периода; т — время работы, ч; / вн р — температура внутри здания в рабочее время, °С; *н.ср — средняя температура отопительного периода, °С.
В зависимости от типа остекления зданий коэффициент теплопередачи может иметь следующие значения, кДж/(м 2 - К): однослойное остекление — 4,5; двухслойное остекление с деревянными спаренными оконными переплетами — 2,9; двухслойное остекление с металлическими спаренными переплетами — 3,25; двухслойное остекление с деревянными раздельными переплетами — 2,67; двухслойное остекление с металлическими раздельными переплетами — 3,02.
При определении тепловой нагрузки системы отопления учитываются особенности теплового режима помещений. В помещениях с постоянным тепловым режимом, к которым относятся промышленные здания с непрерывным технологическим процессом, сельскохозяйственные помещения и общественные здания, тепловая нагрузка системы отопления определяется из теплового баланса помещения. Тепловой баланс устанавливает равновесие между тепловыми потерями здания и теплопритоком, откуда расход тепла на отопление будет равен
Q о = Q т +Q м – Q вн (1.1)
где Q о - расход теплоты на отопление, кВт;
Q т - тепловые потери здания теплопередачей через наружные ограждающие конструкции и инфильтрацией из-за поступления в помещение холодного воздуха через неплотности, кВт
Q м - расход теплоты на обогрев материалов, поступающих в помещение, кВт;
Q вн - внутренние тепловыделения, кВт.
Расчетные (максимальные) потери теплоты промышленными зданиями через наружные ограждения и инфильтрацией определяются по формуле
Q т max = (1+μ)(t в – t но) q o V 10 -3 (1.2)
где μ - коэффициент инфильтрации;
t но - расчетная температура наружного воздуха для расчета отопления, принимается в зависимости от климатического района (приложение В), °С;
t в - усредненная температура внутреннего воздуха отдельных помещений здания, принимается в зависимости от назначения помещения (приложение Д), С;
q o - удельная отопительная характеристика здания, зависящая от строительного объема здания и его назначения (приложение Г), Дж/(с.м 3 .К);
V - строительный объем отдельного здания по наружному обмеру, м 3 .
При выборе температуры внутреннего воздуха для производственных зданий следует учитывать интенсивность труда. По интенсивности труда все виды работ делятся на три категории: легкие, средней тяжести и тяжелые. К легким относятся работы, выполняемые сидя и стоя, не требующие систематического физического напряжения (процессы точного приборостроения, конторские работы и др.) К категории работ средней тяжести относятся работы, связанные с постоянной ходьбой, переносом тяжестей до 10 кг (механосборочные цеха, обработка древесины, текстильное производство и др.). К категории тяжелых работ относятся работы с систематическим физическим напряжением (кузнечные, литейные цеха и др).
Коэффициент инфильтрации определяется по выражению
где b - постоянная инфильтрации, для отдельно стоящих промышленных зданий принимается b =0,035 - 0,040 c/m,
g - ускорение свободного падения, м/с;
L - свободная высота здания, м. Для общественных и административных зданий принимается равной высоте этажа. Для промышленных зданий можно принимать значения L = 5-25 м.
w в - средняя скорость ветра для наиболее холодного месяца (приложение В), м/с.
Расход теплоты на обогрев разнородных материалов, поступающих в производственное помещение в холодное время года, кВт
Q м max = ∑G м i · c i (t в – t м), (1.4)
где і - количество наименований материалов;
с і - удельная теплоёмкость материала (таблица I), қДж/(кг.град)
t м - температура материала, о С. Ориентировочно принимается; для металлов и металлических изделий t м =t но, для других несыпучих материалов t м =t но +10 о С для сыпучих материалов t м =t но +20 о С
G мi - масса однородного материала, поступающего в цех, кг/с.
Общий расход материала промышленным предприятием, заданий в приложении Б, необходимо распределить по цехам, в соответствии с назначением цехов. Список рекомендуемых материалов приведен в таблице I.
Таблица 1 - Удельная теплоёмкость некоторых материалов
Внутренние тепловыделения промышленных предприятий довольно устойчивы и составляют существенную долю расчетной отопительной нагрузки, поэтому их необходимо учитывать при разработке режима теплоснабжения. Источниками внутренних тепловыделений в производственных помещениях являются; механическое и электрическое оборудование, нагретые поверхности аппаратов, установок и трубопроводов, поверхности нагретых ванн, электроосвещение, работающие люди, остывающие материалы и продукты сгорания и т.д. Ниже приведена методика ориентировочного расчёта тепловыделений от технологического оборудования, электроосвещения и работающих людей.
