Параметры полипропиленовых труб: морозостойкость, срок службы, шероховатость. Шероховатость полиэтиленовых труб
Тепловое удлинение
При проектировании и проведении монтажных работ необходимо учитывать те-пловое удлинение трубопроводов. Неармированные полипропиленовые трубы имеют значительное тепловое расширение. У полипропиленовых труб, армированных алюминием или стекловолокном, коэффициент линейного расширения в пять раз меньше по сравнению с неармированными трубами. Об этом нужно помнить всегда, приступая к монтажу той или иной системы.
Сравнительная таблица линейного расширения труб из различных материалов
Материал трубопровода | Коэффициент линейного расширения, мм/м °С |
Чугун | 0 ,0104 |
Сталь нержавеющая | 0 ,011 |
Сталь черная и оцинкованная | 0 ,0115 |
Медь | 0 ,017 |
Латунь | 0,017 |
Алюминий | 0 ,023 |
Металлопластик | 0 ,026 |
Поливинилхлорид (PVC) | 0 ,08 |
Полибутилен (PB) | 0,13 |
Полипропилен (PP - R 80 PN 10 и PN 20) | 0 ,15 |
Полипропилен (PP - R 80 PN 25 алюминий) | 0 ,03 |
Полипропилен (PP - R 80 PN 20 стекловолокно) | 0 ,035 |
Сшитый полиэтилен (PEX) | 0,024 |
Вопрос теплового расширения во многом решается правильным использованием опор и выбором конфигурации трубопровода. Одним из общих правил монтажа является стремление создать как можно более гибкую эластичную систему с минимумом жестких коротких узлов, имеющих малую способность к деформации. Игнорирование указаний по компенсации линейных расширений трубопровода вызывает высокие продольные напряжения в стенках труб и тем самым существенно сокращает срок службы системы. Неверно выбранные расстояния между креплениями трубопровода также негативно сказываются на сроке службы. Произвольное увеличение расстояния между опорами может повлечь увеличе-ние прогиба трубы и защемление ее на опорах, что исключает прямолинейность и возможность свободного удлинения или укорочения трубопровода в период эксплуатации, а также создает дополнительные усилия на конструкцию опор.
Тепловое удлинение/укорочение трубопровода Δ l , мм, независимо от его диаметра определяют по формуле
Δ l = α/Δ t ,
где α - коэффициент линейного удлинения,
Δt - разность между температурами при эксплуатации и при монтаже.
Если температура трубопровода при эксплуатации выше температуры мон-тажа, то длина трубопровода увеличивается, и наоборот.
Чтобы исключить появление ошибки в расчетах, целесообразно обозначать удлинение со знаком плюс (+Δl), а укорочение со знаком минус (-Δl).
Продольное усилие, возникающее в жестко закрепленном участке трубо-провода, не зависит от его длины, поэтому необходимо учитывать влияние те-пловых напряжений в любом закрепленном участке трубопровода.
Трубопровод должен свободно удлиняться или укорачиваться без перена-пряжения материала труб, соединительных деталей, шва трубопровода, а также подвижных (скользящих) и неподвижных (мертвых) опор. Это обеспечивается благодаря компенсирующей способности элементов трубопровода (самокомпенсация) и компенсаторов, а также правильной расстановки подвижных и неподвижных опор.
Неподвижные опоры должны направлять линейное тепловое удлинение трубопровода в сторону компенсирующих элементов. Расстояния между опорами рассчитываются на основании нормативных документов (СП 40-101-96, СП 40-102-2001 и технический каталог компании «Эгопласт» «Система трубопроводов для водоснабжения и отопления», часть 1) в зависимости от ма-териала, наружного диаметра, толщины стенок трубы, температуры и массы транспортируемых веществ. При этом должно обеспечиваться сохранение пря-молинейности трубопровода на весь расчетный период эксплуатации. Если расчет произведен неверно или же он совсем не производился, то негативный результат не заставит себя ждать.
