Конструктивные схемы усиления железобетонных конструкций. Упругопластическое деформирование среды и поверхности нагружения

Главная / Баня

Усиление железобетонных конструкций

Общие положения. В практике реконструкции промышленных зданий и сооружений часто возникает Необходимость усиления конструкций и их отдельных элементов. Необходимость усиления основных несущих элементов зданий (фундаментов, колонн, подкрановых балок) может быть вызвана следующими причинами:

  • увеличением нагрузок на них в результате замены либо усилением вышерасположенных конструкций (перестройка помещений, надстройка зданий);
  • модернизацией технологического оборудования в реконструируемом здании, изменением технологических процессов;
  • эксплуатационным износом (потерей несущей способности от воздействия динамических и вибрационных нагрузок, агрессивной воздушной среды и т. п.);
  • приобретенными конструктивными дефектами, возникшими в результате неправильной эксплуатации конструкций, разбрызгивания и разлива агрессивных жидкостей;
  • случайными повреждениями (выходом из строя отдельных конструктивных элементов при демонтаже, транспортировке и установке технологического оборудования).

Различные сочетания причин необходимости усиления, а также тип и состояние строительных конструкций промышленных предприятий обусловливают, применение различных способов усиления.

Увеличение несущей способности усиливаемых конструкций может осуществляться как без изменения их напряженного состояния или конструктивной схемы (железобетонные или металлические обоймы, железобетонные рубашки, наращивание), так и с изменением напряженного состояния или конструктивной схемы конструкций (преднапряженные распорки, металлические балки, опираемые на сваи, консоли, стойки, подкосы, горизонтальные шпренгельные и комбинированные затяжки).

Усиление конструкций обычно требует значительно меньше затрат, чем замена их новыми, но связано с выполнением сложных строительных процессов. Усиление конструкций производится без остановки производства (эксплуатации цеха) или при кратковременных остановках.

Наиболее часто усиливают железобетонные фундаменты, колонны, балки, ригели и плиты перекрытий. Железобетонные подкрановые балки обычно не усиливают, а заменяют другими. Железобетонные фермы, находящиеся в аварийном состоянии, снимают и заменяют новыми (чаще металлическими) или ремонтируют.

Наиболее сложны работы по усилению фундаментов, балок и ригелей, менее сложны - по усилению колонн и плит перекрытий. Решения по усилению конструкций или их замене должны быть обоснованны проектом (с учетом затрат и потерь при остановке производства).

Усиление конструкций относится к числу сложных, ответственных и опасных работ, поэтому они должны производиться под личным руководством мастера или прораба.

Использование обойм, рубашек и наращивания. Монолитный железобетон часто применяется для усиления железобетонных конструкций путем устройства обойм, рубашек, одностороннего и двустороннего наращивания. Эти методы усиления при сравнительно небольшом расходе металла позволяют значительно увеличить несущую способность усиливаемых конструкций и, кроме того, обеспечить устойчивость к воздействию агрессивной среды и, следовательно, наибольшую надежность в эксплуатации.

Обоймы, рубашки, наращивания состоят из арматуры и тонкого слоя (обычно 30-100 мм, в отдельных случаях до 300 мм) бетона.

Железобетонная обойма состоит обычно из арматуры и тонкого слоя бетона, охватывающего усиливаемый элемент с четырех сторон, и применяется для усиления балок, ригелей и колонн.

Рабочая арматура обойм служит для усиления конструкций в растянутых зонах. Благодаря усадке бетона железобетонные обоймы плотно обжимают усиливаемый элемент и работают с ним совместно.

Прочность сцепления нового бетона со старым зависит от многих факторов: условий укладки бетонной смеси, методов ее уплотнения, тщательности обработки поверхности сопряжения, класса бетона и т. д.

При усилении колонны железобетонной обоймой (рис. 7.1) поверхность усиливаемой колонны сначала очищают и насекают для лучшего сцепления бетонной смеси обоймы с колонной. По периметру колонны устанавливают арматуру и разборно-переставную опалубку из щитов. Затем бетонируют обойму методом инъецирования мелкозернистой бетонной смеси, нагнетая ее в опалубку через инъекционные отверстия в щитах. Уплотняют бетонную смесь наружным вибратором.

Металлические обоймы (рис. 7.2, а) состоят из стоек углового профиля, соединительных планок и опорных подкладок. Применяют их для усиления железобетонных колонн, а также кирпичных простенков и столбов. В местах установки подкладок арматуру колонны обнажают и приваривают к подкладке и стойке обоймы. Эффект усиления колонн достигается после монтажа и сварки соединительных планок. В ряде случаев планки нагревают до 120 °С и затем приваривают к вертикальным уголкам с последующим торкретированием, создавая напряженную металлическую обойму. При этом способе усиления производство не останавливают или сокращают его остановку до минимума.

Иногда производят усиление железобетонной колонны предварительно напряженными распорками (рис. 7.2, б).

Рубашки представляют собой незамкнутые с одной стороны обетонки конструкции и применяются для усиления ригелей, балок перекрытий, колонн и фундаментов. Наращивание (рис. 7.3) представляет собой увеличение сечения усиливаемых конструкций сверху, снизу и с боков слоем монолитного железобетона и применяется для усиления балок, ригелей, колонн, стен и плит перекрытия.

При усилении железобетонных конструкций выполняют ряд технологических процессов: подготовку поверхности усиливаемой конструкции, установку арматуры и опалубки, укладку и уплотнение бетонной смеси, уход за бетоном в период достижения необходимой прочности и разборку опалубки.

Подготовка поверхности усиливаемой конструкции производится для обеспечения надежного сцепления с ней бетона слоя усиления. При этом выполняются следующие операции: снятие поверхности защитного слоя и удаление отслоений бетона; очистка арматуры от поверхностной коррозии; обдувка сжатым воздухом и увлажнение поверхности.

Снятие защитного слоя бетона и удаление его отслоений выполняется при помощи механизированного инструмента (молотков фуговальных электрических ИЭ-4207 и ИЭ-4210, рубильных молотков ИП-4119, ЭП-1027, ЭП-1056 и др.).

Очистку арматуры от ржавчины рекомендуется выполнять способом гидроабразивной обработки, используя при этом оборудование для торкретирования, а в качестве рабочей смеси - кварцевый песок или песчано-гравийную смесь влажностью до 6 %. При гидроабразивной обработке соблюдают соотношение давления сжатого воздуха (на ресивере компрессора) и подаваемой к соплу воды 4: 0,5.

Для очистки арматуры от ржавчины при усилении конструкций в стесненных условиях эффективно применяется малогабаритный пескоструйный аппарат с вакуумным пистолетом, работающим по принципу эжектора.

При небольших объемах работ для очистки арматуры от ржавчины применяют пневматические ручные угловые металлические щетки ИП-2104 (масса щеток 4 кг, давление сжатого воздуха в пневмосистеме 0,6 МПа).

Укладку бетонной смеси при усилении железобетонных конструкций наиболее целесообразно выполнять с применением установок для пневмонабрызга бетона: при толщине слоя усиления до 80 мм торкретированием с использованием цемент-пушки; при толщине слоя усиления массивных конструкций до 250 мм и его общей поверхности не менее 10-15 м2 -бетоном с использованием бетон-шприц-машин.

Особенностью этих установок является подача по шлангам с помощью сжатого воздуха сухой бетонной смеси, которая на выходе из концевого сопла смешивается с водой. Бетонная смесь выбрасывается из сопла со скоростью 50- 70 м/с и образует на поверхности плотный слой. Машины выполняют одновременно четыре процесса - транспортируют бетонную смесь к месту укладки, перемешивают ее с водой, производят набрызг и уплотнение. При применении данных установок полностью исключаются опалубочные работы, существенно сокращаются трудозатраты и сроки производства работ, что особенно важно при реконструкции. Набрызг-бетон имеет повышенную прочность и сцепление, а также обеспечивает повышенные защитные функции и улучшает эксплуатационные качества конструкций по сравнению с обычным бетоном.

Для торкретирования конструкций в стесненных условиях эффективно применение цемент-пушки СБ-117.

