Китайскими учеными создан самый легкий в мире твердый материал. Самый легкий в мире твердый материал Самый прочный и легкий материал
Подписаться на сайт
Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook
и ВКонтакте
Под определением прочность подразумевается способность материалов не поддаваться разрушению в результате воздействия внешних сил и факторов, приводящих к внутреннему напряжению. У материалов, обладающих высокой прочностью, широкая область применения. В природе существую не только твердые металлы и прочные породы древесины, но и искусственно созданные высокопрочные материалы. Многие люди уверены в том, что самый прочный материал в мире – это алмаз, но так ли это в действительности?
Общая информация:
Дата открытия – начало 60-х годов;
Первооткрыватели – Сладков, Кудрявцев, Коршак, Касаткин;
Плотность – 1,9-2 г/см3.
В недавнем времени научные сотрудники из Австрии завершили работу по налаживанию устойчивого изготовления карбина, являющегося аллотропной формой углерода на основе sp-гибридизации углеродных атомов. Показатели его прочности в 40 раз превзошли показатели алмаза. Информация об этом была размещена в одном из номеров научного печатного периодического издания “Nature Materials”.
После тщательного изучения его свойств, ученые пояснили, что по прочности он не сравнится ни с одним ранее открытым и изученным материалом. Тем не менее в процессе производства возникли значительные трудности: структура карбина образована из атомов углерода, собранных в длинные цепочки, в результате чего он начинает разрушаться в процессе изготовления.
Для устранения выявленной загвоздки, физики из общественного университета в Вене создали специальное защитное покрытие, в котором и синтезировался карбин. В качестве защитного покрытия использовались слои графена, положенные друг на друга и свернутые в «термос». Пока физики прилагали все усилия для достижения стабильных форм, они выяснили, на электрические свойства материала влияет протяженность атомной цепочки.
Извлекать карбин из защитного покрытия без повреждений исследователи так и не научились, поэтому изучение нового материала продолжается, руководствуются ученые только лишь относительной устойчивостью атомных цепочек.
Карбин – малоизученная аллотропная модификация углерода, первооткрывателями которой стали советские ученые-химики: А.М.Сладков, Ю.П.Кудрявцев, В.В.Коршак и В.И.Касаточкин. Информация о результате проведения опыта с подробным описанием открытия материала в 1967 году появилась на страницах одного из крупнейших научных журналов – «Доклады академии наук СССР». Спустя 15 лет в американском научном журнале «Science» появилась статья, поставившая под сомнение результаты, которые получили советские химики. Выяснилось, что присвоенные малоизученной аллотропной модификации углерода сигналы могли быть связаны с присутствием примесей силикатов. С годами подобные сигналы обнаружили в межзвездном пространстве.
Общая информация:
Первооткрыватели – Гейм, Новоселов;
Теплопроводность – 1 ТПа.
Графен представляет собой двумерную аллотропную модификацию углерода, в которой атомы объединены в гексагональную решетку. Несмотря на высокую прочность графена, толщина его слоя составляет 1 атом.
Первооткрывателями материала стали русские физики, Андрей Гейм и Константин Новоселов. В своей стране ученые не заручились финансовой поддержкой и приняли решение о переезде в Нидерланды и Соединенное Королевство Великобритании и Северной Ирландии. В 2010 году ученым присудили Нобелевскую премию.
На листе графена, площадь которого равняется одному квадратному метру, а толщина – одному атому, свободно держатся предметы массой до четырех килограмм. Помимо того, что графен высокопрочный материал, он еще и очень гибкий. Из материала с такими характеристиками в будущем можно будет плести нити и другие веревочные структуры, не уступающие в прочности толстому стальному канату. При определенных условиях материал, открытый русскими физиками, может справляться с повреждениями в кристаллической структуре.
Общая информация:
Год открытия – 1967;
Цвет – коричнево-желтый;
Измеренная плотность – 3,2 г/см3;
Твердость – 7-8 единиц по шкале Мооса.
Структура лонсдейлита, обнаруженного в воронке метеорита, схожа с алмазом, оба материала – это аллотропные модификации углерода. Вероятнее всего, в результате взрыва графит, являющийся одним из компонентов метеорита, и превратился в лонсдейлит. На момент обнаружения материала ученые не отметили высоких показателей твердости, тем не менее, было доказано, если в нем не будет примесей, то он ничем не будет уступать высокой твердости алмаза.