Шероховатость и диаметр
При проектировании напорных трубопроводных систем определяющее зна-чение имеют их гидравлические расчеты. Они служат основой для вычисления диаметра труб и подбора насосного оборудования, которые обеспечивают требуемый режим работы этих систем в течение всего срока эксплуатации. Качество выполненных гидравлических расчетов определяет экономичность как самого трубопровода, так и всего ком-плекса связанных с ним сооружений. Полимерные трубы имеют очень гладкую внутреннюю поверхность и малые гидравлические потери, что позволяет использовать трубы меньшего диаметра, чем стальные. Монтаж становится более компактным и экономичным. Из приведенной ниже таблицы видно, что коэффициент эквивалентной шероховатости полипропиленовой трубы на два порядка ниже по сравнению со стальной трубой. Поэтому, когда у заказчика появляется вопрос: «Почему при замене стальной трубы на полипропиленовую был выбран меньший диаметр?», можно привести данную таблицу, даже если у вас нет под рукой гидравлического расчета системы.
Коэффициент эквивалентной шероховатости трубопроводов в зависимости от материала труб
Трубопроводы | Коэффициент эквивалентной шероховатости К, мм |
Стальные новые трубы | |
Медные трубы | 0,0015 |
Полипропиленовые трубы | 0,003-005 |
Изоляция
Для предотвращения возникновения избыточных напряжений и повреждения полипропиленовых труб о строительные конструкции, их необходимо замоноличивать в изоляции. Чтобы избежать появления конденсата на трубах в системах холодного водоснабжения, монтаж трубопроводов также необходимо производить в изоляции. Изоляция трубопроводов системы горячего водоснабжения обеспечивает снижение тепловых потерь в окружающую среду.
Сварка и крепеж
В трубопроводах из полипропилена сварное соединение практически не снижает надежности системы, количество соединительных и установочных элементов при соблюдении всех правил сварки не имеет значения. При сварке полипропиленовых труб и фитингов необходимо соблюдать рекомендации и требования, изложенные в «Руководстве по монтажу напорных трубопроводных систем из полипропилена».
Коэффициенты сопротивления полипропиленовых фитингов ниже, чем у чугунных. Запорная арматура отличается высокой надежностью, усилия от затяжки резьбы отсутствуют. При размещении труб на стенах и потолках не рекомендуется использовать неподвижные опоры. Неподвижные опоры, как правило, фиксируют тяжелые трубные узлы или тяжелые элементы трубопровода, не имеющие собственных креплений (например, фильтры или краны).
При проведении монтажных работ не допускается использование трубного (газового) ключа для затяжки комбинированных полипропиленовых фитингов. Использование данного ключа приводит к разрушению фитингов. Соблюдение всех этих нормативных правил обеспечит надежную и безаварийную эксплуатацию системы трубопроводов в течение всего расчетного периода ее эксплуатации.
С анализом технологий производства и анализом текущего состояния и прогнозом рынка Вы можете познакомиться в отчете маркетингового исследования Академии Конъюнктуры Промышленных Рынков: «Рынок полипропиленовых труб в России».
Ю. Д. Олейников, к. т. н., компания «Эгопласт», руководитель направления «Отопление»
Гидравлический расчет является важной составляющей процесса выбора типоразмера трубы
для строительства трубопровода
. В нормативной литературе по проектированию этот ясный с точки зрения физики вопрос основательно запутан. На наш взгляд, это связано с попыткой описать все варианты расчета коэффициента трения, зависящего от режима течения, типа жидкости и ее температуры, а также от шероховатости трубы
, одним (на все случаи) уравнением с вариацией его параметров и введением всевозможных поправочных коэффициентов. При этом краткость изложения, присущая нормативному документу, делает выбор величин этих коэффициентов в значительной степени произвольным и чаще всего заканчивается номограммами, кочующими из одного документа в другой.
С целью более подробного анализа предлагаемых в документах методов расчета представляется полезным вернуться к исходным уравнениям классической гидродинамики .
Потеря напора, связанная с преодолением сил трения при течении жидкости в трубе , определяется уравнением:
Где: L и D длина трубопровода
и его внутренний диаметр, м; ? - плотность жидкости, кг/м3; w - средняя объемная скорость, м/сек, определяемая по расходу Q, м3/сек:
λ - коэффициент гидравлического трения, безразмерная величина, характеризующая соотношение сил трения и инерции, и именно ее определение и есть предмет гидравлического расчета трубопровода
. Коэффициент трения зависит от режима течения, и для ламинарного и турбулентного потока определяется по-разному.