Укладку торкретбетона на вертикальные и потолочные поверхности выполняют в два слоя и более. На вертикальные поверхности первый слой следует укладывают толщиной 10 1!) мм при водоцементном отношении (В/Ц) 0,6- (Uvl с расстояния 0,5-0,6 м, второй - при В/Ц 0,4-0,43 с расстояния 0,7-0,8 м. На потолочную поверхность первый слой укладывают толщиной 5-40 мм при В/Ц 0,5-0,53 с расстояния 0,4 0,5 м, а второй - при В/Ц 0,4-0,43 с расстояния 0,5 0,0 м. Укладку торкретбетона на горизонтальную поверерхность выполняют в один слой проектной толщины при В/Ц 0,4-0,5 с расстояния 0,7-0,8 м.

Для нанесения набрызг-бетона применяют установки СБ-67 и СБ-68. Толщина наносимого слоя набрызг-бетона данными установками за один раз составляет 50-70 мм, расстояние между соплом и бетонируемой поверхностью 1 - 1,2 м.

Для выполнения набрызг-бетонных работ бетон-шприц-машины и цемент-пушки комплектуются передвижным компрессором с рабочим давлением 0,9 и 0,6 МПа (для СБ-117), цистерной для воды, передвижными подмостями или автогидроподъемниками для работы на высоте. Сухие бетонные смеси поставляются централизованно: при объемах работ до 2,5 м 3 - в мешках, при больших объемах работ - в специализированных контейнерах.

Несущие конструкции покрытий как стропильных, так и подстропильных балок и ферм можно усилить установкой предварительно напряженного шпренгеля из швеллера и уголка или с помощью предварительно напряженной затяжки. Элементы железобетонной фермы можно усилить с помощью стальных обойм. Для усиления конструкций покрытия используют мостовой кран, временно оборудованный передвижной площадкой-опорой (рис. 7.4).

Ее устанавливают на рельсы тележки крана и оснащают домкратами, которые разгружают узлы ферм в местах, где необходимо усиление. Перемещение площадки-опоры по мостовому крану, а крана вдоль пролета обеспечивает хороший доступ к конструкциям покрытия по всему цеху. Это создает возможность удобного и безопасного выполнения работ, связанных с усилением отдельных элементов фермы и установкой предварительной напряженной затяжки по ее нижнему поясу.

Усиление железобетонных ферм, находящихся в аварийном состоянии, может быть выполнено путем их разгрузки и передачи усилий на дополнительные стальные фермы, устанавливаемые с двух сторон у аварийной.

Этот метод достаточно надежен, однако требует довольно сложных и трудоемких подготовительных работ. Поданные на кровлю монтажные балки при помощи ручных рычажных лебедок доставляют к месту установки, перемещая их по настилу из досок. Для подъема балок и их установки на шпальные клетки используют оборудованные ручными талями треноги, которые размещают на этих клетках. Установленные монтажные балки крепят к шпалам костылями и раскрепляют расчалками.

Перед установкой разгрузочных ферм монтируют элементы усиления колонн с опорными столиками для разгрузочных ферм. Последние поднимают поочередно двумя ручными рычажными лебедками. Затем элементы усиления раскрепляют и монтируют распорки и связи, располагаемые между ними.

Передачу нагрузки от плит покрытия на установленные фермы осуществляют путем равномерного подклинивания, ликвидирующего зазоры между опорными стойками установленных ферм и продольными ребрами плит покрытия. Подклинивание ведут одновременно по обеим фермам от середины к краям. Далее образуют зазоры между плитами покрытия и аварийной фермой.

После завершения процесса усиления монтажные балки, лебедки и блоки демонтируют и затем восстанавливают нарушенные участки кровли.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Усиление железобетонных конструкций

Отнесение по результатам обследования конструктивных элементов зданий и сооружений к ограниченно-работоспособному или аварийному техническому состоянию может потребовать либо замены (воссоздания) конструкций, либо их восстановления (усиления).

Основные способы усиления и обеспечения дальнейшей эксплуатации железобетонных и каменных конструкций приведены в таблице 1.3.1.

Таблица 1.3.1

Восстановление (усиление) несущей способности конструкций Устранение основных причин, приводящих к повреждению строительных конструкций
без изменения расчетной схемы с изменением расчетной схемы с изменением напряженного состояния
Восстановление площади сечения элемента и арматуры Устройство дополнительных опор Создание шпренгельных систем с напряженными затяжками Устранения перегрузок строительных конструкций
Устройство обоймы сечений из различных материалов Разгрузка конструкций с передачей нагрузки на другие элементы Применение предварительно напряженных распорок Восстановление закладных деталей, креплений и т.д.
Устройство рубашек в сечениях из различных материалов Устройство металлических кронштейнов и подкосов Применение предварительно напряженных затяжек и хомутов Защита конструкций от намокания
Одностороннее наращивание сечений Включение в совместную работу отдельных конструкций Защита конструкций от воздействия агрессивных сред
Усиление узлов сопряжения конструктивных элементов Устройство тяжей, железобетонных и металлических поясов Восстановление нормальных температурно-влажностных условий

Традиционные конструктивные решения усиления колонны, балки, монолитной и сборной многопустотной плиты перекрытия, кирпичной стены и ленточного фундамента показаны на рисунке 1.3.1 . Приведенные на рисунке 1.3.1 конструктивные решения, в основном, реализуют усиление через увеличение поперечного сечения восстанавливаемой конструкции и добавление к имеющейся в конструкции арматуры дополнительных стержней.

При значительных разрушениях, когда трещины располагаются по всей высоте железобетонной колонны, она восстанавливается с использованием железобетонной обоймы (рис.1.3.1а). Толщина обоймы принимается не менее 90-100 мм. Арматурный каркас обоймы закрепляется в пробитых в перекрытии отверстиях. Установка опалубки выполняется по частям, по мере заливки бетона обоймы. После заливки бетона на всю высоту колонны отверстия в перекрытии зачеканиваются цементным раствором.

Для увеличения несущей способности балки монолитного перекрытия сечение балки наращивают с помощью хомутов (рис.1.3.1б). Толщина наращиваемого слоя бетона должна быть не менее 100 мм, а нижняя продольная арматура существующей балки - оголена. Усиление балки производится в условиях полной ее разгрузки. Дополнительная продольная арматура объединяется с существующей арматурой с помощью хомутов посредством сварки.

Рис.1.3.1. Усиление железобетонных конструкций: а - усиление колонны с использованием железобетонной обоймы (1 - существующая колонна, 2 - арматурный каркас, 3 - бетон обоймы); б - усиление балки монолитного перекрытия наращиванием с помощью хомутов (4 - существующая балка, 5 - арматура балки, 6 - дополнительная продольная арматура, 7 - хомуты, 8 - новый бетон); в - усиление монолитной плиты перекрытия односторонним наращиванием снизу (9 - существующая плита, 10 - арматура плиты, 11 - новая арматура (сетка), 12 - коротыш для сопряжения старой и новой арматуры, 13 - бетон наращивания); г - усиление сборной многопустотной плиты перекрытия: 1-й вариант - без набетонки (14 - плита, 15 - арматурный каркас, 16 - новый бетон плиты); 2-й вариант - с набетонкой (17 - арматурная сетка, 18 - набетонка)

На рисунке 1.3.1в показано усиление монолитной плиты перекрытия односторонним наращиванием снизу. При выполнении усиления плита перекрытия должна быть свободна от нагружения. Нижняя поверхность плиты должна быть подготовлена для сопряжения с новым бетоном. Для обеспечении связи новой арматуры с арматурой усиливаемой плиты сначала обнажается существующая арматура плиты, затем к ней привариваются коротыши и новая арматурная сетка, после чего выполняется укладка бетона в заранее подготовленную опалубку. Надежному объединение арматуры и бетона для совместной работы в конструкции способствует вибрирование уложенной в опалубку бетонной смеси.

Усиление сборной многопустотной плиты перекрытия (рис. 1.3.1г) выполняется следующем образом: вдоль плиты над пустотами пробиваются борозды шириной 80-100 мм. Во вскрытые пустоты в пределах длины плиты устанавливаются вертикально плоские арматурные каркасы, закладывается бетон с последующим уплотнением. При этом контактные поверхности пустот должны быть очищены сжатым воздухом.

Вторым вариантом усиления сборной многопустотной плиты перекрытия посредством замоноличивания каналов пустот является добавление набетонки. По верхней поверхности плиты укладывается арматурная сетка, которая объединяется с расположенными в пустотах арматурными каркасами. Затем выполняется набетонка. Толщина наращиваемого слоя набетонки должна быть не менее 50 мм

В условиях возведения строительных объектов в ходе проведения строительного контроля могут быть выявлены конструктивные элементы зданий и сооружений, несущая способность которых ниже требуемой по проекту. В этом случае может приниматься решение о замене конструктивных элементов с недостаточной несущей способностью на заново возводимые, с параллельной оценкой последствий такой замены для других несущих конструкций зданий и сооружений.