Общая информация о нитриде бора:
Плотность – 2,18 г/см3;
Температура плавления – 2973 градуса по Цельсию;
Кристаллическая структура – гексагональная решетка;
Теплопроводность – 400 Вт/(м×К);
Твердость – меньше 10 единиц по шкале Мооса.
Основные отличия вюрцитного нитрида бора, представляющего собой соединение бора с азотом, заключаются в термической и химической стойкости и огнеупорности. Материал может быть разной кристаллической формы. К примеру, графитная самая мягкая, но при этом стабильная, именно она используется в косметологии. Сфалеритная структура в кристаллической решетке подобна алмазам, но уступает по показателям мягкости, обладая при этом лучшей химической и термической стойкостью. Такие свойства вюрцитного нитрида бора позволяют использовать его в оборудовании для высокотемпературных процессов.
Общая информация:
Твердость – 1000 Гн/м2;
Прочность – 4 Гн/м2;
Год открытия металлического стекла – 1960.
Металлическое стекло – материал с высоким показателем твердости, неупорядоченной структурой на атомарном уровне. Основное отличие структуры металлического стекла от обычного – высокая электропроводность. Получают такие материалы в результате твердотельной реакции, быстрого охлаждения или ионного облучения. Ученые научились изобретать аморфные металлы, показатели прочности которых в 3 раза больше, чем у стальных сплавов.
Общая информация:
Предел упругости – 1500 Мпа;
KCU – 0,4-0,6 МДж/м2.
Общая информация:
Ударная вязкость КСТ – 0,25-0,3 МДж/м2;
Предел упругости – 1500 Мпа;
KCU – 0,4-0,6 МДж/м2.
Мартенситно-стареющие стали – сплавы железа, обладающие высокой прочностью при ударах, при этом не теряющие тягучести. Несмотря на такие характеристики, материал не держит режущую кромку. Полученные путем термообработки сплавы – это низкоуглеродистые вещества, берущие прочность от интерметаллидов. В состав сплава входит никель, кобальт и другие карбидообразующие элементы. Данная разновидность высокопрочной, высоколегированной стали легко поддается обработке, связано это с небольшим содержанием в ее составе углерода. Материал с такими характеристиками нашел применение в аэрокосмической области, его используют в качестве покрытия ракетных корпусов.
Осмий
Общая информация:
Год открытия – 1803;
Структура решетки – гексагональная;
Теплопроводность – (300 К) (87,6) Вт/(м×К);
Температура плавления – 3306 К.
Блестящий металл голубовато-белого цвета, обладающий высокой прочностью, принадлежит к платиноидам. Осмий, обладая высокой атомной плотностью, исключительной тугоплавкостью, хрупкостью, высокой прочностью, твердостью и стойкостью к механическим воздействиям и агрессивному влиянию окружающей среды, широко применяется в хирургии, измерительной технике, химической отрасли, электронной микроскопии, ракетной технике и электронной аппаратуре.
Общая информация:
Плотность – 1,3-2,1 т/м3;
Прочность углеродного волокна – 0,5-1 ГПа;
Модуль упругости углеродного высокопрочного волокна – 215 Гпа.
Углерод-углеродные композиты – материалы, которые состоят из углеродной матрицы, а она в свою очередь армирована углеродными волокнами. Основные характеристики композитов – высокая прочность, гибкость и ударная вязкость. Структура композиционных материалов может быть как однонаправленной, так и трехмерной. Благодаря таким качествам композиты широко используются в различных областях, включая и аэрокосмическую отрасль.
Общая информация:
Официальный год открытия паука – 2010;
>Ударная вязкость паутины – 350 МДж/м3.
Впервые паука, плетущего сети огромных размеров, обнаружили неподалеку от Африки, на островном государстве Мадагаскар. Официально этот вид пауков открыли в 2010 году. Ученых, прежде всего, заинтересовали паутины, сплетенные членистоногим. Диаметр кругов на несущей нити может доходить до двух метров. Показатели прочности паутины Дарвина превышают показатели прочности синтетического кевлара, используемого в авиационной и автомобильной промышленности.
Общая информация:
Теплопроводность – 900-2300 Вт/(м×К);
Температура плавления при давлении 11 Гпа – 3700-4000 градусов по Цельсию;
Плотность – 3,47-3,55 г/см3;
Показатель преломления – 2,417-2,419.