Для ламинарного (чисто вязкого режима течения) коэффициент трения определяется теоретически в соответствии с уравнением Пуазейля:
λ = 64/Re (2)
где: Re - критерий (число) Рейнольдса.
Опытные данные строго подчиняются этому закону в пределах значений Рейнольдса ниже критического (Re При превышении этого значения возникает турбулентность. На первом этапе развития турбулентности (3000 λ = 0,3164 Re -0,25 (3)
В несколько расширенном диапазоне чисел Рейнольдса (4000
λ = 1,01 lg(Re) -2,5 (4)
Для значений Re > 100000 предложено много расчетных формул, но практически все они дают один и тот же результат .
На рис.1 показано, как "работают" уравнения (2) - (4) в указанном диапазоне чисел Рейнольдса, который достаточен для описания всех реальных случаев течения жидкости в гидравлически гладких трубах
.
Рис.1
Шероховатость стенки трубы
влияет на гидравлическое сопротивление только при турбулентном потоке, но и в этом случае, из-за наличия ламинарного пограничного слоя существенно сказывается только при числах Рейнольдса, превышающих некоторое значение, зависящее от относительной шероховатости ξ/D, где ξ - расчетная высота бугорков шероховатости, м.
Труба
, для которой при течении жидкости выполняется условие:
считается гидравлически гладкой, и коэффициент трения определяется по уравнениям (2) - (4).
Для чисел Re больше определенных неравенством (5) коэффициент трения становится величиной постоянной и определяется только относительной шероховатостью по уравнению:
которое после преобразования дает:
Гидравлическое понятие шероховатости не имеет ничего общего с геометрией внутренней поверхности трубы , которую можно было бы инструментально промерить. Исследователи наносили на внутреннюю поверхность модельных труб четко воспроизводимую и измеряемую зернистость, и сравнивали коэффициент трения для модельных и реальных технических труб в одних и тех же режимах течения. Этим определяли диапазон эквивалентной гидравлической шероховатости , которую следует принимать при гидравлических расчетах технических труб . Поэтому уравнение (6) точнее следует записать:
где: ξ э - нормативная эквивалентная шероховатость (Таблица 1).
Таблица 1
Данные таблицы 1 получены для традиционных на тот период материалов трубопроводов
.
В период 1950-1975 годов западные гидродинамики аналогичным способом определили ξ э
труб из полиэтилена и ПВХ
разных диаметров, в том числе и после длительной эксплуатации. Получены значения эквивалентной шероховатости в пределах от 0,0015 до 0,0105 мм для труб
диаметром от 50 до 300 мм . В США для собранного на клеевых соединениях трубопровода из ПВХ
этот показатель принимается 0,005 мм . В Швеции, на основе фактических потерь давления в пятикилометровом трубопроводе
из сваренных встык полиэтиленовых труб
диаметром 1200 мм, определили, что ξ э
= 0,05 мм . В российских строительных нормах в случаях, относящихся к полимерным (пластиковым) трубам
, их шероховатость либо совсем не упоминается , либо принимается: для водоснабжения и канализации - "не менее 0,01 мм" , для газоснабжения ξ э
= 0,007 мм . Натурные измерения потерь давления на действующем газопроводе
из полиэтиленовых труб наружным диаметром 225 мм длиной более 48 км показали, что ξ э
Вот, пожалуй, и все, чем положения классической гидродинамики могут помочь при анализе нормативной документации, посвященной гидравлическому расчету трубопроводов
. Напомним, что
Re = w D/ν (7)
где: ν - кинематическая вязкость жидкости, м2/сек.
Первый вопрос, который следует решить раз и навсегда - являются ли , имеющие, как показано выше, уровень шероховатости, от ≈ 0,005 мм для труб
малых диаметров, до ≈ 0,05 мм для труб большого диаметра
, гидравлически гладкими.
В Таблице 2 для труб
различных диаметров по уравнениям (5) и (7) определены значения расходных скоростей движения воды при температуре 20°С (ν
= 1,02*10-6 м2/сек), выше которых труба
не может считаться гидравлически гладкой. Для полимерных (пластиковых) труб
шероховатость плавно повышали с увеличением диаметра, как это оговорено выше; для новых и старых стальных труб
- принимали минимальные значения из Таблицы 1. Отметим, что критические скорости в старых стальных трубопроводах
в 10 раз ниже, чем в новых, и их шероховатость не может не учитываться при расчете гидравлических потерь напора.