В других случаях при усилении конструкций стремятся увеличить их несущую способность, прежде всего, за счет установки дополнительной арматуры при минимально возможным увеличении поперечного сечения восстанавливаемого элемента.

Так, сложность усиления плит перекрытия в жилых зданиях связана с необходимостью сохранения исходной высоты жилых помещений и, соответственно, поперечного сечения плит перекрытия, хотя классические варианты усиления железобетонных плит выполняются, в основном, наращиванием размеров поперечного сечения. Кроме того, на приопорных участках плит перекрытия арматура усиления должна быть пропущена через стену.

Усиление плит путем закрепления к ее поверхности металлических полос, полимерных сеток, стеклоткани незначительно увеличивает высоту поперечного сечения, но требуется точно соблюдать конкретные практические рекомендации по выбору соответствующего клеевого состава и технологии выполнения работ.



Пример усиления монолитных плит перекрытия путем закрепления к ее поверхности металлических полос приведен на рисунке 1.3.2а . Этот способ усиления заключается в проведении следующих операций. Плита поддомкрачивается. Стальные полосы -100×6 (1) укладываются на верхнюю поверхность плиты. В местах расположения полос под ними должны быть выдолблены канавки (6). Стальные полосы укладываются в канавки и фиксируются в них клеем (3). В качестве клея могут использоваться смолы эпоксидные, полиэфирные, полиуретановые. Концы металлических полос фиксируются болтами-анкерами М12 (2) в заранее пробитых отверстиях (4). После чего канавки заполняются цементно-песчаным раствором (5).

Другой пример усиления монолитной плиты перекрытия показан на рисунке 1.3.2б . Плита перекрытия усиливается прокладкой дополнительных стержней (1), которые с помощью вязальной проволоки (2) присоединяются к верхней сетке армирования плиты. Дополнительные стержни прокладываются в штрабах (3) со шпонками (4). Они соединяются хомутами (5) со стержнями нижней сетки армирования плиты. Усиление плиты производится в условиях ее полной разгрузки. Перед бетонированием все контактные поверхности должны быть специальным образом подготовленными.

Подготовка поверхности существующего бетона в месте контакта с новым бетоном и металлом заключается в нанесении насечек (5…10 мм), в обработке бетона металлическими щетками, в очистке от пыли и грязи, в обильном смачивании за 1-1,5 …8-12 часов до бетонирования для насыщения водой старого бетона. Поверхность должна быть влажной, но не мокрой. Имеются рекомендации по нанесению на поверхность старого бетона слоя цементного раствора (состав 1:2) непосредственно перед бетонированием. Работы по подготовке поверхности старого бетона оформляются актом на скрытые работы.

Строительный рынок предлагает различные жидкости-пропитки для улучшения контакта нового с существующей бетонной поверхностью, но, следует отметить, что это должна быть пропитка, обеспечивающая контакт материалов в условиях работы несущей изгибаемой конструкции.

Укладываемый бетон должен быть достаточно пластичным (осадка конуса в пределах 8-10 см) на обычном или расширяющемся цементе. Не рекомендуется применять быстротвердеющие цементы из-за возможного уменьшения прочности бетона по контактным поверхностям.

Уплотнение вновь уложенного бетона осуществляется вибрированием, однако лучшим вариантом считается использование торкрет-бетона, который наносится слоями 7-15 мм, каждый последующий слой после схватывания предыдущего. Торкретирование уменьшает влияние усадочных явлений на связь старого и свежеуложенного бетона.

Монолитность усиливаемой плиты достигается наличием шпоночного соединения. Шпоночное соединение между новым и старым бетоном при изгибе плиты воспринимает касательные усилия и тем самым обеспечивает совместную работу. Эффективность работы монолитной плиты (рис.1.3.2а) достигается также надежным соединением дополнительной арматуры усиления с существующей в плите арматурой.

В последние годы в качестве альтернативного варианта традиционному усилению железобетонных конструкций с использованием металлических элементов рассматривается применение элементов из композиционных материалов. Основными компонентами таких материалов являются полимерные смолы (эпоксидная, полиэфирная и др.) и армирующий материал (стекловолокно, углеродное и арамидное волокно) . Для усиления железобетонных конструкций применяются листы, полосы, ткани из этих материалов, как альтернативная замена металлических листов, полос, арматурных сеток.

Конструктивные решения по усилению железобетонных конструкций композиционными материалами, нормативная база расчета, технология производства работ в настоящее время активно разрабатывается. Применение композиционных материалов для усиления железобетонных конструкций считается перспективным направлением.

Усиление ленточного фундамента «рубашкой» представлено на рисунке 1.3.3. Такое усиление может быть предпринято при разрушении фундамента в процессе его эксплуатации вследствие коррозии бетона фундамента под действием агрессивных вод. Перед усилением поврежденные участки поверхности ступеней освобождаются от слабого бетона. Для обеспечения прочной связи между старым и новым бетоном выполняется обработка бетонных поверхностей фундамента: насечкой, пескоструйным аппаратом, увлажнением и обработкой цементным тестом или применением клеевых композиций. На уступы фундамента укладывается арматурная сетка в один или два ряда, после установки опалубки укладывается бетон.

На рисунке 1.3.4 показано усиление кирпичных стен растворной обоймой, а также усиление простенка железобетонными сердечниками.

Усиление стен с использованием растворной обоймы (рис.1.3.4а) предпринимается тогда, когда в стене имеются сквозные трещины на всю ее толщину. Последовательность усиления стены с применением растворной обоймы следующая: на наружной и внутренней поверхности стены отбивается старая штукатурка; выполняется расшивка швов кладки и трещин на глубину 10-15 мм; на стену снаружи и изнутри (после очистки) закрепляются сетки (из арматурных стержней Æ5В500 с шагом 100 мм), которые объединяются между собой анкерами через просверленные в стене отверстия; тщательно заполняются отверстия с установленными анкерами; после увлажнения поверхности стены производится ее торкретирование цементно-песчаным раствором.

При небольшой площади простенка кирпичной стены и при значительном увеличении нагрузки на простенок, можно выполнить его усиление с использованием железобетонного сердечника (сердечников). Для организации сердечника в стене пробиваются вертикальные борозды с одной или двух сторон стены. В борозды сначала устанавливаются арматурные каркасы, затем борозды заполняются бетоном. На рисунке 1.3.4б показано усиление простенков железобетонными сердечниками в двух вариантах с одной или двух сторон стены.

Выбор того или иного метода усиления строительных конструкций зависит от технического задания на реконструкцию здания или сооружения, которое включает изменение объемно-планировочных решений, нагрузок и условий эксплуатации. Основные причины усиления железобетонных конструкций приведены в табл. 1, а способы увеличения несущей способности конструкций - в табл. 2.

Причины усиления железобетонных конструкций

Увеличение нагрузок на них в результате замены либо усиления вышераспо­ложенных конструкций (перестройка помещений, надстройка зданий)

Модернизация технологического оборудования в реконстру­ируемом здании, изменение технологических процессов

Эксплуата­ционный износ (потеря несущей способности)

Конструктив­ные дефекты и возникшие в результате неправильной эксплуатации конструкции

Случайные повреж­дения (при демонтаже и монтаже)

Табл. 1. Основные причины усиления железобетонных конструкций

Способы увеличения несущей способности

Без изменения их напряженного состояния или конструктивной схемы

С изменением напряженного состояния или конструктивной схемы конструкций

Железобетонные, металлические обоймы, железобетонные рубашки, наращивание

Преднап ряженные распорки; металлические балки, опираемые на сваи-консоли; стойки; подкосы; горизонтальные шпренгельные и комбинированные затяжки

Табл. 2. Способы увеличения несущей способности конструкций

Одним из наиболее эффективных способов усиления железобетонных колонн является устройство железобетонных и металлических обойм. В изгибаемых элементах обоймы применяют при значительной коррозии арматуры.

Железобетонная обойма состоит из арматуры и тонкого слоя бетона, охватывающего усиливаемый элемент с четырех сторон (балки, ригели, колонны).