Общее количество внутренних тепловыделений в отдельных промышленных зданиях, кВт
В том случае, если отсутствуют фактические данные или проекты технологических процессов, внутренние тепловыделения от оборудования вычисляются по аналогам. Для горячих цехов тепловыделения от производственного оборудования и технологическах процессов, кВт
где q n - удельная теплонапряженность помещения (таблица 2), кВт/м 3 ;
V - строительный объем помещения, м 3 .
Таблица 2 - Удельная теплонапряженностъ горячих цехов /18/, кВт/м 3
В цехах не относящихся к горячим, одним из основных видов внутренних тепловыделений, будет теплота от технологического оборудования, снабженного электроприводом. Поступление теплоты от электродвигателей механического оборудования и приводимых ими в действие машин, кВт .
где k сп - коэффициент спроса на электроэнергию (таблица 3);
k п - коэффициент, учитывавший полноту загрузки электродвигателей k п =0,9-1;
k Т - коэффициент перехода теплоты в помещение, Для металлорежущих станков k Т = 0,9-1; для вентиляторов и насосов
η - к.п.д электродвигателя при полной его загрузке η=0,85-0,9;
q эл - удельная плотность электрической силовой нагрузки (таблица 4), кВт/м 2 ;
F - площадь пола помещения цеха, м 2 .
Таблица 3 - Коэффициент cпроса на электроэнергию
Таблица 4 - Удельные плотности электрических нагрузок на 1м 2 полезной площади производственных зданий
Количество теплоты, поступающей в помещение от источников искусственного освещения, вычисляют по удельным показателям
где F - площадь пола помещения, м 2 ;
q ос - удельная плотность электрической осветительной нагрузки (таблица 4), кВт/м 2 .
Тепловыделения от людей определяются в зависимости от затрат ими энергии и температуры воздуха в помещении. Полное количество теплоты, кВт
где m" - количество людей в помещении;
q л -удельное количество полной теплоты, выделяемой одним работающим (таблица 5), кВт.
Таблица 5- Удельное полное количество теплоты, выделяемое взрослыми людьми /1/, кВт
Для расчета количества работающих в здании можно воспользоваться приближенными формулами. Для производственных цехов количество работающих в одну смену, приближенно равно
для административных зданий
где V - строительный объем цеха или здания, м 3 .
Расчетный расход теплоты на отопление жилого района, при отсутствии данных о типе застройки и наружном объеме жилых и общественных зданий, согласно СНиП П-З6-73 рекомендуется определять по формуле
где q ж - укрупненный показатель максимального расхода теплоты на отопление 1 м 2 жилой площади (таблица 6), кДж/(с.м 2);
F ж - жилая площадь, определяется исходя из 12 м 2 на одного жителя района, м 2 ;
k 0 - коэффициент, учитывающий расход теплоты на отопление общественных зданий, при отсутствии фактических данных рекомендуется принимать k 0 =0,25
Таблица 6 - Укрупненный показатель максимального расхода теплоты на отопление жилых зданий
Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.
Исходные данные для расчета:
- Основные характеристики климата, где расположен дом:
- Средняя температура наружного воздуха отопительного периода t o.п;
- Продолжительность отопительного периода: это период года со средней суточной температурой наружного воздуха не более +8°C - z o.п.
- Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха t в.р, °С
- Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м2 °C сут).
Характеристики климата.
Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Например, параметры для расчета отопления для Москвы (Параметры Б
) такие:
- Средняя температура наружного воздуха отопительного периода: -2,2 °C
- Продолжительность отопительного периода: 205 сут. (для периода со средней суточной температурой наружного воздуха не более +8°C).
Температура внутреннего воздуха.
Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).
В расчетах применяется величина D d - градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) t o.п и расчетной температуры внутреннего воздуха в здании t в.р на длительность ОП в сутках: D d = ( t o.п – t в.р) z o.п.
Удельный годовой расход тепловой энергии на отопление и вентиляцию
Нормированные величины.
Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 (переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию. Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).
Расчетная величина.
Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.
Свои цифры.
Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.
О чем могут сказать результаты расчета.
Удельный годовой расход тепловой энергии, кВт·ч/м2 - можно использовать, чтобы оценить , необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.