Таблица 2
Для трубопроводов
внутри зданий предельными значениями скорости воды в трубопроводах
являются:
для отопительных систем - 1,5 м/сек ;
для водопровода
- 3 м/сек .
Для наружных сетей мы таких ограничений в нормативной документации не нашли, но если оставаться пределах, определенных таблицей 2, можно сделать однозначный вывод - полимерные (пластиковые) трубы
являются, безусловно, гладкими.
Оставляя предельное значение скорости, w = 3 м/сек, определим, что при течении воды в трубах
диаметром 20-1000 мм число Рейнольдса лежит в диапазоне 50000-2500000, то есть для расчета коэффициента трения течения воды в вполне корректно использовать уравнения (3) и (4). Уравнение (4) вообще охватывает весь диапазон режимов течения.
В нормативной документации, посвященной проектированию систем водоснабжения , уравнение для определения удельных потерь напора (Па/м либо м/м) дается в развернутом относительно диаметра трубы
и скорости движения воды виде:
где: К - набор всевозможных коэффициентов, n и m - показатели степеней при диаметре D, м и скорости w, м/сек.
Уравнение Блязиуса (3), наиболее удобное для подобного преобразования, для воды при 20°С при 3000
но оно действует при Re 100000 следует пользоваться модификацией уравнения (4).
В ISO TR 10501 для пластмассовых труб
при 4000
Для диапазона чисел Рейнольдса 150000
СНиП 2.04.02-84 без указания диапазона режима течения дает уравнение, которое подстановкой соответствующих коэффициентов для пластмассовых труб принимает вид:
которое после проверки и выполнения различных условий, для ряда режимов течения воды в шероховатых трубах (b ≥ 2) превращается в уравнение:
λ = 0,5 /(lg(3,7D/ ξ)) 2
что в точности совпадает с уравнением (61)
Обозначения в уравнении (12) здесь не расшифровываем, потому что они многоступенчато зависят одно от другого и с трудом понимаются из текста оригинала.
Таким образом, с небольшими вариациями коэффициентов и показателей степеней уравнения (9 - 12) базируются на классических уравнениях гидродинамики.
Приняв скорость движения воды в трубопроводе
w=3 м/сек, рассчитаем потери давления J, м/м (табл.3, рис.2) в полимерных (пластиковых) трубах
разных диаметров по четырем рассмотренным выше подходам. При расчетах по СП 40-102-2000 (уравнение 12) уровень шероховатости в зависимости от диаметра труб
принимался как в таблице 2.
Рис. 2
Как видно из табл.3 и рис.2, расчеты по ISO TR 10501 практически совпадают с расчетами по уравнениям классической гидродинамики, расчеты по российским нормативным документам, также совпадая между собой, дают несущественно завышенные по сравнению с ними результаты. Непонятно, почему составители СП 40-102-2000 в части гидравлического расчета полимерного водопровода
отошли от рекомендаций более раннего документа СНиП 2.04.02-84 и не учли рекомендаций международного документа ISO TR 10501.
Уравнения (9 - 11) охватывают все реально возможные режимы течения воды в гладких трубах
и удобны тем, что легко могут быть решены относительно любой входящей в них величины (J, w и D). Если это сделать относительно D:
где: К - коэффициент, а n и m - показатели степеней при диаметре D и скорости w, то можно предварительно выбрать диаметр трубопровода по рекомендованной для данного типа сети скорости w, м/сек, c учетом допустимых потерь напора для данной протяженности трубопровода (∆ Нг = J*L, м).
Пример:
Определить внутренний диаметр пластмассового трубопровода
длиной 1000 м, при wмакс
= 2 м/сек и ∆ Нг
= 10 м (1 бар), то есть J = 10/1000 = 0,01 м.
Выбрав, например, коэффициенты уравнения (11), получаем:
При этом расход составит Q=460 м3/час. Если полученный расход велик или мал, достаточно скорректировать значение скорости. Взяв, например, w=1,5 м/сек, получим D=0,188 м и Q=200 м3/час.
Расход в трубопроводе
определяется потребностями потребителя и устанавливается на этапе проектирования сети. Оставив этот вопрос проектировщикам, сравним удельные потери давления в стальном (новом и старом) и пластмассовом трубопроводах
при равных расходах для различных диаметров труб
.