Наиболее простым типом являются железобетонные обоймы с обычной продольной и поперечной арматурой без связи арматуры обоймы с арматурой усиливаемой колонны. При этом способе усиления важно обеспечить совместную работу «старого» и «нового» бетона, что достигается тщательной очисткой поверхности бетона усиливаемой конструкции пескоструйным аппаратом, насечкой или обработкой металлическими щетками, а также промывкой под давлением непосредственно перед бетонированием. Для повышения адгезии и защиты бетона и арматуры в агрессивных условиях эксплуатации рекомендуется применение полимербетонов.

Толщина обоймы колонн определяется расчетом и конструктивными требованиями (диаметром продольной и поперечной арматуры, величиной защитного слоя и т.п.). Как правило, она не превышает 300 мм. Площадь рабочей продольной арматуры также определяют расчетом.

При местном усилении обойму продлевают за пределы поврежденного участка на длину не менее длины анкеровки арматуры, а также не менее двойной ширины большей грани колонны, но не менее 400 мм. Для улучшения сцепления «нового» и «старого» бетона рекомендуется выполнять адгезионную обмазку из полимерных материалов.

Поперечная арматура железобетонной обоймы может быть выполнена в виде спиральной обмотки из проволоки диаметром не менее 6 мм. Более эффективны (но и более трудоемки) железобетонные обоймы, в которых обеспечивается связь существующей и дополнительной арматуры. Такие обоймы рекомендуются при сильном повреждении существующей арматуры или защитного слоя бетона. В этом случае арматуру усиливаемой конструкции тщательно очищают до чистого металла, разрушенные хомуты восстанавливают путем пробивки в бетоне поперечных борозд, установки в них новых хомутов и соединения их с продольной арматурой.

Дополнительную продольную арматуру приваривают к существующей с помощью соединительных коротышей, которые во избежание пережогов выполняют из арматуры класса A-I диаметром 10-16 мм и располагают на расстоянии друг от друга не менее 20 диаметров продольной арматуры в шахматном порядке.

При невозможности выполнения замкнутой обоймы, например при примыкании колонны к стене, рекомендуется устройство «рубашек» - незамкнутых с одной стороны обетонок. При этом способе усиления необходимо обеспечить надежную анкеровку поперечной арматуры по концам поперечного сечения «рубашек». В колоннах это осуществляется путем приварки хомутов к существующей арматуре.

При усилении «рубашками» локальных поврежденных участков, как и при усилении обоймами, их необходимо продлить на неповрежденные части конструкции на длину не менее 500 мм, а также не менее длины анкеровки продольной арматуры, не менее ширины грани элемента или его диаметра и не менее пятикратной толщины стенки «рубашки».

Эффективность включения металлической обоймы в работу колонны зависит от плотности прилегания уголков к телу колонны и предварительного напряжения поперечных планок. Для плотного прилегания уголков поверхность бетона по граням колонн тщательно выравнивается скалыванием неровностей и зачеканкой цементным раствором. Предварительное напряжение соединительных планок осуществляется термическим способом. Для этого планки приваривают одной стороной к уголкам обоймы, затем разогревают газовой горелкой до 100-120°С и в разогретом состоянии приваривают второй конец планок. Замыкание планок осуществляют симметрично от среднего по высоте колонны пояса. При остывании планок происходит обжатие поперечных сечений колонны, что приводит к повышению несущей способности.

Металлическая обойма состоит их стоек углового профиля, соединительных планок, опорных подкладок (рис. 1).

Рис. 1. Усиление колонны металлической обоймой:

1 - перекрытие; 2 - усиливаемая колонна; 3 - обойма;

4 - угол к и-стойки; 5 - поперечные планки; 6 - опорные планки

Эффективным средством усиления наружных колонн является устройство предварительно напряженных металлических распорок. Одно- или двусторонние распорки представляют собой металлические обоймы с предварительно напряженными стойками, расположенными с одной или двух сторон колонн. Первые применяют для увеличения несущей способности внецентренно сжатых колонн с большими и малыми эксцентриситетами, вторые - для центрально и внецентренно сжатых колонн.

Предварительно напряженные односторонние распорки состоят из двух уголков, соединенных между собой металлическими планками. В верхней и нижней зонах распорок приваривают специальные планки толщиной не менее 15 мм, которые передают нагрузку на упорные уголки и имеют площадь поперечного сечения, равную сечению распорок. Планки устанавливают таким образом, чтобы они выступали за торцы уголков распорок на 100-120 мм, и снабжают двумя отверстиями для стяжных болтов. Упорные уголки должны быть установлены таким образом, чтобы их внутренние грани совпадали с наружной гранью колонн. Для этого защитный слой бетона в верхней и нижней зонах колонны скалывают и устанавливают упорные уголки на цементном растворе строго горизонтально. До установки распорок в проектное положение в боковых полках уголков в середине их высоты выполняется вырез и осуществляется их незначительный перегиб. Ослабление поперечного сечения уголков в месте выреза компенсируется приваркой дополнительных планок, в которых предусмотрены отверстия для стяжных болтов.

Предварительное напряжение распорок создается путем придания им вертикального положения за счет закручивания гаек натяжных болтов. При этом необходимо обеспечить плотное прилегание уголков к телу колонны, а также их совместную работу, объединив распорки с помощью приварки к ним металлических планок. Шаг планок принимают равным минимальному размеру сечения колонны. После приварки планок стяжные монтажные болты снимают, а ослабленные сечения распорок усиливают дополнительными металлическими накладками.

Для эффективного включения распорок в работу достаточно создать в них предварительное напряжение порядка 40-70 МПа, что обеспечивается за счет расчетного удлинения при выпрямлении уголков.

Наращивание - увеличение сечения усиливаемых конструкций сверху, снизу и с боков слоем монолитного железобетона (балка, ригель, колонна, стены, плита перекрытия).

Усиление колонн обетонированием (рис. 2) выполняется в последовательности:

Рис. 2. Усиление колонны обетонированием: 1 - существующая колонна;

2 - железобетонная «рубашка»

Расчетом определяют количество и диаметр рабочей арматуры и хомутов или спиральной арматуры. Новую арматуру связывают со старой;

Устанавливают опалубку и производят бетонирование. Для лучшего сцепления старого и вновь укладываемого бетона поверхность колонны тщательно очищают, выполняют насечку и промывают водой под напором. Минимальная толщина «рубашки» должна быть достаточной для размещения арматуры и защитного слоя (50 мм), а при торкретировании - 30 мм.

При усилении железобетонных конструкций выполняют ряд технологических процессов: подготовку поверхности усиливаемой конструкции, установку арматуры и опалубки, укладку и уплотнение бетонной смеси, уход за бетоном в период достижения необходимой прочности и разборку опалубки. Подготовка поверхности усиливаемой конструкции производится для обеспечения надежного сцепления с ней бетона слоя усиления. При этом выполняются следующие операции: снятие поверхности защитного слоя и удаление отслоений бетона; очистка арматуры от поверхностной коррозии; обдувка сжатым воздухом и увлажнение поверхности. Снятие защитного слоя бетона и удаление его отслоений выполняется при помощи механизированного инструмента (молотков фуговальных электрических ИЭ-4207 и ИЭ-4210, рубильных молотков ИП-4119, ЭП-1027, ЭП-1056 и др.).

Очистку арматуры от ржавчины рекомендуется выполнять способом гидроабразивной обработки, используя при этом оборудование для торкретирования, а в качестве рабочей смеси - кварцевый песок или песчано-гравийную смесь влажностью до 6%. При гидроабразивной обработке соблюдают соотношение давления сжатого воздуха (на ресивере компрессора) и подаваемой к соплу воды 4: 0,5. Для очистки арматуры от ржавчины при усилении конструкций в стесненных условиях эффективно применять малогабаритный пескоструйный аппарат с вакуумным пистолетом, работающим по принципу эжектора. При небольших объемах работ для очистки арматуры от ржавчины используют пневматические ручные угловые металлические щетки ИП-2104 (масса щеток 4 кг, давление сжатого воздуха в пневмосистеме 0,6 МПа).