Годовой расход тепловой энергии, кВт·ч - абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.
Градусо-сутки отопительного периода,
°С·сут. - характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии вкВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).
О точности расчетов.
На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]
Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить .
Приложение:
Литература:
- 1. Уточнение таблиц базового и нормируемого по годам строительства показателей энергоэффективности жилых и общественных зданий
В. И. Ливчак, канд. техн. наук, независимый эксперт - 2. Новый СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Н. П. Умнякова, канд. техн. наук, заместитель директора по научной работе НИИСФ РААСН
Расчет потребления тепла на отопление. Отопление является наиболее крупным потребителем тепла. Длительность потребления тепла на нужды отопления соответствует продолжительности отопительного периода, т. е. числу суток с устойчивой среднесуточной температурой наружного воздуха t н, ниже установленного предела. Например, по Строительным нормам и правилам СНиП II-A. 6-72 «Строительная климатология и геофизика. Нормы проектирования» такому пределу соответствует температура наружного воздуха, равная +8°С. Как только эта температура становится ниже или выше указанного предела, то соответственно включают или выключают систему отопления.
Расход тепла на отопление зависит не только от климатических условий, но и от конструктивных характеристик здания и его расположения.
Обеспечение тепловой энергией зданий производится для поддержания в них заданного температурного режима. В этом случае предполагается, что тепловая энергия полностью компенсирует теплопотери - трансмиссионные и от инфильтрации. При заданных ограждающих конструкциях трансмиссионные теплопотери определяются в основном температурой наружного воздуха t н теплопотери от инфильтрации, кроме того, скоростью ветра и влажностью воздуха. Таким образом, изменение расхода тепла обратно пропорционально изменению t н и прямо пропорционально изменению скорости ветра и влажности воздуха. Минимальный расход тепла соответствует началу отопительного периода. По мере снижения t н потребность в тепле возрастает и становится максимальной при минимальной t н.
Комплексная и параллельная разработка всех частей проекта приводит к необходимости предварительной оценки общих теплопотерь зданиями. При этом используют, как правило, метод приближенного расчета по укрупненным измерителям. Для трансмиссионных теплопотерь укрупнённым измерителем является удельная тепловая отопительная характеристика здания q o .Она представляет собой количество тепла, необходимое для компенсации теплопотерь одним кубическим метром здания в единицу времени при разности температур в один градус между воздухом в помещении t вн и наружным t н. Удельная характеристика q o изменяется обратно пропорционально объёму здания. Для некоторых зданий она приведена в табл. 1.
Для расчета теплопотерь от инфильтрации такого измерителя нет. На практике приближенную их величину при определении трансмиссионных теплопотерь учитывают соответствующим коэффициентом, который зависит от многих факторов: высоты и объема помещений, расположения и площади проемов, количества щелей в ограждающих конструкциях и величины их раскрытия, а также температуры наружного воздуха, скорости и направления ветра. На основании практических данных указанный коэффициент может быть принят равным: для общественных здании 0,1-0,3; для промышленных зданий при наличии одинарного остекления и без специальных уплотнений притворов дверей и ворот, а также для крупных общественных зданий - 0,3-0,6; для крупных цехов, имеющих большегабаритные ворота, - 0,5-1,5 и даже 2.
Таблица 1.
Средняя температура воздуха в зданиях и удельные тепловые характеристики зданий заданного объёма.
Продолжение таблицы 1.
Для жилых и общественных зданий максимальный расход тепла на отопление можно определить по укрупненному показателю, отнесенному одному квадратному метру жилой площади. Этим показателем удобно пользоваться в том случае, когда известно лишь количество жилой площади, намечаемое к вводу к эксплуатацию в заданном районе. Максимальный часовой расход тепла на отопление жилых зданий, приходящийся на 1 м 2 жилой площади при температурах наружного воздуха 0, -10, -20, -30, -40 о С соответственно равен: 90; 130; 150; 175; 185 Вт/м 2 . При этом расход тепла на отопление общественных зданий принимают в размере 25% расхода тепла для жилых.