Как видно из таблицы 4, учитывая неизбежное старение стальной трубы в процессе эксплуатации, для труб малых и средних диаметров полиэтиленовую трубу можно выбирать на одну ступень наружного диаметра меньше. И только для труб диаметром 800 мм и выше, вследствие относительно меньшего влияния абсолютной эквивалентной шероховатости на потери напора, диаметры труб нужно выбирать из одного ряда.
Литература.
1. Н.З.Френкель, Гидравлика, Госэнеогоиздат, 1947.
2. И.Е.Идельчик, Справочник по гидравлическому сопротивлению фасонных и прямых частей трубопроводов
, ЦАГИ, 1950.
3. L.-E. Janson, Plastics pipes for water supply and sewage disposal. Boras, Borealis, 4th edition, 2003.
4. ISO TR 10501 Thermoplastics pipes for the transport of liquids under pressure - Calculation of head losses.
5. СП 40-101-2000 Проектирование и монтаж трубопроводов
из полипропилена
"рандом сополимер".
6. СНиП 41-01-2003 (2.04.05-91) Отопление, вентиляция и кондиционирование.
7. СНиП 2.04.01-85 Внутренний водопровод
и канализация зданий.
8. СНиП 2.04.02-84 . Наружные сети и сооружения.
9. СП 40-102-2000 Проектирование и монтаж трубопроводов
систем водоснабжения и канализации из полимерных
материалов.
10. СП 42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб
.
11. Е.Х.Китайцева, Гидравлический расчет стальных и полиэтиленовых газопроводов
, Полимергаз, №1, 2000.
Расчёт потерь напора воды в трубопроводе выполняется очень просто, далее мы подробно рассмотрим варианты расчёта.
Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .
Вам посчастливилось пробурить скважину прямо около дома? Замечательно! Теперь вы сможете обеспечить себя и свой дом или дачу чистой водой, которая не будет зависеть от центрального водоснабжения. А это значит никакого сезонного отключения воды и бегания с вёдрами и тазиками. Нужно только установить насос и готово! В настоящей статье мы поможем вам рассчитать потери напора воды в трубопроводе , и уже с этими данными можно смело покупать насос и наслаждать, наконец, своей водой из скважины.
Из школьных уроков физики понятно, что вода, текущая по трубам, в любом случае испытывает сопротивление. Величина этого сопротивления зависит от скорости потока, диаметра трубы и гладкости её внутренней поверхности. Сопротивление тем меньше, чем меньше скорость потока и больше диаметр и гладкость трубы. Гладкость трубы зависит от материала, из которого она изготовлена. Трубы из полимеров более гладкие, чем стальные трубы , а также они не ржавеют и, что немаловажно, дешевле других материалов, не уступая при этом в качестве. Вода будет испытывать сопротивление, двигаясь даже по полностью горизонтальной трубе. Однако чем длиннее сама труба, тем менее значительны будут потери напора. Что ж, приступим к расчету.
Потери напора на прямых участках трубы.
Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.
Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.
Расход |
Внутренний диаметр трубы, мм |
||||||||||
Как пользоваться таблицей : Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м 3 /ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.
Потери напора на местных сопротивлениях.
К сожалению, трубы бывают абсолютно прямыми только в сказке. В реальной же жизни всегда есть различные изгибы, заслонки и вентиля, которые нельзя не учитывать при расчёте потерь напора воды в трубопроводе. В таблице приведены значения потерь напора в самых часто встречающихся местных сопротивлениях: колене в 90 градусов, скруглённом колене и клапане.
Потери указаны в сантиметрах водного столба на единицу местного сопротивления.
Скорость потока, м/с |
Колено 90 градусов |
Скруглённое колено |
Клапан |
Для определения v - скорости потока необходимо Q - расход воды (в м 3 /с) разделить на S - площадь поперечного сечения (в м 2).