Укладку бетонной смеси при усилении бетонных конструкций наиболее целесообразно выполнять с применением установок для пневмонабрызга бетона: при толщине слоя усиления до 80 мм - торкретированием с использованием цемент-пушки; при толщине слоя усиления массивных конструкций до 250 мм и его общей поверхности не менее 10-15 м 2 - набрызгбетоном с использованием бетон-шприц-машин. Особенностью этих установок являтся подача по шлангам с помощью сжатого воздуха сухой бетонной смеси, которая на выходе из концевого сопла смешивается с водой. Бетонная смесь выбрасывается из сопла со скоростью 50-70 м/с и образует на поверхности плотный слой. Машины выполняют одновременно четыре процесса: транспортируют бетон­ную смесь к месту укладки, перемешивают се с водой, производят набрызг и уплотнение. При применении указанных установок полностью исключаются опалубочные работы, существенно сокращаются трудозатраты и сроки производства работ, что особенно важно при реконструкции. Набрызг-бетон имеет повышенную прочность и сцепление, а также обеспечивает повышенные защитные функции и улучшает эксплуатационные качества конструкций по сравнению с обычным бетоном.

Для торкретирования конструкций в стесненных условиях эффективно применение цемент-пушки СБ-117, для нанесения набрызг-бетона - установок СБ-67 и СБ-68. Толщина наносимого слоя набрызг-бетона за один раз составляет 50- 70 мм, расстояние между соплом и бетонируемой поверхностью 1 - 1,2 м. Для выполнения набрызг-бетонных работ бетон-шприц-машины и цемент-пушки комплектуются передвижным компрессором с рабочим давлением 0,9 и 0,6 МПа (для СБ-117), цистерной для воды, передвижными подмостями или автогидроподъемниками для работы на высоте. Сухие бетонные смеси поставляются централизованно: при объемах работ до 2,5 м 3 -в мешках, при больших объемах работ - в специализированных контейнерах.

При увеличении нагрузки на консоли колонн их усиливают горизонтальными или наклонными тяжами (рис. 3).

Рис. 3. Усиление консолей тяжами:

1 - усиливаемая консоль; 2 - опорные элементы; 3 - упоры из уголков; 4 - тяжи;

5 - анкеры; 6 - упоры из швеллеров

Предварительное напряжение создается завинчиванием гаек или взаимным стягиванием хомутов. Применяют также разгрузку консолей с помощью дополнительных металлических кронштейнов или специальных опор в виде швеллеров (уголков), которые крепят к колонне с помощью предварительно напряженных тяжей.

УСИЛЕНИЕ СТРОПИЛЬНЫХ КОНСТРУКЦИЙ

При дополнительной нагрузке на подстропильные фермы и балки часто возникает необходимость их усиления в целом или отдельных элементов и узлов. Наиболее эффективные способы усиления приведены на рис. 1, 2.

Усиление состоит из двух одинаковых (шарнирно-стержне-вых) цепей по обе стороны от конструкции, анкерных устройств в верхней зоне на опорах, подвесок из круглой стали или стоек из профильного металла, расположенных в местах перегиба ветвей цепей.

Ветви обычно выполняют из уголков, вертикальные полки которых подрезают в местах изгиба цепей, а также из арматурных стержней диаметром до 36 мм или канатов из высокопрочной проволоки. Анкеры изготовляют из листовой или профильной стали. Арматуру элементов усиления принимают классов A-I, А-П, A-III, К7, К19, металлические конструкции из сталей ВСтЗсп, ВСтЗпс и ВСтЗкп. Предварительное напряжение шарнирно-стержневой системы осуществляют путем закручивания гаек ключом или домкратом.

Рис. 1. Способы усиления металлических ферм покрытия:

а) предварительно напряженными шарнирно-стержневыми цепями путем закручивания гаек;

б) усиление узлов ферм металлическими хомутами из листовой стали или железобетона;

в) шпренгельными затяжками из уголков или двутавра и уголков;

1 - одноярусное усиление в пределах высоты ферм; 2 - то же ниже пояса ферм; 3 - шарнирно-стержневые цепи; 4 - горизонтальные тяжи; 5 - хомуты усиления; 6 - бетон;

7 - шпренгель; 8 - опорное устройство; 9 - распорка; 10 - натяжные винты

Рис. 2. Способы усиления балок покрытия:

а) подведением разгружающих стоек, рам, подкосов и т.д.:

1 - усиливаемая балка; 2 - дополнительная опора; 3 - опорный элемент из швеллера;

4 - металлические клинья для включения стойки в работу;

6) железобетонным наращиванием:

1 - усиливаемая балка; 2 - железобетонное наращивание; 3 - продольная арматура усиления; 4 - арматурные коротыши; 5 - оголенная арматура балки (с шагом через 1 м);

в) устройством железобетонной обоймы:

1 - усиливаемая балка; 2 - железобетонные плиты; 3 - железобетонная обойма; 4 - поверхность балки, подготовленная к бетонированию (зачистка, насечка, промывка водой);

5 - отверстия, пробитые в полках плит для укладки бетона

Усиление сжатых поясов ферм производят путем установки металлических обойм из листового или профильного металла. Усиление нижнего пояса осуществляют предварительно напряженными затяжками. Опорные части анкерных устройств затяжек выполняют из пластин толщиной 10-24 мм, подкрепленных ребрами. Для включения затяжек в работу ферм в них необходимо создавать предварительное напряжение порядка 15-20 МПа. Анкерные устройства должны плотно прилегать к опорным частям ферм, для чего в некоторых случаях между опорными плитами и бетоном выполняют слой цементного раствора марки 25.

Растянутые раскосы фермы усиливают предварительно напряженными затяжками, крепление которых к узлам фермы осуществляют путем приварки к фасонным деталям или опорным уголкам. Концевые участки затяжек снабжают коротышами с резьбой, причем диаметр коротышей должен превышать диаметр затяжек не менее чем на 4 мм.

Металлические обоймы сжатых элементов ферм включаются в работу за счет распорных сил, возникающих при приложении к ферме дополнительной нагрузки. При необходимости разгрузки сжатых элементов ферм выполняют предварительно напряженные односторонние или двусторонние распорки. Распорки упираются в специальные обоймы из листовой стали, устанавливаемые в узлах фермы.

Для усиления стропильных балок рекомендуются шпренгельные затяжки из уголков или двутавра и уголков. Предварительное напряжение шпренгеля необходимо для надежного включения шпренгеля в работу балки. Шпренгельная затяжка включает два боковых уголка, которые крепятся к анкерным коробкам, устанавливаемым на цементном растворе по торцам балки (рис. 3). Предварительное напряжение шпренгеля осуществляется путем взаимного стягивания горизонтальных уголков нижнего пояса с помощью специальных болтов.

Рис. 3. Усиление стропильной балки предварительно напряженным шпренгелем из уголков:

I - усиливаемый элемент; 2 - наклонный тяж; 3 - уголок нижнего пояса; 4 - компенсирующие накладки; 5 - монтажные подвески; 6 - горизонтальный тяж шпренгеля

Нижняя горизонтальная часть шпренгеля может быть выполнена из двутавра или швеллера. В этом случае предварительное напряжение шпренгеля осуществляется путем оттягивания двутавра от балки с помощью натяжных винтов, причем сначала одновременно затягиваются винты в местах перегиба тяжей, а затем - средний болт. После затяжки болты приваривают к нижнему поясу шпренгеля для исключения их раскручивания.

Предварительное напряжение может быть также осуществлено с помощью гидродомкратов, подвешенных к шпренгелю в местах перегиба тяжей.

Фиксация предварительного напряжения осуществляется путем заполнения зазора между нижним поясом балки и двутавром цементным раствором или специальными подкладками из отрезков полосовой стали.

После выполнения усиления все металлические детали окрашивают защитным лаком или эмалью.

Последовательность усиления железобетонных конструкций приведена на рис. 4.

Рис. 4. Последовательность усиления железобетонных конструкций

Усиление железобетонных ферм, находящихся в аварийном состоянии, выполняется путем их разгрузки и передачи усилий на дополнительные стальные фермы, устанавливаемые с двух сторон аварийной фермы с помощью монтажных балок (лебедками, блоками).

Передачу нагрузки от плит покрытия на установленные фермы осуществляют путем равномерного подклинивания, ликвидирующего зазоры между опорными стойками установленных ферм и продольными ребрами плит покрытия. Подклинивание ведут одновременно по обеим фермам от середины к краям. Далее образуют зазоры между плитами покрытия и аварийной фермой.