Максимальный расчетный расход тепла Q o , Вт, на отопление при установившемся тепловом режиме здания, отнесенный к его объему и разности температур, определяют по формуле
где - коэффициент, учитывающий теплопотери от инфильтрации; - удельная отопительная характеристика здания, Вт/(м 3 ·К); - поправочный коэффициент к отопительной характеристике на наружную температуру воздуха; с некоторым округлением можно определять по формуле ; - объём здания по наружному обмеру без подвала, м 3 ; - средняя температура воздуха в отапливаемом здании, о С; - температура наружного воздуха, о С: при проектировании отопления принимается по климатологическим данным как средняя наиболее холодных пятидневок из восьми зим за 50-летний период.
Температура воздуха в помещении задается либо санитарными нормами, либо технологическими процессами с учетом требований санитарных норм. Значения средней температуры воздуха в некоторых зданиях приведены в табл.1.
Рис.1. Графики расхода тепла на нужды отопления а - часовой; б - сезонный
Формулу (1) можно использовать для определения часового расхода тепла в любой период отопительного сезона, подставляя значение t н, соответствующее этому периоду. Так, например, начало отопительного сезона характеризуется минимальными затратами тепловой энергии. В этот момент расчетная температура наружного воздуха наиболее высокая, t н =8 о С.
Как следует из формулы (1), изменение расхода тепла при изменении t н имеет линейную зависимость. Чтобы знать характер изменения в течение всего сезона, достаточно определить расходы тепла при максимальном t н и минимальном значениях t н.о. . Обычно такое изменение представляют графически (рис. 1). На рис.1а на оси абсцисс отложены значения температуры наружного воздуха, на оси ординат-расходы тепла. Точки А и Б соответствуют максимальному и минимальному расходам тепла. Линия АБ - линейная зависимость - изменение часового расхода тепла в течение холодного периода. По такому графику можно определить часовой расход тепла на отопление при любом значении £н в указанных пределах. Для этого необходимо из точки заданного значения t н на оси абсцисс восставить перпендикуляр до пересечения с линией АБ. Точка пересечения будет соответствовать искомому расходу тепла. Так, на рис. 1а пунктирной линией показано определение среднечасового расхода тепла при средней температуре наружного воздуха за отопительный период .
В промышленных цехах, а также в ряде общественных зданий во время перерыва в работе, а также в выходные, и праздничные дни, не требуется поддерживать температуру в помещении t в.н, на заданном уровне и соответственно затрачивать максимальное количество тепла. В это время температура воздуха в помещении снижается до +5°С и обеспечивается специальным дежурным отоплением. Часовой расход тепла в этот период можно определить по формуле (1), принимая . Предел снижения диктуется условиями надежной эксплуатации сооружений. Сокращение расхода тепла за этот период учитывают при определении годовой потребности.
В заданном климатическом районе годовой расход тепла определяют по числу суток в отопительном периоде и по значениям за каждые сутки или по средней t н за весь рассматриваемый период. Степень равномерности потребления тепла зданием по суткам и за неделю выявляют в зависимости от режима работы предприятия.
Годовую потребность в тепловой энергии, МВт, для отопления административных и промышленных зданий с учетом ее снижения во внерабочее время, а также в выходные и предпраздничные дни определяют по выражению
где - число часов работы предприятия в сутки; - число суток в отопительном периоде; - сумма выходных и праздничных дней в отопительном периоде; - температура наружного воздуха, средняя за отопительный период, о С; 24 -число часов в сутках; температура воздуха в здании в нерабочее время, о С.
Для зданий с равномерным потреблением тепла в течение суток, например, жилых и некоторых общественных с круглосуточным режимом работы, формула (2) упрощается, так как =0, =24,
Для обеспечения эксплуатационного режима работы теплоснабжающих устройств определяют изменение отопительной нагрузки во времени в течение всего отопительного периода. Наиболее целесообразно годовое потребление тепла во времени представлять графически - рис. 1б , где на оси абсцисс отложены последовательно с нарастающим итогом часы стояния одинаковых температур , начиная с минимальных, а по оси ординат - расход тепла, соответствующий этим температурам.
Для конкретного объекта построение трафика начинают е выявления числа часов стояния одинаковых температур . Затем по формуле (1) с учетом возможного снижения потребления тепла во внерабочее время рассчитывают требуемый расход тепла. Полученные результаты наносят на координатную сетку графика, откладывая их на перпендикулярах, восставленных на оси абсцисс в точках изменения наружных температур. Из точек расхода тепла, отложенных на перпендикулярах, проводят линии, параллельные оси абсцисс, длиной, равной числу стояния одинаковых температур. Правые верхние углы образовавшихся прямоугольников соединяют плавной кривой. Эта кривая характеризует потребление тепла для отопления данного объекта и является основой для разработки режима работы системы теплоснабжения.