Алмаз в переводе с древнегреческого означает «несокрушимый», однако ученые открыли еще 9 элементов, превосходящих его по показателям прочности. Несмотря на бесконечное существование алмаза в обычной среде, при высокой температуре и инертном газе он может превратиться в графит. Алмаз – эталонный элемент (по шкале Мооса), обладающий одним из самых высоких показателей твердости. Для него, как и для многих драгоценных камней, характерна люминесценция, позволяющая блестеть при попадании на него солнечных лучей.
Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.
Где используют самые прочные материалы?
Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.
Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.
Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.
То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.
Самый твердый металл
Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.
Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.
Самое прочное дерево
Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.
Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.
Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.
А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..
Самый прочный материал во Вселенной
Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.
В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.
Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен
И это был самый лёгкий материал, известный ещё как «замороженный дым», на протяжении более 80 лет.
В прошлом году на смену ему пришёл другой материал, получивший название аэрографит. Он представляет собой синтетическую пену, которая состоит из трубчатых волокон углерода. Его плотность достигает 0,18 мг/см 3. . Но пальму первенства этот материал удерживал недолго.
Недавно был создан другой материал, который получил название графеновый аэрогель.
Он создан группой учёных из университета Чжэцзяна (Zhejiang University). Его плотность ниже чем плотность газообразного гелия и немного выше плотности газообразного водорода. Его плотность составляет 0.16 мГ/см3. Для его создания был использован графен. Учёные применили метод сублимационной сушки. В результате была создана углеродистая пористая губка, полностью повторяющая заданную форму. Полученный графеновый аэрогель не только самый лёгкий материал, но и чрезвычайно прочный и упругий. Он способен поглощать органические материалы. Например, за одну секунду он поглощает 68.8 г нефти, что позволит использовать его для очистки океанов от нефтяных пятен.
«Вполне возможно, что в один прекрасный день, когда произойдёт разлив нефти, мы сможем использовать данный материал для быстрого её поглощения. В силу своей эластичности … аэрогель может быть переработан»
Кроме того, его можно будет использовать в системах аккумулирования энергии, а также в качестве катализатора для ряда химических реакций.
Для демонстрации того, насколько лёгок материал, учёные поместили его на лепесточки цветка вишни.
Самые лёгкие и необычайно прочные материалы называют будущим строительства. Эти материалы помогут создавать более энергоэффективные и экологически чистые объекты во всех сферах жизни людей - от медицинских технологий до транспорта.
Среди множества инновационных материалов, которые не так давно казались просто фантастикой, особо передовыми и перспективными являются:
3D-графен
Созданный из чистого углерода этот ультратонкий графен считается одним из самых прочных материалов на Земле. Но недавно исследователи из Массачусетского технологического института смогли превратить двухмерный графен в трёхмерную структуру. Они создали новый материал с губчатой структурой. Плотность 3D-графена равна всего 5 процентам от плотности стали, но благодаря особой структуре он в 10 раз прочнее стали.
По словам создателей, 3D-графен имеет большой потенциал применения во многих областях.
Что касается его технологии создания, то её можно применить и для других материалов, от полимеров до конструкционного бетона. Это позволит не только производить структуры, которые прочнее и легче, но и имеющие повышенные изоляционные свойства. Кроме того, пористые структуры могут быть использованы в системах фильтрации воды или отходов химических заводов.
Карбин
Весной прошлого года группа австрийских исследователей успешно синтезировала карбин (Carbyne) - форму углерода, которая является самой прочной из всех известных материалов и даже превосходит графен.
Карбин состоит из одномерной цепочки атомов углерода, которая химически активна, что делает её очень сложной для синтеза. Считается, что негибкий материал в два раза прочнее углеродных нанотрубок. Карбин может применяться в наномеханике, нано- и микроэлектронике.
Аэрографит
Созданный из сети пористых углеродных трубок, аэрографит представляет собой синтетическую пену. Это один из самых лёгких конструкционных материалов, созданных когда-либо. Аэрографит разработали исследователи из Университета Киля и Технического университета Гамбурга. Аэрографит может быть изготовлен в различных формах, его плотность всего 180 г/м 3 , что в 75 раз легче, чем пенополистирол. Этот материал можно использовать в электродах литий-ионных батарей, чтобы уменьшить их вес.
Аэрографен
Известный также как графен-аэрогель, это лёгкий материал с плотностью всего 0,16 млг/см 3 , что в 7,5 раза меньше плотности воздуха. К тому же это очень эластичный материал, и он способен поглотить до 900 раз больше масел и воды, чем весит сам. Это свойство аэрографена очень важно: он сможет поглощать разливы нефти в океанах.