УСИЛЕНИЕ КОНСТРУКЦИЙ ПЛИТ

Монолитные плиты перекрытия можно усиливать методом наращивания, т.е. бетонированием дополнительной железобетонной плиты поверх существующей, а также подведением дополнительных опор в виде монолитных железобетонных или металлических балок.

Сборные железобетонные пустотные плиты могут усиливаться с использованием пустот. Сверху в зоне расположение канала пробивают полку и устанавливают арматурный каркас. Затем канал заполняют пластичным бетоном на мелком щебне и плиту рассчитывают с учетом дополнительной арматуры (рис. 10).

Рис. 10. Усиление сборных многопустотных плит перекрытия:

I - усиливаемая плита; 2 - опора; 3 - дополнительный арматурный каркас;

4 - бетон усиления

При усилении только опорной части плиты каркасы располагаются на части ее пролета, а при необходимости усиления по нормальному и наклонному сечениям - по всей длине плиты.

Усиление опорных частей пустотных плит при недостаточной площади их опирания рекомендуется осуществлять по следующим схемам:

Для крайних опор - путем установки в каналах арматурных каркасов с выносом их за торцы плит на требуемую длину, последующей установкой вертикальных каркасов параллельно торцам плит, бетонированием анкерной балки и опорных участков пустот плиты;

Для промежуточных опор - установкой общих вертикальных каркасов в предварительно пробитые отверстия приопорных зон, смежных плит и последующим бетонированием каналов с дополнительно установленной арматурой. В этом случае плиты работают как неразрезные конструкции.

Продольные ребра сборных железобетонных ребристых плит усиливают подведением дополнительных металлических опор, уменьшающих пролет ребер, дополнительными металлическими балками, которые включаются в работу с помощью подклинки; шпренгельными конструкциями.

Эффективным способом усиления продольных ребер плит по нормальным сечениям является установка дополнительных арматурных каркасов в швах между плитами и бетонирование швов.

Возможно наращивание продольных ребер с дополнительной арматурой при обеспечении ее связи с существующей рабочей арматурой.

Если невозможно выполнить набетонку для усиления плит, опертых по контуру, рекомендуется подвести под плиты предварительно напряженный пространственный шпренгель (рис. 11), который состоит из двух взаимно пересекающихся в одном уровне плоских шпренгелей, верхние пояса которых плотно подгоняются под нижнюю плоскость плиты, а нижние пояса предварительно напрягаются механическим или термомеханическим способом.

При эксплуатации шпренгель требуется защитить от коррозии, а при необходимости - закрыть подвесным потолком.

Рис. 11. Усиление сборной плиты, опертой по контуру,

пространственным шпренгелем:

1 - усиливаемая плита; 2 - элемент несущего контура; 3 - пространственный шпренгель;

4 - верхний пояс; 5 - нижний пояс; 6 - промежуточные стойки; 7 - центральная стойка;

8 - болты для подвески шпренгеля; 9 - передаточные траверсы

Для усиления опирания сборных плит перекрытия и покрытия на ригели и строительные конструкции рекомендуется подвести под опоры металлические столики из уголков, закрепив их с помощью тяжей или обойм к смежным конструкциям или верхнему поясу ригелей и стропильных конструкций (рис. 12, 13).

Рис. 12. Варианты устройства опорных столиков при наличии

закладных деталей:

1 - ригель; 2 - плита; 3 - закладная деталь в ригеле; 4 -опорный столик

Рис. 13. Усиление опирания плит:

1 - ригель; 2 - плита; 3 - крепление тяжа к плите; 4 - наклонный тяж-5 - упорный столик; 6 - ребра жесткости; 7 - хомуты; 8 - уголок " опорного столика

УСТАНОВКА ДОПОЛНИТЕЛЬНЫХ ЗАКЛАДНЫХ ДЕТАЛЕЙ И УСИЛЕНИЕ СТЫКОВ

Нередко требуется устанавливать дополнительные закладные детали или восстанавливать пропущенные при изготовлении конструкций.

При этом следует различать конструктивные закладные детали, на которые не передаются большие нагрузки, и те, которые воспринимают значительные изгибающие моменты и отрывающие усилия.

К первой группе относятся закладные детали для фиксации элементов, которые устанавливаются на несущие конструкции (плиты покрытия на балки и фермы, балки и фермы на колонны, самонесущие стены и стеновые панели к колоннам и т.п.). Эти закладные детали испытывают сжимающие или незначительные сдвигающие усилия и легко фиксируются с помощью специального металлического хомута.

Например, для фиксации опорного металлического листа на поверхности железобетонного элемента (рис. 14) достаточно сколоть защитный слой у двух угловых арматурных стержней, приварить к ним круглые коротыши или ребра из полосовой стали и к последним - лист (уголок) новой закладной детали.

Рис. 14. Установка деталей по верхней плоскости:

I - сколотая зона бетона; 2 - коротыш-подкладка из круглого стержня;

3 - сварные швы; 4 -дополнительная закладная деталь; 5 -угловая

арматура элемента; 6 - поперечные стержни каркаса

При необходимости выполнить закладную деталь заподлицо с поверхностью бетона в защитном слое вырубается борозда, ширина которой превышает ширину закладной детали на 10-20 мм, а глубина - толщину пластины на 5-10 мм. Пластина вдавливается в свежий цементный раствор и приваривается через коротыши-подкладки к рабочей арматуре каркаса.

Менее трудоемок способ установки конструктивных закладных деталей с помощью металлических хомутов (рис. 15), хотя он и требует большего расхода стали. Такие закладные детали выполня­ются по месту из заранее заготовленных и подогнанных элементов.

Рис, 15. Установка деталей с помощью хомутов:

1 - боковые планки хомута; 2 - лицевая планка хомута; 3 - сварные швы; 4 - стяжной болт; 5 - ребра жесткости; 6 - отверстие в стенке балки для пропуска стяжного бетона

При устройстве жестких стыков ригелей с колоннами, а также в случае дефектов в выпусках арматуры (несоосность, уменьшение диаметра и количества арматуры) рекомендуются охватывающие хомуты, площадь которых равна расчетному сечению стыка. При реконструкции часто возникает необходимость в анкеровке дополнительной арматуры или установке новых закладных деталей в существующей железобетонной конструкции. В этих случаях рекомендуется пробурить в бетоне перфоратором скважины на глубину не менее 20 диаметров арматуры и заделать в них арматуру на эпоксидном клее или путем виброзачеканки жесткой цементной смесью. На эпоксидном клее можно закреплять арматуру гладкого и периодического профиля к горизонтальной и вертикальной плоскости бетона, а также к нижней плоскости, расположенной под углом 45° к горизонту. На цементном растворе разрешается закреплять арматуру только на горизонтальной плоскости бетона. К анкерному коротышу на конце приваривается шайба, зачеканка скважины цементным раствором производится с помощью специального виброуплотнителя. Анкеровка стержней в теле бетона осуществляется на расстоянии не менее 5 диаметров друг от друга и на таком же расстоянии от грани бетона.

В современном мире инженеры-проектировщики все чаще сталкиваются с необходимостью усиления существующих конструкций, чтобы сохранить или даже увеличить их несущую способность. Некоторыми причинами этих задач являются перемены в использовании административных и промышленных зданий, увеличение транспортных нагрузок на мосты, изменения конструкций и уменьшение несущей способности вследствие коррозии бетона и стали. Существует много различных методов усиления, например, добавление предварительно напряженной и ненапряженной стали, установка внешней предварительно напряженной арматуры, увеличение поперечного сечения бетона с дополнительной арматурой или без нее (бетон, нанесенный набрызгом, обычным способом или приклеенный готовыми блоками) и т.д. Необходимо учитывать, подвергается ли поверхность для усиления нагрузкам на сжатие, растяжение или сдвиг, учитываются ли меры, относящиеся к стабильности, годности к употреблению и/или безопасности от усталости. Задачей именно инженера является выявление идеального метода усиления восстанавливаемой конструкции. Поэтому сейчас у инженеров-проектировщиков появилась возможность использовать приклеиваемое усиление в качестве альтернативы традиционным методам усиления. Технология соединения бетонных и железобетонных блоков, испытывающих нагрузки, путем склеивания реактивными смолами оправдала себя как надежная и сейчас находит широкое применение, особенно по причине того, что этот метод оказывается более экономичным в некоторых случаях и незаменим в условиях ограниченности свободного места.