График расхода тепла в течение года можно построить, используя график часовых расходов. Для этого часовые расходы переносят на ординаты, соответствующие наружным температурам годового графика. Точки пересечения часовых расходов тепла с ординатами, соответствующими предельным значениям температур в заданном интервале, соединяют плавной кривой. Площадь, ограниченная осью абсцисс, максимальной и минимальной ординатами и плавной кривой (см. рис.1б кривая A 1 Б 1) пропорциональна годовому расходу тепла. При средней температуре за отопительный период форма годового графика условно будет иметь вид прямоугольника, в котором ордината соответствует среднечасовому расходу тепла (см. пунктирную линию на рис. 1б ).
II.1.2. Расчет потребления тепла на вентиляцию
В системах вентиляции тепло затрачивается на подогрев свежего приточного воздуха до заданной температуры. Расход тепла , Вт, определяется количеством, температурой и влажностью подогреваемого воздуха
где - теплоемкость воздуха, кДж/(кг·К); - плотность воздуха, кг/м 3 ; V- объем приточного воздуха, м 3 /ч; и - температура воздуха за нагревателем и перед ним, о С; 1/3,6 - теплоэнергетический эквивалент для перевода кДж/ч в Вт, т. е, теплоты, Дж, в тепловую энергию, расходуемую в единицу времени, Вт.
Объем приточного воздуха соответствует объему удаляемого. Это равенство является основным правилом при решении воздушного баланса помещения. Объем удаляемого воздуха рассчитывают из условия обеспечения воздушной среды, отвечающей требованиям санитарных норм, по количеству вредных выделений (пыль, газы, аэрозоль, влага и т. п.) в помещении. Кроме того, на объем удаляемого воздуха влияет принятый способ воздухообмена.
Организация воздухообмена в помещений решается в основном одним из двух вариантов. Там, где вредные выделения можно удалить непосредственно на месте их образования, осуществляют наиболее эффективную местную вентиляцию, В этом случае объем удаляемого воздуха становится минимальным, так как вентилируется только ограниченная рабочая зона в помещении. При этом расход тепла рассчитывают по формуле (4).
Если вредные выделения распространяются по всему объему, применяют общеобменную вентиляцию, создающую в помещении требуемые условия воздушной среды путем разбавления вредных выделений чистым приточным воздухом. Воздухообмен, основанный на этом принципе, требует наибольшего объема вентилируемого воздуха, а следовательно, и наибольшего расхода тепла.
При разработке системы теплоснабжения расход тепла да нужды общеобменной вентиляции оценивают аналогично отоплению, как правило, по укрупненным измерителям. Таким измерителем является удельная тепловая вентиляционная характеристика , отнесенная к объему здания. Она представляет собой количество тепла, необходимое для вентиляции 1 м 3 здания в единицу времени при перепаде температур 1 о.
Используя удельную характеристику, расход тепла на нужды общеобменной вентиляции , Вт, отнесенный к объему здания, определяют по формуле
где - удельная вентиляционная характеристика здания, Вт/(м 3 ·К); - температура наружного воздуха, °С; при проектировании вентиляции принимается по климатологическим данным как средняя за наиболее холодный период, составляющий 15% в отопительном сезоне.
Для некоторых зданий массового строительства значение вентиляционной характеристики указано в табл. 1.
Удельную вентиляционную характеристику можно определить также по кратности обмена и объему вентилируемого помещения
где m - кратность обмена, представляющая собой отношение количества приточного воздуха, подаваемого в единицу времени в 1 ч, к объему вентилируемого помещения.
Кроме того, максимальный расход тепла на нужды общеобменной вентиляции общественных зданий определяют по укрупненному показателю для районов, где известно лишь количество жилой площади, намечаемое к строительству. Этот показатель относят к 1 м 2 жилой площади и в зависимости от температуры наружного воздуха при 0, -10, -20, -30 и 40 о С принимают соответственно равным: 9; 13; 15; 17,5 и 18,5 Вт/м 2 .