Т.е. при диаметре трубы 50 мм (π*R 2 =3,14*(50/2) 2 =1962,5 мм 2 ; S=1962,5/1 000 000=0,0019625 м 2) и расходе воды 7 м 3 /ч (Q=7/3600=0,00194 м 3 /с) скорость потока
v=Q/S=0,00194/0,0019625=0,989 м/с
Как видно из приведённых выше данных, потери напора на местных сопротивлениях совсем незначительны. Основные потери всё-таки происходят на горизонтальных участках труб, поэтому для их уменьшения следует тщательно продумать выбор материала трубы и их диаметра. Напомним, чтобы минимизировать потери следует выбирать трубы из полимеров с максимальным диаметром и гладкостью внутренней поверхности самой трубы.
За последние десять лет полипропиленовые трубы стали пользоваться популярностью, как у профессиональных строителей, так и у тех людей, кто занимается обустройством своей квартиры или загородного дома. Отправляясь за покупкой, многие столкнулись с проблемой выбора изделия, так как труб из полипропилена на рынке предлагают очень много. Но, прежде всего, параметры полипропиленовых труб должны соответствовать параметрам вашей инженерной системы.
Срок службы
1. Срок службы полипропиленовых труб составляет 50 лет в системе холодного водоснабжения. В отопительной системе, а также в системе горячего водоснабжения они прослужат 25 лет, сохраняя при этом все свои изначальные характеристики.
2. Нужно знать, что максимальный срок эксплуатации труб из полипропилена зависит от правильной комбинации двух важных факторов: давления и температуры. При высокой температуре и маленьком давлении или же все наоборот, трубы могут служить долго. Это даже указывается в специальных таблицах. Но если и давление, и температура будут большими, то трубы прослужат недолго.
3. Что же сделать, чтобы трубы прослужили как можно дольше? Чтобы срок службы был максимальным, то есть, 50 лет должна быть температура не больше 60-75 градусов или же давление не больше 4-6 атмосфер. Вообще то, труба из полипропилена прослужит столько, сколько она сможет выдержать без разрушений с учетом коэффициента надежности воздействия постоянной на нее температуры и давления. И если соблюдать все эксплуатационные параметры, которые указываются в строительных нормах, трубы из полипропилена прослужат долго.
Полипропиленовые трубы и мороз
Полипропиленовые трубы могут использоваться при температуре до 40 градусов мороза. Морозостойкость у них высокая. При морозе они не потрескаются и зимой не разморозятся даже на небольшой глубине закапывания. Даже если в трубах замерзнет вода, они не разрушаются, а только немного увеличатся в размере, при оттаивании они становятся прежнего размера. Единственное, что нужно опасаться – это внешнего большого давление на трубу, так она может лопнуть. Несмотря на нормы температуры, температура горячей воды в отопительной системе может в некоторых регионах превысить указанные 95 градусов. В первую очередь это относится к регионам с резко континентальным климатом: Якутии, Дальнему Востоку и Сибири. Если температура будет 52 градуса мороза, то для обогрева зданий при такой высокой температуре воду в теплотрассах приходится нагревать намного выше точки кипения. И при этом полипропиленовые трубы могут пострадать. Поэтому вывод один: трубы из полипропилена можно смело использовать в отоплении и системе водоснабжения везде, кроме самых холодных регионов.
Шероховатость и диаметр
1. При проектировании напорной трубопроводной системы важное значение имеют ее гидравлические расчеты. По ним вычисляют диаметр труб и подбирают насосное оборудование, обеспечивающее нужный режим работы вышеуказанной системы за весь срок эксплуатации.
2. У полипропиленовых труб довольно гладкая внутренняя поверхность и маленькие гидравлические потери. Это позволяет использовать в монтаже трубы из полипропилена меньшего диаметра, чем стальные. Монтаж оказывается более экономичным и компактным.
3. Коэффициент шероховатости эквивалентной у полипропиленовых труб составляет 0,003-0,005 мм. У новых стальных труб – 0,2 мм. Поэтому становится понятно, почему при замене стальной трубы на полипропиленовую выбирают трубу с меньшим диаметром.
Свод правил по проектированию и монтажу трубопроводов из полипропилена
"Рандом сополимер"
СП 40-101-96
2. Проектирование трубопроводов
2.1. Проектирование систем трубопроводов связано с выбором типа труб, соединительных деталей и арматуры, выполнением гидравлического расчета, выбором способа прокладки и условий, обеспечивающих компенсацию тепловых изменений длины трубы без перенапряжения материала и соединений трубопровода. Выбор типа трубы производится с учетом условий работы трубопровода: давления и температуры, необходимого срока службы и агрессивности транспортируемой жидкости.