Необходимость в усилении строительных конструкций путем монтажа элементов внешнего армирования из высокопрочного и высокомодульного материала появляется в следующих случаях:

  • Повреждение строительных конструкций, которое привело к снижению ее несущей способности, жесткости и трещиностойкости;
  • Изменение условий эксплуатации;
  • Изменение расчетной схемы несущей конструкции;
  • Необходимость повысить надежность и долговечность конструкции.

Для решения перечисленных проблем активно используются элементы внешнего армирования (ЭВА) из высокопрочных и высокомодульных волокон на основе углеродного и стекловолокна, имеющих высокие прочностные характеристики и возможность монтажа даже в самых труднодоступных местах.

Эффективность усиления лентами и основные области применения метода.

Эффективность усиления бетонных конструкций композитными лентами очень высокая. В зависимости от вида ламелей, холстов количества их слоёв и вида нагрузки, предельная грузоподъёмность элемента может увеличиться в 2 - 3 раза по сравнению с не усиленным элементом. Особенно это касается балок. Чтобы достигнуть эффективного усиления при помощи лент и углеродных холстов, надо очень строго соблюдать технологический регламент, прежде всего касающийся подготовки поверхности усиливаемого элемента. Здесь скажем только, что перед наклеиванием лент надо провести испытание прочности бетонного основания на отрыв, т.е. испытание „pull-off". Минимальное значение результата этого испытания должно быть 1,5 МПа.

Существующий опыт, в области усиления существующих конструкций, позволяет показать следующие направления частого и рационального применения композитных углепластиковых лент CARBODUR и холстов CARBOWRAP в бетонных объектах:

  • когда требуется усиление при обычной нагрузке на балки и плиты - тогда ленты надо приклеивать согласно огибающей изгибающих моментов, они бывают разной длины и могут быть наклеены в 1 или больше слоёв. Здесь проявляется аналогия к схеме армирования стержнями в изгибаемых элементах.
  • когда требуется усиление, для обеспечения требований по трещинообразованию при корродированных напрягаемых элементах сборных или других балок - тогда ленты наклеиваются „от опоры к опоре", т.е. на всей длине элемента;
  • когда требуется усиление в связи со срезывающими или главными растягивающими напряжениями - тогда отрезки лент наклеиваются в направлениях отогнутых стержней.

Другие применения лент, например, для усиления опор, столбов, перекрытий и стен также оправданно, испытано и многократно опробированно на многочисленных объектах.

Эффективность данного метода усиления многократно доказана на практике и используется в мировом строительстве на протяжении 40 лет. В России эта технология применяется 14 лет и получила высокое распространение, как в гражданском, так и в мостовом строении. Данная методика усиления является самым современным и «бережным» методом восстановления и повышения эксплуатационных характеристик конструкций.

Механические характеристики ЭВА варьируются в пределах:

  1. Модуль упругости Е = 70 000 – 640 000 МПа
  2. Прочность на растяжение R = 1700 – 4800 МПа
  3. Относительное растяжение при разрыве 1,5%

Усиление углеволокном

Углеволокно – высокопрочный, линейно упругий материал, эффективно работающий на железобетонных конструкциях. Стекловолокно имеет более низкий модуль упругости и применяется для усиления кирпичных сооружений. Так как данные ЭВА закрепляются на конструкции при помощи монтажного клея, они эффективно реагируют на приращение деформации конструкции, в них возникают большие приращения усилий, и они сразу включаются в работу совместно с конструкцией.

Также сотрудники компании принимали непосредственное участие в испытаниях, научных исследованиях и разработке технических регламентов в области усиления в различных строительных институтах г. Москвы, г. Санкт-Петербурга, г. Екатеринбурга. Проведенные испытания показали, что конструкции, усиленные ЭВА способны воспринимать нагрузки, двукратно превышающие проектные, а элементы подвергшиеся сильному разрушению восстанавливают свои первоначальные характеристики на 70% - 95%.

Работы по усилению чаще всего используются в комплексе с конструктивным ремонтом бетона и структурным восстановлением при помощи инъектирования.

Усиление растянутой зоны производится увеличением площади поперечного сечения рабочей арматуры усиливаемой конструкции путем установки дополнительной арматуры в этой зоне с обеспечением ее совместной работы с конструкцией. Совместная работа дополнительной арматуры с усиливаемой конструкцией обеспечивается:

    приваркой к существующей арматуре ;

    приклеиванием к бетону растянутой зоны .

Обеспечение совместной работы дополнительной арматуры приваркой к существующей арматуре

Приварка дополнительной растянутой арматуры к существующей арматуре усиливаемой конструкции в зависимости от состояния и толщины защитного слоя, а также возможности увеличения размеров поперечного сечения производится: непосредственно нахлесточным соединением с отбивкой защитного слоя по длине дополнительной арматуры (рис. 8.2, а ); с помощью коротышей диаметром, превышающим толщину защитного слоя (рис. 8.2, б , в ,); с помощью скоб (рис. 8.2, г ). После приварки в проектном положении дополнительная арматура обетонируется.

Рис. 8.2. Усиление растянутой зоны конструкций приваркой дополнительной арматуры:а – нахлесточным соединением; б – посредством коротышей со стороны растянутой зоны; в – посредством коротышей со стороны бокового защитного слоя; г – с помощью скоб

Приварка дополнительной арматуры к существующей предварительно напряженной арматуре, а также не заведенной за грань опоры на требуемую длину ненапряженной арматуре усиливаемой конструкции, не допускается.

Защитный слой бетона в местах приварки дополнительной арматуры, коротышей или скоб отбивается не менее чем на половину диаметра существующей арматуры. Существующая арматура в местах сварки должна быть очищена от ржавчины, пыли и других загрязнений до чистого металла.

В качестве дополнительной рабочей арматуры применяют стержневую арматуру периодического профиля или гладкую, а также прокатные профили.

Коротыши и участки соединения скоб из стержневой арматуры принимают длиной 50...200 мм и располагают по длине конструкции «вразбежку» с расстоянием между ними вдоль стержней не менее 20, где  – больший диаметр свариваемых стержней.

С целью уменьшения концентрации напряжений, охрупчивания металла и ослабления сечения при выполнении сварных швов не допускается наличие ожогов и подплавлений от дуговой сварки на поверхности рабочих стержней. Ожоги должны зачищаться абразивным кругом вдоль стержня. При усилении конструкции под нагрузкой приварку дополнительной арматуры осуществляют за два прохода симметрично в направлении от концов конструкции к середине. Приварку дополнительной арматуры к существующей арматуре усиливаемой конструкции, разгружаемой во время выполнения работ по усилению, допускается выполнять за один проход.

Приварка дополнительной арматуры к существующей арматуре усиливаемой конструкции без предварительного ее разгружения не допускается, если напряжения в рабочей арматуре наиболее неблагоприятного сечения конструкции превышают 85 % ее предела текучести. Напряжения в арматуре усиливаемой конструкции определяют при фактически действующих нагрузках, фактической прочности бетона и арматуры, площади поперечного сечения арматуры за вычетом сечения свариваемого стержня усиливаемой конструкции.

При усилении конструкции без разгрузки дополнительную арматуру целесообразно предварительно напрягать термическим, механическим или комбинированным термомеханическим способами. При термическом способе дополнительный стержень предварительно приваривают одним концом к существующей арматуре, затем нагревают стержень и приваривают его второй конец. При электротермическом способе для нагревания по стержню пропускают ток от сварочного трансформатора. Величина предварительного напряжения контролируется по удлинению стержня или температуре его нагрева. Необходимое удлинение дополнительного стержня определяется по формуле

,где – требуемое предварительное напряжение, – длина стержня между внутренними концами сварных швов;– модуль упругости арматуры.

Необходимую температуру нагрева дополнительной арматуры определяют по формуле

,где
– коэффициент температурного расширения для арматурной стали;– температура окружающей среды в момент натяжения арматуры. Температура нагрева не должна превышать 400С .

При механическом способе предварительного напряжения к дополнительному стержню, приваренному одним концом к существующей арматуре, с противоположного конца приваривают натяжное устройство в виде болта с гайкой, а к существующей арматуре приваривают упор в виде отрезка трубы с внутренним диаметром несколько большим диаметра болта. После закрепления концов дополнительная арматура приваривается к существующей по длине. После натяжения дополнительной арматуры натяжное устройство отрезают и используют повторно. Для создания предварительного натяжения возможно использование стяжной муфты, включенной в напрягаемый стержень.