Температура наружного воздуха, принимаемая при расчете тепла на вентиляцию, не является одинаковой для всех помещений. Она зависит от принятого способа воздухообмена. При расчете местной вентиляции ее берут равной, как и для отопления, т. е, . Значение этой температуры при общеобменной вентиляции выше, чем при отоплении. Здесь она определяется как средняя за наиболее холодный период продолжительностью, равной 15% отопительного сезона. Допустимое повышение уровня при температурах наружного воздуха наиболее холодного периода обусловлено возможностью увеличения рециркуляции воздуха. В период пониженных наружных температур требуемая температура приточного воздуха достигается путем подмешивания к наружному более теплого воздуха, забираемого из вентилируемого помещения. Благодаря этому уменьшается объем приточного свежего воздуха, поступающего на подогрев, и соответственно сокращается потребность в тепловой энергии на нужды общеобменной вентиляции. Следует отметить, что указанное повышение , обусловленное снижением потребности в тепловой энергии в часы ее максимального расхода, допускается только для общеобменной вентиляции,и то в тех помещениях, в которых разрешается рециркуляция воздуха. В цехах же, где по характеру вредных выделений рециркуляция воздуха не допускается, за расчетную температуру принимают отопительную независимо от принятого способа воздухообмена, т. е. .
Расход тепла на вентиляцию, так же как и на отопление, зависит от наружной температуры. При местной и общеобменной вентиляции без рециркуляции воздуха эта зависимость аналогична отопительной (рис.2а , линия АВ).
При общеобменной вентиляции с рециркуляцией воздуха аналогия наблюдается только в диапазоне наружных температур от +8 до t н.в. (линия БВ). При дальнейшем снижении температуры наружного воздуха, т. е. когда t н. t н.в. , расход тепла не изменяется и сохраняется на уровне t н.в. течение всего наиболее холодного периода, линия расхода ГБ параллельна оси абсцисс.
Годовой расход тепла на вентиляцию, МВт определяют на основании часового при соответствующем способе воздухообмена в зависимости от числа часов работы системы вентиляции.
При общеобменной вентиляции с рециркуляцией воздуха: с перерывами работы в течение суток и в выходные дни
Если имеются сведения о продолжительности умеренно холодного периода (для некоторых городов см. табл.2), то расчеты по формулам (7) - (10) значительно упрощаются.
Режим работы системы вентиляции разрабатывают на основании годового графика потребления тепла. Построение этого графика (рис.2б ) производится аналогично отопительному для систем вентиляции без рециркуляции воздуха. Для общеобменной вентиляции имеется особенность. Здесь график разделен на две части: первая (левая) - соответствует наиболее холодному периоду и имеет постоянный расход тепла в течение этого периода. Линия Г 1 Б 1 параллельна оси абсцисс, расход тепла определяется площадью прямоугольника О - Г 1 – Б 1 – 0,15 n o . Вторая часть, соответствующая умеренно холодному периоду, имеет переменный расход тепла - линия Б 1 В 1 .
Таблица 2.
Средняя температура наружного воздуха и продолжительность умеренно холодного периода в отопительном сезоне
При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.
Тепловая нагрузка: что это?
Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.
В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.
Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.
Основные факторы
Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:
Назначение здания: жилое или промышленное.
Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.
Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.
Наличие комнат специального назначения (баня, сауна и пр.).
Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.
Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.
Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.
Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.
Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.
Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.
Особенности существующих методик
Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:
Расход тепла, взятый по максимуму за один час работы системы отопления,
Максимальный поток тепла, исходящий от одного радиатора,
Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.
Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.
Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.
Основные способы расчета
На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.
Три основных
- Для расчета берутся укрупненные показатели.
- За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
- Рассчитываются и суммируются все входящие в систему отопления объекты.
Один примерный
Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:
- q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
- a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
- V H - объем, рассчитанный по внешним плоскостям.
Пример простого расчета
Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.
Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.
Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.
Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.
Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.
В расчет радиатора отопления по площади входят следующие базовые параметры:
Высота потолков (стандартная - 2,7 м),
Тепловая мощность (на кв. м - 100 Вт),
Одна внешняя стена.
Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.
Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.
Усредненный расчет и точный
Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.
Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:
Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:
- q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
- q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
- q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
- q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
- q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
- q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
- q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).
По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.
Примерный расчет
Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:
Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.
Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.
Если необходим расчет в гигакалориях
В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:
- V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
- Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
- Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
- 1 000 - коэффициент для получения результата сразу в гигакалориях.
В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:
Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где
Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.
Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.
Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.
Обследование проводится медленно, данные регистрируются тщательно. Схема проста.
Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.
Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.
Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.
Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.