2.2. Сортамент труб, соединительных деталей и арматуры приводится в прил. 3 .
2.3. Гидравлический расчет трубопроводов из PPRC заключается в определении потерь напора на преодоление гидравлических сопротивлений, возникающих в трубе, в стыковых соединениях и соединительных деталях, в местах резких поворотов и изменений диаметра трубопровода.
2.4. Гидравлические потери напора в трубах определяются по номограммам рис. 2.1. и 2.2.
Расход, л/сек.
Потеря напора на трение, мм/м
Рис. 2.1. Номограмма для инженерного гидравлического расчета холодного водопровода из труб PPRC (PN10)
Пример определения
Дано: труба PPRC 32PN10,
расход жидкости 1 л/с
По номограмме: средняя скорость течения жидкости 1,84 м/с, потеря напора 140 мм/м
Расход, л/сек.
Потеря напора на трение, мм/м
Рис. 2.2. Номограмма для инженерного гидравлического расчета холодного водопровода из труб PPRC (PN20)
Пример определения
Дано: труба PPRC50 PN20,
расход жидкости 1 л/с
По номограмме: средняя скорость течения жидкости 1,1 м/с, потеря напора 45 мм/м
2.5. Гидравлические потери напора в стыковых соединениях можно принять равными 10-15% величины потерь напора в трубах, определенными по номограмме. Для внутренних водопроводных систем величину потерь напора на местные сопротивления, в соединительных деталях и арматуре рекомендуется принимать равной 30% величины потерь напора в трубах.
2.6. Трубопроводы в зданиях прокладываются на подвесках, опорах и кронштейнах открыто или скрыто (внутри шахт, строительных конструкций, борозд, в каналах). Скрытая прокладка трубопроводов необходима для обеспечения защиты пластмассовых труб от механических повреждений.
2.7. Трубопроводы вне зданий (межцеховые или наружные) прокладываются на эстакадах и опорах (в обогреваемых или необогреваемых коробах и галереях или без них), в каналах (проходных или непроходных) и в грунте (бесканальная прокладка).
2.8. Запрещается прокладка технологических трубопроводов из PPRC в помещениях, относящихся по пожарной опасности к категориям А, Б, В.
2.9. Не допускается прокладка внутрицеховых технологических трубопроводов из пластмассовых труб через административные, бытовые и хозяйственные помещения, помещения электроустановок, щиты системы контроля и автоматики, лестничные клетки, коридоры и т.п. В местах возможного механического повреждения трубопровода следует применять только скрытую прокладку в бороздах, каналах и шахтах.
2.10. Теплоизоляция трубопроводов водоснабжения выполняется в соответствии с требованиями СНиП 2.04.14-88 (раздел 3).
2.11. Изменение длины трубопроводов из PPRC при перепаде температуры определяется по формуле
L = 0,15 x L x t (2.1)
где L - температура изменения длины трубы, мм;
0,15 - коэффициент линейного расширения материала трубы, мм/м;
L - длина трубопровода, м;
t - расчетная разность температур (между температурой монтажа и эксплуатации), С.
2.12. Величину температурных изменений длины трубы можно также определить по номограмме рис. 2.3.
Температура t, ° С
Изменение длины трубы L, мм
Пример: T 1 = 20 ° C, t 2 = 75 ° C, L = 6,5 м.
По формуле 2.1
L = 0,15 x 6,5 x (75 - 20) = 55 мм
t = 75 - 20 = 55 ° С.
По номограмме = 55 мм.
2.13. Трубопровод должен иметь возможность свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода (самокомпенсация) и обеспечивается правильной расстановкой опор (креплений), наличием отводов в трубопроводе в местах поворота, других гнутых элементов и установкой температурных компенсаторов. Неподвижные крепления труб должны направлять удлинения трубопроводов в сторону этих элементов.
2.14. Расстояние между опорами при горизонтальной прокладке трубопровода определяется из табл. 2.1.
Таблица 2.1
Расстояние между опорами в зависимости от температуры воды в трубопроводе
Номинальный наружный |
Расстояние, мм |
||||||
диаметр трубы, мм |
|||||||
2.15. При проектировании вертикальных трубопроводов опоры устанавливаются не реже чем через 1000 мм для труб наружным диаметром до 32 мм и не реже чем через 1500 мм для труб большого диаметра.