Для облегчения натяжения механическим способом дополнительные стержни одновременно нагревают (термомеханический способ). Величина предварительного напряжения контролируется по удлинению стержня.

Величина предварительного напряжения дополнительной арматуры принимается в пределах

Максимальная величина предварительного напряжения для проволочной арматуры не должна превышать
.С целью уменьшения прогиба и повышения трещиностойкости усиливаемой конструкции величину предварительного напряжения дополнительной арматуры принимают максимальной.

Потери предварительного напряжения в дополнительной арматуре определяются по , как для конструкций с натяжением арматуры на бетон.

Обеспечение совместной работы дополнительной арматуры приклеиванием к бетону растянутой зоны

При обеспечении совместной работы дополнительной арматуры и усиливаемой конструкции приклеиванием с помощью полимеррастворов (рис. 8.3) дополнительную листовую и профильную арматуру размещают на поверхности, а стержневую – в специально подготовленных пазах или в слое полимерраствора. Кроме того, дополнительная рабочая арматура может быть размещена в сборных железобетонных элементах усиления, приклеиваемых к растянутой зоне конструкции. В случае воздействия агрессивных сред, учитывая высокие защитные свойства полимеррастворов, целесообразно одновременно выполнять покрытия на поверхности усиливаемой конструкции. Стальные листы защищают огнезащитными и антикоррозионными составами. Дополнительную арматуру в растянутой зоне устанавливают по всей длине конструкции или на расчетную длину в соответствии с эпюрой внутренних усилий.

Р
ис. 8.3. Усиление растянутой зоны конструкции приклеиванием дополнительной арматуры: 1 – усиливаемая конструкция; 2 – шурф; 3 – анкер; 4 – листовая арматура; 5 – полимерраствор; 6 – уголок; 7 – швеллер; 8 – паз; 9 – стержневая арматура; 10 – обмазка из полимерраствора; 11 – сборный железобетонный элемент; 12 – стеклоткань; 13 – тонкий лист с выштамповками; 14 – анкерная пластина

Для повышения эффективности анкеровки дополнительной листовой арматуры применяют анкерные связи в виде отрезков стержневой арматуры периодического профиля, приваренных к листу и заанкеренных в предварительно высверленных в бетоне отверстиях, заполненных полимерраствором, или стальных листов, приклеенных по боковым граням усиливаемой конструкции.

При усилении растянутой зоны приклеиванием дополнительной арматуры целесообразна максимальная разгрузка усиливаемой конструкции или предварительное напряжение дополнительной арматуры.

В качестве дополнительной рабочей арматуры, приклеиваемой в растянутой зоне усиливаемой конструкции, применяют стержневую арматуру, арматурные

канаты, листовой прокат толщиной 3...20 мм, прокатные профили в виде швеллеров, уголков, а также неметаллическую арматуру на основе стеклянных, базальтовых, углеродных и других волокон.

Работы по усилению растянутой зоны конструкций приклеиванием дополнительной арматуры или сборных железобетонных элементов с дополнительной арматурой производят в следующей последовательности. Подготавливают склеиваемые поверхности элементов усиления и усиливаемой конструкции. Стальные листы с внутренней стороны очищают от ржавчины, окалины и обезжириваются ацетоном. Склеиваемые бетонные поверхности усиливаемой конструкции и сборного железобетонного элемента не должны иметь выступов, сколов ребер, жировых пятен, загрязнений и пыли. Поверхности, ранее подвергавшиеся воздействию агрессивных сред, промывают чистой водой и сушат. Если агрессивные среды были кислыми, то после промывки поверхности нейтрализуют щелочными составами и вновь промывают и сушат. При большом объеме работ поверхности подвергают пескоструйной очистке и обеспыливанию с помощью волосяных щеток и обдувкой сжатым, очищенным от масла и влаги, воздухом. Трещины инъецируют. Пазы для размещения стержневой арматуры нарезают с применением алмазного и твердосплавного механизированного инструмента. Затем элементы усиления устанавливают в проектное положение и фиксируют с помощью временных креплений (подпорок, хомутов, фиксаторов и т.п.).

Полимерраствор для замоноличивания стержневой арматуры в пазах и антикоррозионного покрытия поверхности наносят вручную, методом заливки или распыления. Полимерраствор в пазах между листовой арматурой или железобетонным сборным элементом вводят инъецированием через штуцер, ввинчиваемый в отверстие элемента усиления. При этом зазоры по периметру шва предварительно герметизируют полимерраствором того же состава с добавлением наполнителя.

При применении дополнительной арматуры в виде швеллеров перед установкой швеллера в проектное положение необходимое количество полимерраствора укладывают на внутреннюю поверхность профиля. Затем швеллер поднимают в проектное положение и притягивают к конструкции с помощью временных монтажных хомутов. Излишки полимерраствора выдавливаются в зазоры между боковыми гранями усиливаемой конструкции и полками профиля.

При усилении сборных многопустотных панелей перекрытия для размещения дополнительной арматуры используются пустоты. Дополнительная арматура может быть в виде отдельных стержней с фиксаторами для обеспечения защитного слоя или каркасов. Дополнительную арматуру устанавливают в пустоты через отверстия, пробитые со стороны верхней или нижней граней плиты, а пустоты с помощью бетононасосов заполняют бетоном (рис. 8.4).

Рис. 8.4. Усиление многопустотных панелей перекрытия установкой дополнительной арматуры: 1 – плита; 2 – сварной каркас; 3 – бетон

С целью уменьшения расхода материалов при усилении многопустотных панелей дополнительная арматура может устанавливаться не по всей длине панели, а пустоты заполняться не на весь объем. Для этого по концам зоны усиления со стороны верхней или нижней грани плиты выполняют щели, на арматуру устанавливают фиксаторы, вводят арматуру в пустоты в средней зоне панели, устанавливают временные ограничительные пластины, через щели с помощью патрубков пустоты между ограничительными пластинами заполняют полимерраствором, после твердения которого, ограничительные пластины извлекают, а щели заделывают (рис. 8.5).

Р
ис. 8.5. Усиление растянутой зоны многопустотных панелей установкой дополнительной арматуры:а – при устройстве щелей сверху плиты; б – при устройстве щелей снизу плиты, 1 – усиливаемая плита, 2 – щель, 3 – дополнительная арматура, 4 – фиксатор, 5 – ограничительная пластина, 6 – патрубок, 7 – полимерраствор

Толщина слоя полимерраствора определяется из условия прочности контактного шва и должна быть не менее 3, где  – диаметр дополнительной арматуры.

В приопорных зонах усиливаемых сборных многопустотных панелей выполняют щели, устанавливают временные ограничительные пластины в виде круга диаметром, равным диаметру пустоты, с прорезью для арматуры. Затем монтируют арматурный стержень и бетонируют приопорные зоны пустот. После набора бетоном прочности арматуру напрягают натяжными болтами, которые монтируют через отверстия со стороны нижней грани. При этом устанавливают опалубку под отверстиями со стороны нижней грани. Затем оставшееся пространство пустот заполняют бетонной смесью, после выдержки которой снимают опалубку и обрезают выступающие концы натяжных болтов (рис. 8.6).

Р
ис. 8.6. Усиление сборных многопустотных плит предварительно напряженной арматурой:а – плиты в момент предварительного напряжения арматуры; б – усиленная плита, 1 – усиливаемая плита, 2 – дополнительная арматура, 3 – временная ограничительная пластина, 4 – бетон, 5 – натяжной болт, 6 – опалубка

Дополнительная арматура для усиления растянутой зоны сборных панелей может устанавливаться в расширенный шов между плитами с последующим бетонированием. При этом должна обеспечиваться совместная работа дополнительной арматуры с усиливаемыми панелями путем устройства насечки, шпонок на боковых гранях смежных плит, а также применением полимеррастворов с высокими адгезионными свойствами.

Сборные железобетонные элементы усиления (обычные и предварительно напряженные) должны быть запроектированы на нагрузки, действующие в период изготовления, транспортирования и монтажа в соответствии с . Класс бетона элементов усиления должен быть не ниже фактической прочности бетона усиливаемой конструкции. Толщина сборного железобетонного элемента с дополнительной арматурой принимается не менее 50 мм. Количество сборных железобетонных элементов, размещенных по ширине сечения усиливаемой конструкции, может быть один и более.

© 2019 reabuilding.ru -- Портал о правильном строительстве