Подобными свойствами обладает , которая уже тестируется исследователями из Аргонны.
октября 24, 2013
Чем легче, тем лучше?
Многие с детства помнят загадку о том, что же все-таки тяжелее килограмм пуха или килограмм свинца. И многие говорили, что килограмм свинца тяжелее. Для людей - пух, лепестки цветов и одуванчики кажутся чем-то легким.
Такая банальная на сегодняшний день вещь, как алюминий ученым 19 столетия представлялась грандиозным открытием. Многие из них мечтали о жилищах для всех обездоленных из этого легкого и прочного металла. Ученых всего мира всегда занимал вопрос создания наилегчайших материалов, которые можно транспортировать без особых проблем.
Таким образом, человечество пытается приблизиться к божественному началу, взмыть ввысь и вплотную приблизиться к великому первоисточнику всего сущего. Как здесь не вспомнить сказку о шапке-невидимке, - возможно ученые умы так и остались под впечатлением детских книжек?
Применение самых легких материалов
Но у лирической стороны всегда есть и обратная, практическая сторона. Самые легкие материалы – один из наиболее существенных вопросов и задач современной науки, а в частности – нано-технологий. Подобные материалы необходимы для космической и военной отрасли, производства компьютеров на базе новейших процессоров, в трансплантологии и многих других областях человеческой жизнедеятельности.
Долгое время одним из наилегчайших материалов, созданных человеком, считался пенополистирол. Это продукт класса пенопластмасс, который изготавливался из полистирола вкупе с его производными. Трудно себе представить, но этот материал состоит на 98% из воздуха и лишь только 2% остается на сам полистирол.
Однако жизнь не стоит на месте, и маститые ученые (вот ведь неугомонные люди) продолжают теснить один другого в поисках новых, еще более легких субстанций. Так, совсем недавно вся научная общественность была взбудоражена новым открытием в области не тяжелых материалов.
Замороженный воздух
Новое вещество получило название «аэрогель», которое в русском эквиваленте звучало бы как «замороженный воздух» или «замороженный дым». Действительно, это вещество по своему виду здорово напоминает дым, который как будто по желанию безумного художника, непонятным образом перекочевал с холста в реальную действительность.
Это пористое вещество с голубоватым оттенком напоминает пенопласт или слегка затвердевшую пенку для бритья. Одно из главных уникальных свойств этого материала – способность выдерживать нагрузки, которые могут превышать собственный вес вещества более чем в 2000 раз! И это, если учесть, что аэрогель на 9,8% состоит из воздуха.
Кроме того, это вещество превосходный теплоизолятор, который почти в 40 раз превосходит изоляционный стеклопластик, так что аэрогель уже сегодня находит свое применение в аэрокосмической отрасли. Помимо высоких теплоизоляционных характеристик это вещество практически не пропускает звук, способно выдерживать воздействие самых экстремальных температур, а также сильное ударное воздействие.
На практике, бронежилет изготовленный из аэрогеля толщиной в 1 см, будет способен защитить носителя от взрыва целого килограмма динамита. Но список под названием «легкие материалы» на этом не заканчивается. Китайским ученым удалось создать настолько легкий материал, что он способен размещаться на лепестках цветов.
Пушинка, способная выдержать слона
Дюймовочка по сравнению с этим веществом, которое назвали графен, просто "жирная корова". Графен всего лишь вдвое тяжелее самого простого химического элемента водорода и менее плотный, нежели гелий. Однако, несмотря на такую легкость и воздушность, этот материал чрезвычайно прочный.
Один лист толщиной с полиэтиленовый пакет способен выдержать вес слона. Для того, чтобы получить стопку толщиной в 1 мм, необходимо три миллиона листов графена. Кроме того, графен имеет просто фантастические свойства поглощения – до 900 раз от собственного веса в нефтяном эквиваленте.
Причем этот «умный материал» поглощает именно нефть, а не воду, что в свою очередь делает его чрезвычайно перспективным в деле очистки планеты от нефтяных пятен. Помимо всего вышеперечисленного графен настолько гибок, что его можно смело растягивать на 20%. Впрочем, эксперименты по созданию новых сверхлегких материалов продолжаются.
Практика показывает, что в скором будущем человечество ожидают еще более невероятные открытия. Возможно, совсем скоро ученые умы представят на суд современников вещества, состоящие на 9,9% из одного только воздуха.