2.16. Компенсирующие устройства выполняются в виде Г-образных элементов (рис. 2.4), П-образных (рис. 2.5) и петлеобразных (круговых) компенсаторов (рис. 2.6).
Рис. 2.4. Г-образный элемент трубопровода
Рис. 2.5. П-образный компенсатор
Рис. 2.6. Петлеобразный компенсатор
2.17. Расчет компенсирующей способности Г-образных элементов (рис. 2.4) и П-образных компенсаторов (рис. 2.5) производится по номограмме (рис. 2.7) или по эмпирической формуле (2.2)
где L k - длина участка Г-образного элемента, воспринимающего температурные изменения длины трубопровода, мм;
d - наружный диаметр трубы, мм;
L - температурные изменения длины трубы, мм.
Величину L k можно также определить по номограмме (рис. 2.7).
(2.2)
Рис. 2.7. Номограмма для определения длины участка трубы, воспринимающего тепловое удлинение
Пример: d н = 40 мм,
По формуле 2.2
По номограмме L = 1250 мм
2.18. Конструирование систем внутренних трубопроводов рекомендуется производить в следующей последовательности:
На схеме трубопроводов предварительно намечают места расположения неподвижных опор с учетом компенсации температурных изменений длины труб элементами трубопровода (отводами и пр.);
Проверяют расчетом компенсирующую способность элементов трубопровода между неподвижными опорами;
Намечают расположение скользящих опор с указанием расстояний между ними.
2.19. Неподвижные опоры необходимо размещать так, чтобы температурные изменения длины участка трубопровода между ними не превышали компенсирующей способности отводов и компенсаторов, расположенных на этом участке, и распределялись пропорционально их компенсирующей способности.
2.20. В тех случаях, когда температурные изменения длины участка трубопровода превышают компенсирующую способность его элементов, на нем необходимо установить дополнительный компенсатор.
2.21. Компенсаторы устанавливаются на трубопроводе, как правило, посредине, между неподвижными опорами, делящими трубопровод на участки, температурная деформация которых происходит независимо друг от друга. Компенсация линейных удлинений труб из PPRC может обеспечиваться также предварительным прогибом труб при прокладке их в виде "змейки" на сплошной опоре, ширина которой допускает возможность изменения формы прогиба трубопровода при изменении температуры.
2.22. При расстановке неподвижных опор следует учитывать, что перемещение трубы в плоскости перпендикулярно стене ограничивается расстоянием от поверхности трубы до стены (рис. 2.4). Расстояние от неподвижных соединений до осей тройников должно быть не менее шести диаметров трубопровода.
2.23. Запорная и водоразборная арматура должна иметь неподвижное крепление к строительным конструкциям для того, чтобы усилия, возникающие при пользовании арматурой, не передавались на трубы PPRC.
2.24. При прокладке в одном помещении нескольких трубопроводов из пластмассовых труб их следует укладывать совместно компактными пучками на общих опорах или подвесках. Трубопроводы в местах пересечения фундаментов зданий, перекрытий и перегородок должны проходить через гильзы, изготовленные, как правило, из стальных труб, концы которых должны выступать на 20-50 мм из пересекаемой поверхности. Зазор между трубопроводами и футлярами должен быть не менее 10-20 мм и тщательно уплотнен несгораемым материалом, допускающим перемещение трубопроводов вдоль его продольной оси.
2.25. При параллельной прокладке трубы из PPRC должны располагаться ниже труб отопления и горячего водоснабжения с расстоянием в свету между ними не менее 100 мм.
2.26. Проектирование средств защиты пластмассовых трубопроводов от статического электричества предусматривается в случаях:
Отрицательного воздействия статического электричества на технологический процесс и качество транспортируемых веществ;
Опасного воздействия статического электричества на обслуживающий персонал.
2.27. Для обеспечения срока службы трубопроводов горячего водоснабжения из труб PPRC не менее 25 лет необходимо поддерживать рекомендуемые режимы эксплуатации (давление, температуру воды), указанные в прил. 2 .
2.28. Принимая во внимание диэлектрические свойства труб из PPRC, металлические ванны и мойки должны быть заземлены согласно соответствующим требованиям действующих нормативных документов.